ECSS-E-TM-40-07 Volume 4A 
25 January 2011
[image: image15.png]


 DOCPROPERTY  "ECSS Standard Number"  \* MERGEFORMAT 
ECSS-E-TM-40-07 Volume 4A 

25 January 2011


Space engineering
Simulation modelling platform - Volume 4: C++ Mapping
Foreword

This document is one of the series of ECSS Technical Memoranda. Its Technical Memorandum status indicates that it is a non-normative document providing useful information to the space systems developers’ community on a specific subject. It is made available to record and present non-normative data, which are not relevant for a Standard or a Handbook. Note that these data are non-normative even if expressed in the language normally used for requirements.

Therefore, a Technical Memorandum is not considered by ECSS as suitable for direct use in Invitation To Tender (ITT) or business agreements for space systems development.
Disclaimer

ECSS does not provide any warranty whatsoever, whether expressed, implied, or statutory, including, but not limited to, any warranty of merchantability or fitness for a particular purpose or any warranty that the contents of the item are error-free. In no respect shall ECSS incur any liability for any damages, including, but not limited to, direct, indirect, special, or consequential damages arising out of, resulting from, or in any way connected to the use of this document, whether or not based upon warranty, business agreement, tort, or otherwise; whether or not injury was sustained by persons or property or otherwise; and whether or not loss was sustained from, or arose out of, the results of, the item, or any services that may be provided by ECSS.

Published by: 
ESA Requirements and Standards Division


ESTEC, P.O. Box 299,


2200 AG Noordwijk


The Netherlands

Copyright: 
2011© by the European Space Agency for the members of ECSS

Change log

	ECSS-E-TM-40-07 Volume 4A  

25 January 2011
	First issue




Table of contents

3Change log


12Introduction


141 Scope


152 Base Types


152.1
Primitive Types


152.1.1
Char8


152.1.2
Bool


162.1.3
Int8


162.1.4
UInt8


162.1.5
Int16


172.1.6
UInt16


172.1.7
Int32


172.1.8
UInt32


182.1.9
Int64


182.1.10
UInt64


182.1.11
Float32


192.1.12
Float64


192.1.13
Duration


202.1.14
Date Time


212.1.15
String8


212.2
Simple Type Union


212.2.1
Primitive Type Kind


232.2.2
Any Simple Array


232.2.3
Any Simple


242.2.4
Primitive Type Value


252.3
Universally Unique Identifiers


252.3.1
Uuid


262.3.2
Uuid Bytes


273 Component Model


273.1
Exceptions


273.1.1
Exception


283.1.2
Duplicate Name


293.1.3
Invalid Any Type


303.1.4
Invalid Event Id


313.1.5
Invalid Object Type


323.2
Objects and Components


323.2.1
Objects


323.2.1.1
IObject


343.2.2
Components


343.2.2.1
IComponent


353.2.2.2
Component Collection


363.2.2.3
Model State Kind


373.2.2.4
IModel


413.2.2.5
Model Collection


423.2.2.6
IService


423.2.2.7
Service Collection


433.3
Component Mechanisms


433.3.1
Aggregation


433.3.1.1
IAggregate


453.3.1.2
IReference


463.3.1.3
Reference Collection


473.3.2
Composition


473.3.2.1
IComposite


483.3.2.2
IContainer


503.3.2.3
Container Collection


503.3.3
Events


503.3.3.1
IEvent Sink


523.3.3.2
Event Sink Collection


523.3.3.3
IEvent Source


573.3.3.4
Event Source Collection


573.3.4
Entry Points


573.3.4.1
ITask


593.3.4.2
IEntry Point


603.3.4.3
Entry Point Collection


613.3.5
Dynamic Invocation


623.3.5.1
IDynamic Invocation


683.3.5.2
IRequest


753.3.6
Persistence


753.3.6.1
IPersist


783.3.6.2
IStorage Reader


793.3.6.3
IStorage Writer


803.4
Model Mechanisms


803.4.1
Fallible Models


813.4.1.1
IFailure


823.4.1.2
IFallible Model


843.5
Management Interfaces


843.5.1
Managed Components


843.5.1.1
IManaged Object


873.5.1.2
IManaged Component


883.5.2
Managed Component Mechanisms


893.5.2.1
IComponent Collection


913.5.2.2
IManaged Reference


953.5.2.3
IManaged Container


973.5.2.4
IEvent Consumer


983.5.2.5
IEvent Provider


1003.5.2.6
IEntry Point Publisher


1023.5.3
Managed Model Mechanisms


1023.5.3.1
IManaged Model


1053.5.3.2
IField


1083.5.3.3
IArray Field


1133.5.3.4
ISimple Field


1153.5.3.5
IForcible Field


1163.5.3.6
View Kind


1183.6
Simulation Environments


1183.6.1
Simulators


1193.6.1.1
Simulator State Kind


1233.6.1.2
ISimulator


1343.6.1.3
IManaged Simulator


1383.6.1.4
IFactory


1403.6.1.5
Factory Collection


1403.6.2
Publication


1403.6.3
Service Acquisition


1424 Simulation Services


1424.1
Logger


1424.1.1
ILogger


1444.1.1.1
Log


1444.1.1.2
Query Log Message Kind


1444.1.2
Log Message Kind


1454.1.3
Predefined Log Message Kinds


1464.1.4
User defined Log Message Kinds


1464.2
Time Keeper


1464.2.1
ITime Keeper


1484.2.1.1
Get Epoch Time


1484.2.1.2
Get Mission Time


1484.2.1.3
Get Simulation Time


1494.2.1.4
Get Zulu Time


1494.2.1.5
Set Epoch Time


1494.2.1.6
Set Mission Start


1504.2.1.7
Set Mission Time


1504.2.2
Time Kind


1544.3
Scheduler


1544.3.1
IScheduler


1604.3.1.1
Add Epoch Time Event


1604.3.1.2
Add Immediate Event


1614.3.1.3
Add Mission Time Event


1614.3.1.4
Add Simulation Time Event


1624.3.1.5
Add Zulu Time Event


1634.3.1.6
Remove Event


1634.3.1.7
Set Event Count


1644.3.1.8
Set Event Cycle Time


1644.3.1.9
Set Event Epoch Time


1644.3.1.10
Set Event Mission Time


1654.3.1.11
Set Event Simulation Time


1654.3.1.12
Set Event Zulu Time


1664.3.1.13
Invalid Cycle Time


1664.3.1.14
Invalid Event Time


1674.4
Event Manager


1674.4.1
IEvent Manager


1744.4.1.1
Emit


1744.4.1.2
Query Event Id


1754.4.1.3
Subscribe


1754.4.1.4
Unsubscribe


1754.4.1.5
Already Subscribed


1764.4.1.6
Not Subscribed


1784.4.2
Predefined Event Types


1804.5
Resolver


1804.5.1
IResolver


1814.5.1.1
Resolve Absolute


1814.5.1.2
Resolve Relative


1824.5.2
Component Paths


1824.6
Link Registry


1824.6.1
ILink Registry


1844.6.1.1
Add Link


1844.6.1.2
Can Remove


1854.6.1.3
Get Links


1854.6.1.4
Has Link


1864.6.1.5
Remove Link


1864.6.1.6
Remove Links


1875 Publication


1875.1
Type Registry


1885.1.1
IType Registry


1915.1.1.1
Add Array Type


1925.1.1.2
Add Class Type


1925.1.1.3
Add Enumeration Type


1925.1.1.4
Add Float Type


1935.1.1.5
Add Integer Type


1935.1.1.6
Add String Type


1945.1.1.7
Add Structure Type


1945.1.1.8
Get Type


1945.1.1.9
Get Type


1955.1.1.10
Already Registered


1955.1.2
IType


1965.1.2.1
Get Primitive Type


1975.1.2.2
Get Uuid


1975.1.2.3
Publish


1975.1.3
IEnumeration Type


1985.1.3.1
Add Literal


1985.1.4
IStructure Type


1995.1.4.1
Add Field


2005.1.5
IClass Type


2005.1.6
Not Registered


2015.2
Publication of Fields, Operations and Properties


2015.2.1
IPublish Operation


2025.2.1.1
Publish Parameter


2025.2.2
IPublication


2095.2.2.1
Create Request


2095.2.2.2
Delete Request


2095.2.2.3
Get Array Field


2105.2.2.4
Get Simple Field


2105.2.2.5
Get Type Registry


2105.2.2.6
Publish Array


2115.2.2.7
Publish Array


2115.2.2.8
Publish Field


2125.2.2.9
Publish Field


2125.2.2.10
Publish Field


2125.2.2.11
Publish Field


2135.2.2.12
Publish Field


2135.2.2.13
Publish Field


2145.2.2.14
Publish Field


2145.2.2.15
Publish Field


2145.2.2.16
Publish Field


2155.2.2.17
Publish Field


2155.2.2.18
Publish Field


2155.2.2.19
Publish Field


2165.2.2.20
Publish Field


2165.2.2.21
Publish Operation


2175.2.2.22
Publish Property


2175.2.2.23
Publish Structure


2175.2.2.24
Invalid Field Type


2185.2.3
Access Kind


2185.2.4
Parameter Direction Kind


2206 Metamodel


2206.1
Overview


2206.1.1
Placeholders


2206.1.2
Coloring and Font Schema


2206.1.3
Generation of Type Identification


2216.1.4
Alternative Code


2216.1.5
Optional Code


2216.2
C++ Specific Attributes


2216.2.1
C++ Attributes


2216.2.1.1
Abstract


2226.2.1.2
Base Class


2226.2.1.3
By Reference


2236.2.1.4
Const


2236.2.1.5
Constructor


2246.2.1.6
Operator


2246.2.1.7
Operator Kind


2266.2.1.8
Static


2276.2.1.9
Virtual


2276.3
Core Elements


2276.3.1
Basic Types


2276.3.1.1
Identifier


2276.3.1.2
Name


2276.3.1.3
Description


2276.3.1.4
UUID


2276.3.2
Elements


2276.3.2.1
Named Element


2286.3.2.2
Document


2286.3.3
Metadata


2286.3.3.1
Metadata


2286.3.3.2
Comment


2286.3.3.3
Documentation


2286.4
Core Types


2286.4.1
Types


2286.4.1.1
Visibility Element


2286.4.1.2
Visibility Kind


2296.4.1.3
Type


2296.4.1.4
Language Type


2296.4.1.5
Value Type


2296.4.1.6
Value Reference


2296.4.1.7
Native Type and Platform Mapping


2316.4.2
Value Types


2316.4.2.1
Simple Type


2316.4.2.2
Primitive Type


2316.4.2.3
Enumeration


2316.4.2.4
Enumeration Literal


2316.4.2.5
Integer


2326.4.2.6
Float


2326.4.2.7
String


2336.4.2.8
Array


2336.4.2.9
Structure


2346.4.2.10
Class


2356.4.2.11
Exception


2366.4.3
Features


2366.4.3.1
Constant


2366.4.3.2
Field


2376.4.3.3
Property


2386.4.3.4
Association


2386.4.3.5
Operation


2406.4.3.6
Parameter


2406.4.4
Values


2406.4.4.1
Value


2406.4.4.2
Simple Value


2416.4.4.3
Simple Array Value


2426.4.4.4
Array Value


2426.4.4.5
Structure Value


2426.4.5
Attributes


2436.5
Smdl Catalogue


2436.5.1
Catalogue


2436.5.1.1
Catalogue


2436.5.1.2
Namespace


2436.5.2
Reference Types


2436.5.2.1
Reference Type


2436.5.2.2
Component


2436.5.2.3
Interface


2446.5.2.4
Model


2456.5.2.5
Service


2476.5.3
Modelling Mechanisms


2476.5.3.1
Class based Design


2476.5.3.2
Component based Design


2476.5.3.3
Event based Design


2486.5.4
Catalogue Attributes


2486.5.4.1
View and ViewKind


2496.6
Smdl Package


2496.6.1
Package


2496.6.1.1
Package


2506.6.1.2
Implementation


2506.6.2
Bundle Format


2536.6.3
Binary Distribution




Figures

61Figure 1 - Sequence of calls for dynamic invocation


118Figure 2 - Simulation Environment State Diagram with State Transition Methods


119Figure 3 - Model State Diagram with State Transition Methods


141Figure 4 - Sequence of calls for service acquisition


178Figure 5 - Predefined Event Types


222Figure 6 - Abstract


222Figure 7 - Base Class


222Figure 8 - By Reference


223Figure 9 - Const


224Figure 10 - Constructor


224Figure 11 - Operator


225Figure 12 - Operator Kind


226Figure 13 - Static


227Figure 14 - Virtual




Tables

22Table 1 - Enumeration Literals of PrimitiveTypeKind


26Table 2 - Specification of UuidBytes


37Table 3 - Enumeration Literals of ModelStateKind


117Table 4 - Enumeration Literals of ViewKind


121Table 5 - Enumeration Literals of SimulatorStateKind


145Table 6 - Specification of LogMessageKind


151Table 7 - Enumeration Literals of TimeKind


218Table 8 - Enumeration Literals of AccessKind


219Table 9 - Enumeration Literals of ParameterDirectionKind


225Table 10 - Enumeration Literals of OperatorKind


237Table 11 – Property Type Modifier depending on type and attribute


238Table 12 – Association Type Modifier depending on type and attribute


240Table 13 - Parameter Modifier depending on type and direction




Introduction

Space programmes have developed simulation software for a number of years, and which are used for a variety of applications including analysis, engineering operations preparation and training. Typically different departments perform developments of these simulators, running on several different platforms and using different computer languages. A variety of subcontractors are involved in these projects and as a result a wide range of simulation models are often developed. This Technical Memorandum addresses the issues related to portability and reuse of simulation models. It builds on the work performed by ESA in the development of the Simulator Portability Standards SMP1 and SMP2.

This Technical Memorandum is complementary to ECSS-E-ST-40 because it provides the additional requirements which are specific to the development of simulation software. The formulation of this Technical Memorandum takes into account the Simulation Model Portability specification version 1.2. This Technical Memorandum has been prepared by the ECSS-E-40-07 Working Group. 
This Technical Memorandum comprises of a number of volumes.

The intended readership of Volume 1 of this Technical Memorandum are the simulator software customer and all suppliers. 

The intended readership of Volume 2, 3 and 4 of this Technical Memorandum is the Infrastructure Supplier.

The intended readership of Volume 5 of this Technical Memorandum is the simulator developer.
Note: Volume 1 contains the list of terms and abbreviations used in this document

· Volume 1 – Principles and requirements

This document describes the Simulation Modelling Platform (SMP) and the special principles applicable to simulation software. It provides an interpretation of the ECSS-E-ST-40 requirements for simulation software, with additional specific provisions. 

· Volume 2 - Metamodel
This document describes the Simulation Model Definition Language (SMDL), which provides platform independent mechanisms to design models (Catalogue), integrate model instances (Assembly), and schedule them (Schedule). SMDL supports design and integration techniques for class-based, interface-based, component-based, event-based modelling and dataflow-based modelling. 

· Volume 3 - Component Model

This document provides a platform independent definition of the components used within an SMP simulation, where components include models and services, but also the simulator itself. A set of mandatory interfaces that every model has to implement is defined by the document, and a number of optional interfaces for advanced component mechanisms are specified.

Additionally, this document includes a chapter on Simulation Services. Services are components that the models can use to interact with a Simulation Environment. SMP defines interfaces for mandatory services that every SMP compliant simulation environment must provide. 

· Volume 4 - C++ Mapping

This document provides a mapping of the platform independent models (Metamodel, Component Model and Simulation Services) to the ANSI/ISO C++ target platform. Further platform mappings are foreseen for the future. 

The intended readership of this document is the simulator software customer and supplier. The software simulator customer is in charge of producing the project Invitation to Tender (ITT) with the Statement of Work (SOW) of the simulator software. The customer identifies the simulation needs, in terms of policy, lifecycle and programmatic and technical requirements. It may also provide initial models as inputs for the modelling activities. The supplier can take one or more of the following roles:

Infrastructure Supplier - is responsible for the development of generic infrastructure or for the adaptation of an infrastructure to the specific needs of a project. In the context of a space programme, the involvement of Infrastructure Supplier team(s) may not be required if all required simulators are based on full re-use of exiting infrastructure(s), or where the infrastructure has open interfaces allowing adaptations to be made by the Simulator Integrator. 

Model Supplier - is responsible for the development of project specific models or for the adaptation of generic models to the specific needs of a project or project phase. 

Simulator Integrator – has the function of integrating the models into a simulation infrastructure in order to provide a full system simulation with the appropriate services for the user (e.g. system engineer) and interfaces to other systems. 

· Volume 5 – SMP usage

This document provides a user-oriented description of the general concepts behind the SMP documents Volume 1 to 4, and provides instructions for the accomplishment of the main tasks involved in model and simulator development using SMP.

1 
Scope
The Platform Independent Model (PIM XE "PIM" \t " Platform Independent Model" ) of the Simulation Modelling Platform (SMP XE "SMP" \t " Simulation Modelling Platform ) consists of two parts:

1. The SMP Metamodel, also called Simulation Model Definition Language (SMDL XE "SMDL" \t " Simulation Model Definition Language ).

2. The SMP Component Model, which includes SMP Simulation Services.

This document provides a mapping of both parts of the PIM to the ISO/ANSI C++ Platform as defined by the International Organization for Standardization (ISO XE "ISO" \t " International Organization for Standardization ) and the American National Standards Institute (ANSI XE "ANSI" \t " American National Standards Institute ). Therefore, this document provides a Platform Specific Model (PSM XE "PSM" \t " Platform Specific Model ). The mapping of these two parts is different in nature:

· The SMP Component Model is mapped to a number of C++ types, which are available in source code format as well (see annex).

· The SMP Metamodel is mapped to a process of how to turn Metaclasses into C++ types which make use of the Component Model C++ types.

Due to the dependency of the Metamodel mapping on the Component Model mapping, the latter is introduced first in this document.

2 
Base Types

2.1 Primitive Types

The type system is based on a number of pre-defined primitive types. For each platform, a mapping of these types to native platform types has to be provided. The semantics of these types is defined in the Component Model, so that they have a consisting semantics on all platforms.

As various C++ compilers on various operating systems differ in their definition especially of the integer types, the SMP C++ type system is bootstrapped with the definition of Native Types for all Primitive Types. This definition is included from a file called Platform.h, which has to be provided for each compiler and operating system. The file delivered with the standard already provides a number of common compilers and operating systems.

2.1.1 Char8

8 bit character type.

File

#include "Smp/PrimitiveTypes.h"

Namespace

Smp
Declaration of Char8

	    /// Unique Identifier of type Char8.

    extern const Uuid Uuid_Char8;

    /// 8 bit character type.

    typedef NT_Char8 Char8;


2.1.2 Bool

Boolean with true and false.

File

#include "Smp/PrimitiveTypes.h"

Namespace

Smp
Declaration of Bool

	    /// Unique Identifier of type Bool.

    extern const Uuid Uuid_Bool;

    /// Boolean with true and false.

    typedef NT_Bool Bool;


2.1.3 Int8

8 bit signed integer type.

File

#include "Smp/PrimitiveTypes.h"

Namespace

Smp
Declaration of Int8

	    /// Unique Identifier of type Int8.

    extern const Uuid Uuid_Int8;

    /// 8 bit signed integer type.

    typedef NT_Int8 Int8;


2.1.4 UInt8

8 bit unsigned integer type.

File

#include "Smp/PrimitiveTypes.h"

Namespace

Smp
Declaration of UInt8

	    /// Unique Identifier of type UInt8.

    extern const Uuid Uuid_UInt8;

    /// 8 bit unsigned integer type.

    typedef NT_UInt8 UInt8;


2.1.5 Int16

16 bit signed integer type.

File

#include "Smp/PrimitiveTypes.h"

Namespace

Smp
Declaration of Int16

	    /// Unique Identifier of type Int16.

    extern const Uuid Uuid_Int16;

    /// 16 bit signed integer type.

    typedef NT_Int16 Int16;


2.1.6 UInt16

16 bit unsigned integer type.

File

#include "Smp/PrimitiveTypes.h"

Namespace

Smp
Declaration of UInt16

	    /// Unique Identifier of type UInt16.

    extern const Uuid Uuid_UInt16;

    /// 16 bit unsigned integer type.

    typedef NT_UInt16 UInt16;


2.1.7 Int32

32 bit signed integer type.

File

#include "Smp/PrimitiveTypes.h"

Namespace

Smp
Declaration of Int32

	    /// Unique Identifier of type Int32.

    extern const Uuid Uuid_Int32;

    /// 32 bit signed integer type.

    typedef NT_Int32 Int32;


2.1.8 UInt32

32 bit unsigned integer type.

File

#include "Smp/PrimitiveTypes.h"

Namespace

Smp
Declaration of UInt32

	    /// Unique Identifier of type UInt32.

    extern const Uuid Uuid_UInt32;

    /// 32 bit unsigned integer type.

    typedef NT_UInt32 UInt32;


2.1.9 Int64

64 bit signed integer type.

File

#include "Smp/PrimitiveTypes.h"

Namespace

Smp
Declaration of Int64

	    /// Unique Identifier of type Int64.

    extern const Uuid Uuid_Int64;

    /// 64 bit signed integer type.

    typedef NT_Int64 Int64;


2.1.10 UInt64

64 bit unsigned integer type.

File

#include "Smp/PrimitiveTypes.h"

Namespace

Smp
Declaration of UInt64

	    /// Unique Identifier of type UInt64.

    extern const Uuid Uuid_UInt64;

    /// 64 bit unsigned integer type.

    typedef NT_UInt64 UInt64;


2.1.11 Float32

32-bit single-precision float type.

File

#include "Smp/PrimitiveTypes.h"

Namespace

Smp
Declaration of Float32

	    /// Unique Identifier of type Float32.

    extern const Uuid Uuid_Float32;

    /// 32-bit single-precision float type.

    typedef NT_Float32 Float32;


2.1.12 Float64

64-bit double-precision float type.

File

#include "Smp/PrimitiveTypes.h"

Namespace

Smp
Declaration of Float64

	    /// Unique Identifier of type Float64.

    extern const Uuid Uuid_Float64;

    /// 64-bit double-precision float type.

    typedef NT_Float64 Float64;


2.1.13 Duration

Duration in nanoseconds.

This type is used for relative time values. It specifies a duration in nanoseconds. The following holds for Duration: 

· Duration is a value measured in nanoseconds, which is the lowest level of granularity supported for time in SMP.

· Duration is stored as a signed 64-bit integer value.

· Positive values correspond to positive durations, and negative values correspond to negative durations.

This allows specifying duration values roughly between -290 years and 290 years. With this definition, the Duration type is compatible with the DateTime type.

File

#include "Smp/PrimitiveTypes.h"

Namespace

Smp
Declaration of Duration

	    /// Unique Identifier of type Duration.

    extern const Uuid Uuid_Duration;

    /// Duration in nanoseconds.

    /// This type is used for relative time values. It specifies a duration in 

    /// nanoseconds. The following holds for Duration:

    /// <ul>

    ///      - Duration is a value measured in nanoseconds, which is the lowest

    /// level of granularity supported for time in SMP.

    ///      - Duration is stored as a signed 64-bit integer value.

    ///      - Positive values correspond to positive durations, and negative 

    /// values correspond to negative durations.

    /// </ul>

    /// This allows specifying duration values roughly between -290 years and 

    /// 290 years. With this definition, the Duration type is compatible with 

    /// the DateTime type.

    typedef NT_Duration Duration;


2.1.14 Date Time

Absolute time in nanoseconds.

This type is used for absolute time values. It specifies a time in nanoseconds, relative to a reference time. 

The following holds for DateTime: 

· Time is a value measured in nanoseconds, which is the lowest level of granularity supported for time in SMP.

· Time is stored as a signed 64-bit integer value, relative to the reference time (01.01.2000, 12:00, Modified Julian Date (MJD) 2000+0.5).

· Positive values correspond to times after the reference time, and negative values correspond to time values before the reference time.

This allows specifying time values roughly between 1710 and 2290. With this definition, the DateTime type is compatible with the Duration type.

File

#include "Smp/PrimitiveTypes.h"

Namespace

Smp
Declaration of DateTime

	    /// Unique Identifier of type DateTime.

    extern const Uuid Uuid_DateTime;

    /// Absolute time in nanoseconds.

    /// This type is used for absolute time values. It specifies a time in 

    /// nanoseconds, relative to a reference time.

    /// The following holds for DateTime:

    /// <ul>

    ///      - Time is a value measured in nanoseconds, which is the lowest 

    /// level of granularity supported for time in SMP.

    ///      - Time is stored as a signed 64-bit integer value, relative to the

    /// reference time (01.01.2000, 12:00, Modified Julian Date (MJD) 

    /// 2000+0.5).

    ///      - Positive values correspond to times after the reference time, 

    /// and negative values correspond to time values before the reference 

    /// time.

    /// </ul>

    /// This allows specifying time values roughly between 1710 and 2290. With 

    /// this definition, the DateTime type is compatible with the Duration 

    /// type.

    typedef NT_DateTime DateTime;


2.1.15 String8

8 bit character string.

File

#include "Smp/PrimitiveTypes.h"

Namespace

Smp
Declaration of String8

	    /// Unique Identifier of type String8.

    extern const Uuid Uuid_String8;

    /// 8 bit character string.

    typedef NT_String8 String8;


The C++ language has limited support for strings. Many applications use null-terminated arrays of characters to store string values, others use the string class from the Standard Template Library ( XE "STL" \t " Standard Template Library STL). In the PSM, all strings of the PIM are mapped to constant character pointers (const Char8*).

2.2 Simple Type Union

Some of the interfaces defined in the Component Model make use of the AnySimple type. This data type represents a type that can hold any of the simple types defined in SMP, which includes all primitive types defined above. As for the primitive types, a native platform mapping has to be provided for each platform.

2.2.1 Primitive Type Kind

This is an enumeration of the available primitive types.

File

#include "Smp/PrimitiveTypes.h"

Namespace

Smp
Declaration of PrimitiveTypeKind

	    /// Unique Identifier of type PrimitiveTypeKind.

    extern const Uuid Uuid_PrimitiveTypeKind;

    /// This is an enumeration of the available primitive types.

    enum PrimitiveTypeKind

    {

        /// No type, e.g. for void.

        PTK_None,

        /// 8 bit character type.

        PTK_Char8,

        /// Boolean with true and false.

        PTK_Bool,

        /// 8 bit signed integer type.

        PTK_Int8,

        /// 8 bit unsigned integer type.

        PTK_UInt8,

        /// 16 bit signed integer type.

        PTK_Int16,

        /// 16 bit unsigned integer type.

        PTK_UInt16,

        /// 32 bit signed integer type.

        PTK_Int32,

        /// 32 bit unsigned integer type.

        PTK_UInt32,

        /// 64 bit signed integer type.

        PTK_Int64,

        /// 64 bit unsigned integer type.

        PTK_UInt64,

        /// 32 bit single-precision floating-point type.

        PTK_Float32,

        /// 64 bit double-precision floating-point type.

        PTK_Float64,

        /// Duration in nanoseconds.

        PTK_Duration,

        /// Absolute time in nanoseconds.

        PTK_DateTime,

        /// 8 bit character string.

        PTK_String8

    };


Table 1 - Enumeration Literals of PrimitiveTypeKind

	Name
	Description

	PTK_None
	No type, e.g. for void.

	PTK_Char8
	8 bit character type.

	PTK_Bool
	Boolean with true and false.

	PTK_Int8
	8 bit signed integer type.

	PTK_UInt8
	8 bit unsigned integer type.

	PTK_Int16
	16 bit signed integer type.

	PTK_UInt16
	16 bit unsigned integer type.

	PTK_Int32
	32 bit signed integer type.

	PTK_UInt32
	32 bit unsigned integer type.

	PTK_Int64
	64 bit signed integer type.

	PTK_UInt64
	64 bit unsigned integer type.

	PTK_Float32
	32 bit single-precision floating-point type.

	PTK_Float64
	64 bit double-precision floating-point type.

	PTK_Duration
	Duration in nanoseconds.

	PTK_DateTime
	Absolute time in nanoseconds.

	PTK_String8
	8 bit character string.


2.2.2 Any Simple Array

Array of AnySimple values.

Namespace

Smp
2.2.3 Any Simple

Variant that can store a value of any of the simple types. The type attribute defines the type used to represent the value, while the value attribute contains the actual value.

File

#include "Smp/AnySimple.h"

Namespace

Smp
Declaration of AnySimple

	    /// Unique Identifier of type AnySimple.

    extern const Uuid Uuid_AnySimple;

    /// Variant that can store a value of any of the simple types. The type 

    /// attribute defines the type used to represent the value, while the value

    /// attribute contains the actual value.

    struct AnySimple

    {

        /// Type of the contained value.

        Smp::PrimitiveTypeKind type;

        /// Value stored in the AnySimple instance.

        Smp::PrimitiveTypeValue value;

        /// Default constructor.

        AnySimple();

        /// Copy constructor from another AnySimple instance.

        /// @param   that Instance to copy from.

        AnySimple(const Smp::AnySimple& that);

        /// Destructor that releases memory.

        virtual ~AnySimple();

        /// Assignment operator from another AnySimple instance.

        /// @param   that Instance to assign from.

        /// @return  Reference to instance.

        virtual Smp::AnySimple& operator=(const Smp::AnySimple& that);

    };


2.2.4 Primitive Type Value

Union of primitive type values, which is used for the value field of AnySimple.

File

#include "Smp/PrimitiveTypes.h"

Namespace

Smp
Declaration of PrimitiveTypeValue

	    /// Unique Identifier of type PrimitiveTypeValue.

    extern const Uuid Uuid_PrimitiveTypeValue;

    /// Union of primitive type values, which is used for the value field of 

    /// AnySimple.

    union PrimitiveTypeValue

    {

        /// 8 bit character value.

        Smp::Char8 char8Value;

        /// Boolean with true and false.

        Smp::Bool boolValue;

        /// 8 bit signed integer value.

        Smp::Int8 int8Value;

        /// 8 bit unsigned integer value.

        Smp::UInt8 uInt8Value;

        /// 16 bit signed integer value.

        Smp::Int16 int16Value;

        /// 16 bit unsigned integer value.

        Smp::UInt16 uInt16Value;

        /// 32 bit signed integer value.

        Smp::Int32 int32Value;

        /// 32 bit unsigned integer value.

        Smp::UInt32 uInt32Value;

        /// 64 bit signed integer value.

        Smp::Int64 int64Value;

        /// 64 bit unsigned integer value.

        Smp::UInt64 uInt64Value;

        /// 32 bit single-precision floating-point value.

        Smp::Float32 float32Value;

        /// 64 bit double-precision floating-point value.

        Smp::Float64 float64Value;

        /// Duration in nanoseconds.

        Smp::Duration durationValue;

        /// Absolute time in nanoseconds.

        Smp::DateTime dateTimeValue;

        /// 8 bit character string value.

        Smp::String8 string8Value;

    };


Alternatives

	Name
	Type
	Description

	char8Value
	Char8
	8 bit character value.

	boolValue
	Bool
	Boolean with true and false.

	int8Value
	Int8
	8 bit signed integer value.

	uInt8Value
	UInt8
	8 bit unsigned integer value.

	int16Value
	Int16
	16 bit signed integer value.

	uInt16Value
	UInt16
	16 bit unsigned integer value.

	int32Value
	Int32
	32 bit signed integer value.

	uInt32Value
	UInt32
	32 bit unsigned integer value.

	int64Value
	Int64
	64 bit signed integer value.

	uInt64Value
	UInt64
	64 bit unsigned integer value.

	float32Value
	Float32
	32 bit single-precision floating-point value.

	float64Value
	Float64
	64 bit double-precision floating-point value.

	durationValue
	Duration
	Duration in nanoseconds.

	dateTimeValue
	DateTime
	Absolute time in nanoseconds.

	string8Value
	String8
	8 bit character string value.


2.3 Universally Unique Identifiers

For a unique identification of types (and hence models), SMP uses Universally Unique Identifiers with the format specified by the Open Group (http://www.opengroup.org).

2.3.1 Uuid

Universally Unique Identifier.

A Universally Unique Identifier is 128 bit long, separated into 32 hex nibbles (where each hex nibble stands for 4 bits).

File

#include "Smp/Platform.h"

Namespace

Smp
Declaration of Uuid

	    /// Universally Unique Identifier.

    /// For a unique identification of types (and hence models), SMP uses 

    /// Universally Unique Identifiers with the format specified by the Open 

    /// Group (http://www.opengroup.org).

    struct Uuid

    {

        /// 8 hex nibbles.

        Smp::NT_UInt32 Data1;

        /// 4 hex nibbles.

        Smp::NT_UInt16 Data2;

        /// 4 hex nibbles.

        Smp::NT_UInt16 Data3;

        /// 4+12 hex nibbles.

        Smp::UuidBytes Data4;

    };


Fields

	Name
	Type
	Description

	Data1
	UInt32
	8 hex nibbles.

	Data2
	UInt16
	4 hex nibbles.

	Data3
	UInt16
	4 hex nibbles.

	Data4
	UuidBytes
	4+12 hex nibbles.


2.3.2 Uuid Bytes

Final 8 bytes of Uuid.

File

#include "Smp/Platform.h"

Namespace

Smp
Declaration of UuidBytes

	    /// Final 8 bytes of Uuid.

    typedef Smp::NT_UInt8 UuidBytes[8];


Table 2 - Specification of UuidBytes

	Item type
	Size

	UInt8
	8


3 
Component Model

3.1 Exceptions

SMP defines some basic exceptions which are used in several interfaces, and which are therefore defined outside of an individual interface. For each exception, see the detailed specification of the interfaces to find out which methods actually may raise this exception.

3.1.1 Exception

This is the base class for all SMP exceptions.

This exception is the base class for all other SMP exceptions. It provides Name, Description and Message.

File

#include "Smp/Exceptions.h"

Namespace

Smp
Declaration of Exception

	    /// This is the base class for all SMP exceptions.

    /// This exception is the base class for all other SMP exceptions. It 

    /// provides Name, Description and Message.

    class Exception    

    {

    protected:

        /// Constructor for new exception.

        /// @param   name Name of the exception that is returned by GetName.

        /// @param   description Description of the exception that is returned 

        ///          by GetDescription.

        Exception(

            Smp::String8 name,

            Smp::String8 description) throw();

        /// Copy constructor.

        Exception(

            Exception& ex) throw();

        /// Virtual destructor to release memory.

        virtual ~Exception();    

        /// Name of the exception that is returned by GetName.

        Smp::String8 name;

        /// Description of the exception that is returned by GetDescription.

        Smp::String8 description;

        /// Description of the problem that is returned by GetMessage.

        Smp::String8 message;

    public:

        /// Returns the name of the exception class. This name can be used e.g.

        /// for debugging purposes.

        /// @return  Name of the exception class.

        virtual Smp::String8 GetName() const;

        /// Returns a textual description of the exception class. This 

        /// description can be used e.g. for debugging purposes.

        /// @return  Textual description of the exception class.

        virtual Smp::String8 GetDescription() const;

        /// Returns the description of the problem encountered. This message 

        /// can be used e.g. for debugging purposes.

        /// @return  Textual description of the problem encountered.

        virtual Smp::String8 GetMessage() const;

    protected:

        /// Defines the description of the problem encountered.

        /// This message can be used e.g.

        /// for debugging purposes.

        /// @param   message Textual description of the problem encountered.

        virtual void SetMessage(Smp::String8 message);

        /// Assignment operator.

        Exception& operator =(const Exception& ex);

    };


Base Exceptions

None

Fields

	Name
	Type
	Description

	description
	String8
	Description of the exception that is returned by GetDescription.

	message
	String8
	Description of the problem that is returned by GetMessage.

	name
	String8
	Name of the exception that is returned by GetName.


3.1.2 Duplicate Name

This exception is raised when trying to add an object to a collection of objects, which have to have unique names, but another object with the same name does exist already in this collection. This would lead to duplicate names.

File

#include "Smp/Exceptions.h"

Namespace

Smp
Declaration of DuplicateName

	    /// This exception is raised when trying to add an object to a collection 

    /// of objects, which have to have unique names, but another object with 

    /// the same name does exist already in this collection. This would lead to

    /// duplicate names.

    class DuplicateName : public Smp::Exception    

    {

    public:

        /// Constructor for new exception.

        /// @param   duplicateName Name that already exists in the collection.

        DuplicateName(

            Smp::String8 duplicateName) throw();        

        /// Copy constructor.

        DuplicateName(

            DuplicateName& ex) throw();

        /// Virtual destructor to release memory.

        virtual ~DuplicateName();    

        /// Name that already exists in the collection.

        Smp::String8 duplicateName;

    };


Base Exceptions

Smp::Exception
Fields

	Name
	Type
	Description

	duplicateName
	String8
	Name that already exists in the collection.


3.1.3 Invalid Any Type

This exception is raised when trying to use an AnySimple argument of wrong type.

File

#include "Smp/Exceptions.h"

Namespace

Smp
Declaration of InvalidAnyType

	    /// This exception is raised when trying to use an AnySimple argument of 

    /// wrong type.

    /// @remarks This can happen when assigning a value to an AnySimple 

    ///          instance, but as well when e.g. registering an event sink with

    ///          an event source of another event argument type.

    class InvalidAnyType : public Smp::Exception    

    {

    public:

        /// Constructor for new exception.

        /// @param   invalidType Type that is not valid.

        /// @param   expectedType Type that was expected.

        InvalidAnyType(

            Smp::PrimitiveTypeKind invalidType,

            Smp::PrimitiveTypeKind expectedType) throw();        

        /// Copy constructor.

        InvalidAnyType(

            InvalidAnyType& ex) throw();

        /// Virtual destructor to release memory.

        virtual ~InvalidAnyType();    

        /// Type that is not valid.

        Smp::PrimitiveTypeKind invalidType;

        /// Type that was expected.

        Smp::PrimitiveTypeKind expectedType;

    };


Remark: This can happen when assigning a value to an AnySimple instance, but as well when e.g. registering an event sink with an event source of another event argument type.

Base Exceptions

Smp::Exception
Fields

	Name
	Type
	Description

	expectedType
	PrimitiveTypeKind
	Type that was expected.

	invalidType
	PrimitiveTypeKind
	Type that is not valid.


3.1.4 Invalid Event Id

This exception is raised when an invalid event id is provided, e.g. when calling Subscribe(), Unsubscribe() or Emit() of the Event Manager (using an invalid global event id), or when calling SetEventSimulationTime(), SetEventMissionTime(), SetEventEpochTime(), SetEventZuluTime(), SetEventCycleTime(), SetEventCount() or RemoveEvent() of the Scheduler (using an invalid scheduler event id).

File

#include "Smp/Exceptions.h"

Namespace

Smp::Services
Declaration of InvalidEventId

	        /// This exception is raised when an invalid event id is provided, e.g.

        /// when calling Subscribe(), Unsubscribe() or Emit() of the Event 

        /// Manager (using an invalid global event id), or when calling 

        /// SetEventSimulationTime(), SetEventMissionTime(), 

        /// SetEventEpochTime(), SetEventZuluTime(), SetEventCycleTime(), 

        /// SetEventCount() or RemoveEvent() of the Scheduler (using an invalid

        /// scheduler event id).

        class InvalidEventId : public Smp::Exception    

        {

        public:

            /// Constructor for new exception.

            /// @param   eventId Invalid event identifier.

            InvalidEventId(

                Smp::Services::EventId eventId) throw();        

            /// Copy constructor.

            InvalidEventId(

                InvalidEventId& ex) throw();

            /// Virtual destructor to release memory.

            virtual ~InvalidEventId();    

            /// Invalid event identifier.

            Smp::Services::EventId eventId;

        };


Base Exceptions

Smp::Exception
Fields

	Name
	Type
	Description

	eventId
	EventId
	Invalid event identifier.


3.1.5 Invalid Object Type

This exception is raised when trying to pass an object of wrong type.

File

#include "Smp/Exceptions.h"

Namespace

Smp
Declaration of InvalidObjectType

	    /// This exception is raised when trying to pass an object of wrong type.

    /// @remarks This can happen when adding a component to a container or 

    ///          reference which is semantically typed by a specific type 

    ///          implementing IComponent.

    class InvalidObjectType : public Smp::Exception    

    {

    public:

        /// Constructor for new exception.

        /// @param   invalidObject Object that is not of valid type.

        InvalidObjectType(

            Smp::IObject* invalidObject) throw();        

        /// Copy constructor.

        InvalidObjectType(

            InvalidObjectType& ex) throw();

        /// Virtual destructor to release memory.

        virtual ~InvalidObjectType();    

        /// Object that is not of valid type.

        Smp::IObject* invalidObject;

    };


Remark: This can happen when adding a component to a container or reference which is semantically typed by a specific type implementing IComponent.

Base Exceptions

Smp::Exception
Fields

	Name
	Type
	Description

	invalidObject
	IObject
	Object that is not of valid type.


3.2 Objects and Components

In SMP, a simulation is composed of components, where models, services, and the simulation environment all implement a common base interface. Other elements in SMP are not components, but only objects.

3.2.1 Objects

Objects are elements of the simulation which provide name and description.

3.2.1.1 IObject

This interface is the base interface for almost all other SMP interfaces. While most interfaces derive from IComponent, which itself is derived from IObject, some objects (including IField, IFailure, IEntryPoint, IEventSink, IEventSource, IContainer and IReference) are directly derived from IObject.
File

#include "Smp/IObject.h"

Namespace

Smp
Declaration of IObject

	    /// Unique Identifier of type IObject.

    extern const Uuid Uuid_IObject;

    /// This interface is the base interface for almost all other SMP 

    /// interfaces. While most interfaces derive from IComponent, which itself 

    /// is derived from IObject, some objects (including IField, IFailure, 

    /// IEntryPoint, IEventSink, IEventSource, IContainer and IReference) are 

    /// directly derived from IObject.

    /// @remarks The two methods of this interface ensure that all SMP objects 

    ///          can be shown with a name, and with an optional description.

    class IObject

    {

    public:

        /// Virtual destructor to release memory.

        virtual ~IObject() {}    

        /// Return the name of the object ("property getter").

        /// Names must

        ///      - be unique within their context,

        ///      - not be empty,

        ///      - start with a letter, and

        ///      - only contain letters, digits, the underscore ("_") and 

        /// brackets ("[" and "]").

        /// 

        /// @remarks Applications may display the name as user readable object 

        ///          identification.

        /// @remarks It is recommended that names do not exceed 32 characters 

        ///          in size.

        /// @return  Name of object.

        virtual Smp::String8 GetName() const = 0;

        /// Return the description of the object ("property getter").

        /// Descriptions are optional and may be empty.

        /// @remarks Applications may display the description as additional 

        ///          information about the object.

        /// @return  Description of object.

        virtual Smp::String8 GetDescription() const = 0;

    };


Remark: The two methods of this interface ensure that all SMP objects can be shown with a name, and with an optional description.

Base Interfaces

None

Operations

	Name
	Description

	GetDescription
	Return the description of the object ("property getter").

	GetName
	Return the name of the object ("property getter").


3.2.1.1.1 Get Description

Return the description of the object ("property getter").
Descriptions are optional and may be empty.
Remark: Applications may display the description as additional information about the object.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	String8
	Description of object. 


Exceptions

None

3.2.1.1.2 Get Name

Return the name of the object ("property getter").
Names must
· be unique within their context,

· not be empty,

· start with a letter, and

· only contain letters, digits, the underscore ("_") and brackets ("[" and "]").

Remark: Applications may display the name as user readable object identification.
Remark: It is recommended that names do not exceed 32 characters in size.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	String8
	Name of object. 


Exceptions

None

3.2.2 Components

Most elements in SMP are components, which implement the IComponent interface. 

The three most important component types are models, services, and the simulator. The first two of these interfaces are introduced in this section, while the ISimulator interface is explained in section 3.6.1.2.

3.2.2.1 IComponent

This is the base interface for all SMP components.
File

#include "Smp/IComponent.h"

Namespace

Smp
Declaration of IComponent

	    /// Unique Identifier of type IComponent.

    extern const Uuid Uuid_IComponent;

    /// This is the base interface for all SMP components.

    /// @remarks SMP components are typically models and services.

    class IComponent :

        public virtual Smp::IObject

    {

    public:

        /// Virtual destructor to release memory.

        virtual ~IComponent() {}    

        /// Return the parent component of the component ("property getter").

        /// Components link to their parent to allow traversing the tree of 

        /// components upwards to the root component of a composition.

        /// @remarks Typically, only the simulator itself is a root component, 

        ///          so all other components should have a parent component.

        /// @return  Parent component of component or null if component has no 

        ///          parent.

        virtual Smp::IComposite* GetParent() const = 0;

        /// Query for an interface specified by its Uuid.

        /// @param   interfaceId Uuid of interface to query for.

        /// @param   result Interface to component or NULL if component does 

        ///          not implement the requested interface.

        /// @return  True if the interface is implemented, false otherwise.

        virtual Smp::Bool QueryInterface(Smp::Uuid interfaceId, void* result) const = 0;

    };


Remark: SMP components are typically models and services.

Base Interfaces

Smp::IObject
Operations

	Name
	Description

	GetParent
	Return the parent component of the component ("property getter").

	QueryInterface
	Query for an interface specified by its Uuid.


3.2.2.1.1 Get Parent

Return the parent component of the component ("property getter").
Components link to their parent to allow traversing the tree of components upwards to the root component of a composition.
Remark: Typically, only the simulator itself is a root component, so all other components should have a parent component.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	IComposite
	Parent component of component or null if component has no parent. 


Exceptions

None

3.2.2.1.2 Query Interface

Query for an interface specified by its Uuid.
Parameters

	Name
	Dir.
	Type
	Description

	interfaceId
	in
	Uuid
	Uuid of interface to query for. 

	result
	inout
	void*
	Interface to component or NULL if component does not implement the requested interface. 

	
	return
	Bool
	True if the interface is implemented, false otherwise. 


Exceptions

None

3.2.2.2 Component Collection

A component collection is an ordered collection of components, which allows iterating all members.
This type is platform specific. For details see the SMP Platform Mappings.
File

#include "Smp/IComponent.h"

Namespace

Smp
Declaration of ComponentCollection

	    /// Unique Identifier of type ComponentCollection.

    extern const Uuid Uuid_ComponentCollection;

    /// A component collection is an ordered collection of components, which 

    /// allows iterating all members.

    /// This type is platform specific. For details see the SMP Platform 

    /// Mappings.

    typedef std::vector<IComponent*> ComponentCollection;


3.2.2.3 Model State Kind

This is an enumeration of the available states of a model. Each model is always in one of these four model states.
File

#include "Smp/IModel.h"

Namespace

Smp
Declaration of ModelStateKind

	    /// Unique Identifier of type ModelStateKind.

    extern const Uuid Uuid_ModelStateKind;

    /// This is an enumeration of the available states of a model. Each model 

    /// is always in one of these four model states.

    enum ModelStateKind

    {

        /// The Created state is the initial state of a model. Model creation 

        /// is done by an external mechanism, e.g. by factories.

        /// This state is entered automatically after the model has been 

        /// created.

        /// This state is left via the Publish() state transition.

        MSK_Created,

        /// In Publishing state, the model is allowed to publish features. This

        /// includes publication of fields, operations and properties. In 

        /// addition, the model is allowed to create other models.

        /// This state is entered via the Publish() state transition.

        /// This state is left via the Configure() state transition.

        MSK_Publishing,

        /// In Configured state, the model has been fully configured. This 

        /// configuration may be done by external components, or internally by 

        /// the model itself, e.g. by reading data from an external source.

        /// This state is entered via the Configure() state transition.

        /// This state is left via the Connect() state transition.

        MSK_Configured,

        /// In Connected state, the model is connected to the simulator. In 

        /// this state, neither publication nor creation of other models is 

        /// allowed anymore.

        /// This state is entered via the Connect() state transition.

        /// This is the final state of a model, and only left on termination.

        MSK_Connected

    };


Table 3 - Enumeration Literals of ModelStateKind

	Name
	Description

	MSK_Created
	The Created state is the initial state of a model. Model creation is done by an external mechanism, e.g. by factories. 

This state is entered automatically after the model has been created. 

This state is left via the Publish() state transition.

	MSK_Publishing
	In Publishing state, the model is allowed to publish features. This includes publication of fields, operations and properties. In addition, the model is allowed to create other models. 

This state is entered via the Publish() state transition. 

This state is left via the Configure() state transition.

	MSK_Configured
	In Configured state, the model has been fully configured. This configuration may be done by external components, or internally by the model itself, e.g. by reading data from an external source. 

This state is entered via the Configure() state transition. 

This state is left via the Connect() state transition.

	MSK_Connected
	In Connected state, the model is connected to the simulator. In this state, neither publication nor creation of other models is allowed anymore.

This state is entered via the Connect() state transition.

This is the final state of a model, and only left on termination.


3.2.2.4 IModel

Interface for a model.
All SMP models implement this interface. As models interface to the simulation environment, they have a dependency to it via the two interfaces IPublication and ISimulator.
This is the only mandatory interface models have to implement. All other interfaces (component and model mechanisms and managed interfaces) are optional.
File

#include "Smp/IModel.h"

Namespace

Smp
Declaration of IModel

	    /// Unique Identifier of type IModel.

    extern const Uuid Uuid_IModel;

    /// Interface for a model.

    /// All SMP models implement this interface. As models interface to the 

    /// simulation environment, they have a dependency to it via the two 

    /// interfaces IPublication and ISimulator.

    /// This is the only mandatory interface models have to implement. All 

    /// other interfaces (component and model mechanisms and managed 

    /// interfaces) are optional.

    class IModel :

        public virtual Smp::IComponent

    {

    public:

        /// Virtual destructor to release memory.

        virtual ~IModel() {}    

        /// Returns the state the model is currently in.

        /// The model state can be changed using the Publish(), Configure() and

        /// Connect() state transition methods.

        /// @return  Current model state.

        virtual Smp::ModelStateKind GetState() const = 0;

        /// Request the model to publish its fields, properties and operations 

        /// against the provided publication receiver.

        /// This method can only be called once for each model, and only when 

        /// the model is in the Created state. The method raises an 

        /// InvalidModelState exception if the model is not in Created state.

        /// When this operation is called, the model immediately enters the 

        /// Publishing state, before it publishes any of its features.

        /// @remarks The simulation environment typically calls this method in 

        ///          the Building state.

        /// @param   receiver Publication receiver.

        /// @throws  Smp::IModel::InvalidModelState

        virtual void Publish(Smp::IPublication* receiver) throw (

            Smp::IModel::InvalidModelState) = 0;

        /// Request the model to perform any custom configuration. The model 

        /// can create and configure other models using the field values of its

        /// published fields.

        /// This method can only be called once for each model, and only when 

        /// the model is in Publishing state. The method raises an 

        /// InvalidModelState exception if the model is not in Publishing 

        /// state.

        /// The model can still publish further features in this call, and can 

        /// even create other models, but at the end of this call, it needs to 

        /// enter the Configured state.

        /// @remarks The simulation environment typically calls this method in 

        ///          the Building state.

        /// @param   logger Logger service for logging of error messages during

        ///          configuration.

        /// @throws  Smp::IModel::InvalidModelState

        virtual void Configure(Smp::Services::ILogger* logger) throw (

            Smp::IModel::InvalidModelState) = 0;

        /// Allow the model to connect to the simulator.

        /// This method can only be called once for each model, and only when 

        /// the model is in the Configured state. The method raises an 

        /// InvalidModelState exception if the model is not in Configured 

        /// state.

        /// When this operation is called, the model immediately enters the 

        /// Connected state, before it uses any of the simulator methods and 

        /// services.

        /// In this method, the model may query for and use any of the 

        /// available simulation services, as they are all guaranteed to be 

        /// fully functional at that time. It may as well connect to other 

        /// models' functionality (e.g. to event sources), as it is guaranteed 

        /// that all models have been created and configured before the 

        /// Connect() method of any model is called.

        /// @remarks The simulation environment typically calls this method in 

        ///          the Connecting state.

        /// @param   simulator Simulation Environment that hosts the model.

        /// @throws  Smp::IModel::InvalidModelState

        virtual void Connect(Smp::ISimulator* simulator) throw (

            Smp::IModel::InvalidModelState) = 0;

    };


Base Interfaces

Smp::IComponent
Operations

	Name
	Description

	Configure
	Request the model to perform any custom configuration. The model can create and configure other models using the field values of its published fields.

	Connect
	Allow the model to connect to the simulator.

	GetState
	Returns the state the model is currently in.

	Publish
	Request the model to publish its fields, properties and operations against the provided publication receiver.


3.2.2.4.1 Configure

Request the model to perform any custom configuration. The model can create and configure other models using the field values of its published fields.
This method can only be called once for each model, and only when the model is in Publishing state. The method raises an InvalidModelState exception if the model is not in Publishing state.
The model can still publish further features in this call, and can even create other models, but at the end of this call, it needs to enter the Configured state.
Remark: The simulation environment typically calls this method in the Building state.
Parameters

	Name
	Dir.
	Type
	Description

	logger
	in
	ILogger
	Logger service for logging of error messages during configuration. 


Exceptions

Smp::IModel::InvalidModelState
3.2.2.4.2 Connect

Allow the model to connect to the simulator.
This method can only be called once for each model, and only when the model is in the Configured state. The method raises an InvalidModelState exception if the model is not in Configured state.
When this operation is called, the model immediately enters the Connected state, before it uses any of the simulator methods and services.
In this method, the model may query for and use any of the available simulation services, as they are all guaranteed to be fully functional at that time. It may as well connect to other models' functionality (e.g. to event sources), as it is guaranteed that all models have been created and configured before the Connect() method of any model is called.
Remark: The simulation environment typically calls this method in the Connecting state.
Parameters

	Name
	Dir.
	Type
	Description

	simulator
	in
	ISimulator
	Simulation Environment that hosts the model. 


Exceptions

Smp::IModel::InvalidModelState
3.2.2.4.3 Get State

Returns the state the model is currently in.
The model state can be changed using the Publish(), Configure() and Connect() state transition methods.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	ModelStateKind
	Current model state. 


Exceptions

None

3.2.2.4.4 Publish

Request the model to publish its fields, properties and operations against the provided publication receiver.
This method can only be called once for each model, and only when the model is in the Created state. The method raises an InvalidModelState exception if the model is not in Created state.
When this operation is called, the model immediately enters the Publishing state, before it publishes any of its features.
Remark: The simulation environment typically calls this method in the Building state.
Parameters

	Name
	Dir.
	Type
	Description

	receiver
	in
	IPublication
	Publication receiver. 


Exceptions

Smp::IModel::InvalidModelState
3.2.2.4.5 Invalid Model State

This exception is raised by a model when one of the state transition commands is called in an invalid state.
File

#include "Smp/IModel.h"

Namespace

Smp::IModel
Declaration of InvalidModelState

	        /// This exception is raised by a model when one of the state 

        /// transition commands is called in an invalid state.

        class InvalidModelState : public Smp::Exception    

        {

        public:

            /// Constructor for new exception.

            /// @param   invalidState State that is not valid.

            /// @param   expectedState State that was expected.

            InvalidModelState(

                Smp::ModelStateKind invalidState,

                Smp::ModelStateKind expectedState) throw();        

            /// Copy constructor.

            InvalidModelState(

                InvalidModelState& ex) throw();

            /// Virtual destructor to release memory.

            virtual ~InvalidModelState();    

            /// State that is not valid.

            Smp::ModelStateKind invalidState;

            /// State that was expected.

            Smp::ModelStateKind expectedState;

        };


Fields

	Name
	Type
	Description

	expectedState
	ModelStateKind
	State that was expected.

	invalidState
	ModelStateKind
	State that is not valid.


3.2.2.5 Model Collection

A model collection is an ordered collection of models, which allows iterating all members.
This type is platform specific. For details see the SMP Platform Mappings.
File

#include "Smp/IModel.h"

Namespace

Smp
Declaration of ModelCollection

	    /// Unique Identifier of type ModelCollection.

    extern const Uuid Uuid_ModelCollection;

    /// A model collection is an ordered collection of models, which allows 

    /// iterating all members.

    /// This type is platform specific. For details see the SMP Platform 

    /// Mappings.

    typedef std::vector<IModel*> ModelCollection;


3.2.2.6 IService

Base interface for all SMP services.
File

#include "Smp/IService.h"

Namespace

Smp
Declaration of IService

	    /// Unique Identifier of type IService.

    extern const Uuid Uuid_IService;

    /// Base interface for all SMP services.

    /// @remarks Currently, this interface does not add any functionality.

    class IService :

        public virtual Smp::IComponent

    {

    };


Remark: Currently, this interface does not add any functionality.

Base Interfaces

Smp::IComponent
Operations

None

3.2.2.7 Service Collection

A service collection is an ordered collection of services, which allows iterating all members.
This type is platform specific. For details see the SMP Platform Mappings.
File

#include "Smp/IService.h"

Namespace

Smp
Declaration of ServiceCollection

	    /// Unique Identifier of type ServiceCollection.

    extern const Uuid Uuid_ServiceCollection;

    /// A service collection is an ordered collection of services, which allows

    /// iterating all members.

    /// This type is platform specific. For details see the SMP Platform 

    /// Mappings.

    typedef std::vector<IService*> ServiceCollection;


3.3 Component Mechanisms

While the IComponent base interface provides mechanisms to get name, description, and parent, it does not allow specifying further relations between components. The mechanisms supported by SMP are aggregation, composition, inter-component events via event sources and event sinks, dynamic invocation and persistence.

3.3.1 Aggregation

Via aggregation, a component can reference other components in the component hierarchy to use their methods. As opposed to composition, an aggregated component is not owned, but only referenced.

3.3.1.1 IAggregate

Interface for an aggregate component.
A component with references to other components implements this interface. Referenced components are held in named references.
File

#include "Smp/IAggregate.h"

Namespace

Smp
Declaration of IAggregate

	    /// Unique Identifier of type IAggregate.

    extern const Uuid Uuid_IAggregate;

    /// Interface for an aggregate component.

    /// A component with references to other components implements this 

    /// interface. Referenced components are held in named references.

    /// @remarks This interface represents the Aggregation mechanism in the SMP

    ///          Metamodel (via References). In UML 2.0, this is represented by

    ///          a required interface.

    class IAggregate :

        public virtual Smp::IComponent

    {

    public:

        /// Virtual destructor to release memory.

        virtual ~IAggregate() {}    

        /// Query for the collection of all references of the aggregate 

        /// component.

        /// The returned collection may be empty if no references exist for the

        /// aggregate.

        /// @return  Collection of references.

        virtual const Smp::ReferenceCollection* GetReferences() const = 0;

        /// Query for a reference of this aggregate component by its name.

        /// The returned reference may be null if no reference with the given 

        /// name could be found. If more than one reference with this name 

        /// exists, it is not defined which one is returned.

        /// @param   name Reference name.

        /// @return  Reference queried for by name, or null if no reference 

        ///          with this name exists.

        virtual Smp::IReference* GetReference(Smp::String8 name) const = 0;

    };


Remark: This interface represents the Aggregation mechanism in the SMP Metamodel (via References). In UML 2.0, this is represented by a required interface.

Base Interfaces

Smp::IComponent
Operations

	Name
	Description

	GetReference
	Query for a reference of this aggregate component by its name.

	GetReferences
	Query for the collection of all references of the aggregate component.


3.3.1.1.1 Get Reference

Query for a reference of this aggregate component by its name.
The returned reference may be null if no reference with the given name could be found. If more than one reference with this name exists, it is not defined which one is returned.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	IReference
	Reference queried for by name, or null if no reference with this name exists. 

	name
	in
	String8
	Reference name. 


Exceptions

None

3.3.1.1.2 Get References

Query for the collection of all references of the aggregate component.
The returned collection may be empty if no references exist for the aggregate.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	ReferenceCollection
	Collection of references. 


Exceptions

None

3.3.1.2 IReference

Interface for a reference.
A reference allows querying for the referenced components.
File

#include "Smp/IReference.h"

Namespace

Smp
Declaration of IReference

	    /// Unique Identifier of type IReference.

    extern const Uuid Uuid_IReference;

    /// Interface for a reference.

    /// A reference allows querying for the referenced components.

    /// @remarks References are used together with the IAggregate interface for

    ///          aggregation.

    class IReference :

        public virtual Smp::IObject

    {

    public:

        /// Virtual destructor to release memory.

        virtual ~IReference() {}    

        /// Query for the collection of all referenced components.

        /// The returned collection may be empty if no components are 

        /// referenced.

        /// @return  Collection of referenced components.

        virtual const Smp::ComponentCollection* GetComponents() const = 0;

        /// Query for a referenced component by its name.

        /// The returned component may be null if no component with the given 

        /// name could be found.

        /// @param   name Component name.

        /// @return  Referenced component with the given name, or null if no 

        ///          referenced component with the given name could be found.

        virtual Smp::IComponent* GetComponent(Smp::String8 name) const = 0;

    };


Remark: References are used together with the IAggregate interface for aggregation.

Base Interfaces

Smp::IObject
Operations

	Name
	Description

	GetComponent
	Query for a referenced component by its name.

	GetComponents
	Query for the collection of all referenced components.


3.3.1.2.1 Get Component

Query for a referenced component by its name.
The returned component may be null if no component with the given name could be found.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	IComponent
	Referenced component with the given name, or null if no referenced component with the given name could be found. 

	name
	in
	String8
	Component name. 


Exceptions

None

3.3.1.2.2 Get Components

Query for the collection of all referenced components.
The returned collection may be empty if no components are referenced.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	ComponentCollection
	Collection of referenced components. 


Exceptions

None

3.3.1.3 Reference Collection

A reference collection is an ordered collection of references, which allows iterating all members.
This type is platform specific. For details see the SMP Platform Mappings.
File

#include "Smp/IReference.h"

Namespace

Smp
Declaration of ReferenceCollection

	    /// Unique Identifier of type ReferenceCollection.

    extern const Uuid Uuid_ReferenceCollection;

    /// A reference collection is an ordered collection of references, which 

    /// allows iterating all members.

    /// This type is platform specific. For details see the SMP Platform 

    /// Mappings.

    typedef std::vector<IReference*> ReferenceCollection;


3.3.2 Composition

Via composition, a component can contain other components in the component hierarchy. As opposed to aggregation, a component is owned, and its life-time coincides with its parent component. Composition is the counter-part to the GetParent() method of the IComponent interface and allows traversing the tree of components in downward direction.

3.3.2.1 IComposite

Interface for a composite component.
A component with children implements this interface. Child components are held in named containers.
File

#include "Smp/IComposite.h"

Namespace

Smp
Declaration of IComposite

	    /// Unique Identifier of type IComposite.

    extern const Uuid Uuid_IComposite;

    /// Interface for a composite component.

    /// A component with children implements this interface. Child components 

    /// are held in named containers.

    /// @remarks This interface represents the Composition mechanism in the SMP

    ///          Metamodel (via Containers). In UML 2.0, this is represented by

    ///          composite aggregation.

    class IComposite :

        public virtual Smp::IComponent

    {

    public:

        /// Virtual destructor to release memory.

        virtual ~IComposite() {}    

        /// Query for the collection of all containers of the composite 

        /// component.

        /// The returned collection may be empty if no containers exist for the

        /// composite.

        /// @return  Collection of containers.

        virtual const Smp::ContainerCollection* GetContainers() const = 0;

        /// Query for a container of this composite component by its name.

        /// The returned container may be null if no container with the given 

        /// name could be found.

        /// @param   name Container name.

        /// @return  Container queried for by name, or null if no container 

        ///          with this name exists.

        virtual Smp::IContainer* GetContainer(Smp::String8 name) const = 0;

    };


Remark: This interface represents the Composition mechanism in the SMP Metamodel (via Containers). In UML 2.0, this is represented by composite aggregation.

Base Interfaces

Smp::IComponent
Operations

	Name
	Description

	GetContainer
	Query for a container of this composite component by its name.

	GetContainers
	Query for the collection of all containers of the composite component.


3.3.2.1.1 Get Container

Query for a container of this composite component by its name.
The returned container may be null if no container with the given name could be found.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	IContainer
	Container queried for by name, or null if no container with this name exists. 

	name
	in
	String8
	Container name. 


Exceptions

None

3.3.2.1.2 Get Containers

Query for the collection of all containers of the composite component.
The returned collection may be empty if no containers exist for the composite.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	ContainerCollection
	Collection of containers. 


Exceptions

None

3.3.2.2 IContainer

Interface for a container.
A container allows querying for its children.
Containers are used together with the IComposite interface for composition.
File

#include "Smp/IContainer.h"

Namespace

Smp
Declaration of IContainer

	    /// Unique Identifier of type IContainer.

    extern const Uuid Uuid_IContainer;

    /// Interface for a container.

    /// A container allows querying for its children.

    /// Containers are used together with the IComposite interface for 

    /// composition.

    class IContainer :

        public virtual Smp::IObject

    {

    public:

        /// Virtual destructor to release memory.

        virtual ~IContainer() {}    

        /// Query for the collection of all components in the container.

        /// The returned collection may be empty if no components exist for the

        /// container.

        /// @return  Collection of contained components.

        virtual const Smp::ComponentCollection* GetComponents() const = 0;

        /// Query for a component contained in the container by name.

        /// The returned component may be null if no child with the given name 

        /// could be found.

        /// @param   name Child name.

        /// @return  Child component, or null if no child component with the 

        ///          given name exists.

        virtual Smp::IComponent* GetComponent(Smp::String8 name) const = 0;

    };


Base Interfaces

Smp::IObject
Operations

	Name
	Description

	GetComponent
	Query for a component contained in the container by name.

	GetComponents
	Query for the collection of all components in the container.


3.3.2.2.1 Get Component

Query for a component contained in the container by name.
The returned component may be null if no child with the given name could be found.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	IComponent
	Child component, or null if no child component with the given name exists. 

	name
	in
	String8
	Child name. 


Exceptions

None

3.3.2.2.2 Get Components

Query for the collection of all components in the container.
The returned collection may be empty if no components exist for the container.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	ComponentCollection
	Collection of contained components. 


Exceptions

None

3.3.2.3 Container Collection

A container collection is an ordered collection of containers, which allows iterating all members.
This type is platform specific. For details see the SMP Platform Mappings.
File

#include "Smp/IContainer.h"

Namespace

Smp
Declaration of ContainerCollection

	    /// Unique Identifier of type ContainerCollection.

    extern const Uuid Uuid_ContainerCollection;

    /// A container collection is an ordered collection of containers, which 

    /// allows iterating all members.

    /// This type is platform specific. For details see the SMP Platform 

    /// Mappings.

    typedef std::vector<IContainer*> ContainerCollection;


3.3.3 Events

Events are used in event-based programming. Event-based programming works via event sources and event sinks that can be registered to and unregistered from event sources. When an event source emits an event, it notifies all subscribed event sinks.

3.3.3.1 IEvent Sink

Interface of an event sink that can be subscribed to an event source (IEventSource).
This interface provides a notification method (event handler) that can be called by event sources when an event is emitted.
File

#include "Smp/IEventSink.h"

Namespace

Smp
Declaration of IEventSink

	    /// Unique Identifier of type IEventSink.

    extern const Uuid Uuid_IEventSink;

    /// Interface of an event sink that can be subscribed to an event source 

    /// (IEventSource).

    /// This interface provides a notification method (event handler) that can 

    /// be called by event sources when an event is emitted.

    class IEventSink :

        public virtual Smp::IObject

    {

    public:

        /// Virtual destructor to release memory.

        virtual ~IEventSink() {}    

        /// This method returns the Component that owns the event sink.

        /// @remarks This is required to be able to store and restore event 

        ///          sinks.

        /// @return  Owner of event sink.

        virtual Smp::IComponent* GetOwner() const = 0;

        /// This event handler method is called when an event is emitted.

        /// Components providing event sinks must ensure that these event sinks

        /// do not throw exceptions.

        /// @param   sender Object emitting the event.

        /// @param   arg Event argument.

        virtual void Notify(Smp::IObject* sender, Smp::AnySimple arg) = 0;

    };


Base Interfaces

Smp::IObject
Operations

	Name
	Description

	GetOwner
	This method returns the Component that owns the event sink.

	Notify
	This event handler method is called when an event is emitted.


3.3.3.1.1 Get Owner

This method returns the Component that owns the event sink.
Remark: This is required to be able to store and restore event sinks.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	IComponent
	Owner of event sink. 


Exceptions

None

3.3.3.1.2 Notify

This event handler method is called when an event is emitted.
Components providing event sinks must ensure that these event sinks do not throw exceptions.
Parameters

	Name
	Dir.
	Type
	Description

	sender
	in
	IObject
	Object emitting the event. 

	arg
	in
	AnySimple
	Event argument. 


Exceptions

None

3.3.3.2 Event Sink Collection

An event sink collection is an ordered collection of event sinks, which allows iterating all members.
This type is platform specific. For details see the SMP Platform Mappings.
File

#include "Smp/IEventSink.h"

Namespace

Smp
Declaration of EventSinkCollection

	    /// Unique Identifier of type EventSinkCollection.

    extern const Uuid Uuid_EventSinkCollection;

    /// An event sink collection is an ordered collection of event sinks, which

    /// allows iterating all members.

    /// This type is platform specific. For details see the SMP Platform 

    /// Mappings.

    typedef std::vector<IEventSink*> EventSinkCollection;


3.3.3.3 IEvent Source

Interface of an event source that event sinks (IEventSink) can subscribe to.
This interface allows event consumers to subscribe to or unsubscribe from an event.
File

#include "Smp/IEventSource.h"

Namespace

Smp
Declaration of IEventSource

	    /// Unique Identifier of type IEventSource.

    extern const Uuid Uuid_IEventSource;

    /// Interface of an event source that event sinks (IEventSink) can 

    /// subscribe to.

    /// This interface allows event consumers to subscribe to or unsubscribe 

    /// from an event.

    class IEventSource :

        public virtual Smp::IObject

    {

    public:

        /// Virtual destructor to release memory.

        virtual ~IEventSource() {}    

        /// Subscribe to the event source, i.e. request notifications.

        /// This method raises the AlreadySubscribed exception, if the given 

        /// event sink is already subscribed to the event source. In addition, 

        /// an exception of type InvalidEventSink may be raised when the event 

        /// argument of the event sink is not of the type the event source 

        /// expects. This exception depends on additional metadata that is not 

        /// defined in this component model.

        /// An event sink can only be subscribed once to each event source. 

        /// Event sinks will be called in the order they have been subscribed 

        /// to the event source.

        /// Models providing event sinks must ensure that these event sinks do 

        /// not throw exceptions.

        /// @remarks Implementations may perform type checking on the optional 

        ///          event argument of the event source and event sink.

        /// @param   eventSink Event sink to subscribe to event source.

        /// @throws  Smp::IEventSource::AlreadySubscribed

        /// @throws  Smp::IEventSource::InvalidEventSink

        virtual void Subscribe(Smp::IEventSink* eventSink) throw (

            Smp::IEventSource::AlreadySubscribed,

            Smp::IEventSource::InvalidEventSink) = 0;

        /// Unsubscribe from the event source, i.e. cancel notifications.

        /// This method raises the NotSubscribed exception if the given event 

        /// sink is not subscribed to the event source.

        /// An event sink can only be unsubscribed if it has been subscribed 

        /// before.

        /// @param   eventSink Event sink to unsubscribe from event source.

        /// @throws  Smp::IEventSource::NotSubscribed

        virtual void Unsubscribe(Smp::IEventSink* eventSink) throw (

            Smp::IEventSource::NotSubscribed) = 0;

    };


Base Interfaces

Smp::IObject
Operations

	Name
	Description

	Subscribe
	Subscribe to the event source, i.e. request notifications.

	Unsubscribe
	Unsubscribe from the event source, i.e. cancel notifications.


3.3.3.3.1 Subscribe

Subscribe to the event source, i.e. request notifications.
This method raises the AlreadySubscribed exception, if the given event sink is already subscribed to the event source. In addition, an exception of type InvalidEventSink may be raised when the event argument of the event sink is not of the type the event source expects. This exception depends on additional metadata that is not defined in this component model.
An event sink can only be subscribed once to each event source. Event sinks will be called in the order they have been subscribed to the event source.
Models providing event sinks must ensure that these event sinks do not throw exceptions.
Remark: Implementations may perform type checking on the optional event argument of the event source and event sink.
Parameters

	Name
	Dir.
	Type
	Description

	eventSink
	in
	IEventSink
	Event sink to subscribe to event source. 


Exceptions

Smp::IEventSource::AlreadySubscribed, Smp::IEventSource::InvalidEventSink
3.3.3.3.2 Unsubscribe

Unsubscribe from the event source, i.e. cancel notifications.
This method raises the NotSubscribed exception if the given event sink is not subscribed to the event source.
An event sink can only be unsubscribed if it has been subscribed before.
Parameters

	Name
	Dir.
	Type
	Description

	eventSink
	in
	IEventSink
	Event sink to unsubscribe from event source. 


Exceptions

Smp::IEventSource::NotSubscribed
3.3.3.3.3 Already Subscribed

This exception is raised when trying to subscribe an event sink to an event source that is already subscribed.
File

#include "Smp/IEventSource.h"

Namespace

Smp::IEventSource
Declaration of AlreadySubscribed

	        /// This exception is raised when trying to subscribe an event sink to 

        /// an event source that is already subscribed.

        class AlreadySubscribed : public Smp::Exception    

        {

        public:

            /// Constructor for new exception.

            /// @param   eventSource Event source the event sink is subscribed 

            ///          to.

            /// @param   eventSink Event sink that is already subscribed.

            AlreadySubscribed(

                const Smp::IEventSource* _eventSource,

                const Smp::IEventSink* eventSink) throw();        

            /// Copy constructor.

            AlreadySubscribed(

                AlreadySubscribed& ex) throw();

            /// Virtual destructor to release memory.

            virtual ~AlreadySubscribed();    

            /// Event source the event sink is subscribed to.

            Smp::IEventSource* eventSource;

            /// Event sink that is already subscribed.

            Smp::IEventSink* eventSink;

        };


Fields

	Name
	Type
	Description

	eventSink
	IEventSink
	Event sink that is already subscribed.

	eventSource
	IEventSource
	Event source the event sink is subscribed to.


3.3.3.3.4 Invalid Event Sink

This exception is raised when trying to subscribe an event sink to an event source that has a different event type.
File

#include "Smp/IEventSource.h"

Namespace

Smp::IEventSource
Declaration of InvalidEventSink

	        /// This exception is raised when trying to subscribe an event sink to 

        /// an event source that has a different event type.

        class InvalidEventSink : public Smp::Exception    

        {

        public:

            /// Constructor for new exception.

            /// @param   eventSource Event source the event sink is subscribed 

            ///          to.

            /// @param   eventSink Event sink that is not of valid type.

            InvalidEventSink(

                const Smp::IEventSource* _eventSource,

                const Smp::IEventSink* eventSink) throw();        

            /// Copy constructor.

            InvalidEventSink(

                InvalidEventSink& ex) throw();

            /// Virtual destructor to release memory.

            virtual ~InvalidEventSink();    

            /// Event source the event sink is subscribed to.

            Smp::IEventSource* eventSource;

            /// Event sink that is not of valid type.

            Smp::IEventSink* eventSink;

        };


Fields

	Name
	Type
	Description

	eventSink
	IEventSink
	Event sink that is not of valid type.

	eventSource
	IEventSource
	Event source the event sink is subscribed to.


3.3.3.3.5 Not Subscribed

This exception is raised when trying to unsubscribe an event sink from an event source that is not subscribed to it.
File

#include "Smp/IEventSource.h"

Namespace

Smp::IEventSource
Declaration of NotSubscribed

	        /// This exception is raised when trying to unsubscribe an event sink 

        /// from an event source that is not subscribed to it.

        class NotSubscribed : public Smp::Exception    

        {

        public:

            /// Constructor for new exception.

            /// @param   eventSource Event source the event sink is not 

            ///          subscribed to.

            /// @param   eventSink Event sink that is not subscribed.

            NotSubscribed(

                const Smp::IEventSource* _eventSource,

                const Smp::IEventSink* eventSink) throw();        

            /// Copy constructor.

            NotSubscribed(

                NotSubscribed& ex) throw();

            /// Virtual destructor to release memory.

            virtual ~NotSubscribed();    

            /// Event source the event sink is not subscribed to.

            Smp::IEventSource* eventSource;

            /// Event sink that is not subscribed.

            Smp::IEventSink* eventSink;

        };


Fields

	Name
	Type
	Description

	eventSink
	IEventSink
	Event sink that is not subscribed.

	eventSource
	IEventSource
	Event source the event sink is not subscribed to.


3.3.3.4 Event Source Collection

An event source collection is an ordered collection of event sources, which allows iterating all members.
This type is platform specific. For details see the SMP Platform Mappings.
File

#include "Smp/IEventSource.h"

Namespace

Smp
Declaration of EventSourceCollection

	    /// Unique Identifier of type EventSourceCollection.

    extern const Uuid Uuid_EventSourceCollection;

    /// An event source collection is an ordered collection of event sources, 

    /// which allows iterating all members.

    /// 

    /// This type is platform specific. For details see the SMP Platform 

    /// Mappings.

    typedef std::vector<IEventSource*> EventSourceCollection;


3.3.4 Entry Points 

An entry point is an interface that exposes a void function with no return value that can be called by the scheduler or event manager service.

3.3.4.1 ITask

Interface for a task, which is an ordered collection of entry points.
This interface extends IEntryPoint to allow executing a number of entry points in one operation.
File

#include "Smp/ITask.h"

Namespace

Smp
Declaration of ITask

	    /// Unique Identifier of type ITask.

    extern const Uuid Uuid_ITask;

    /// Interface for a task, which is an ordered collection of entry points.

    /// This interface extends IEntryPoint to allow executing a number of entry

    /// points in one operation.

    class ITask :

        public virtual Smp::IEntryPoint

    {

    public:

        /// Virtual destructor to release memory.

        virtual ~ITask() {}    

        /// Add an entry point to the task.

        /// Entry points in a task will be executed in the order they have been

        /// added.

        /// @param   entryPoint Entry point to add to task.

        virtual void AddEntryPoint(const Smp::IEntryPoint* entryPoint) = 0;

        /// Query for the collection of all entry points. The order of entry 

        /// points in the collection is the order in which they have been added

        /// to the task.

        /// The returned collection may be empty if no entry points have been 

        /// added to the task.

        /// @return  Collection of entry points.

        virtual const Smp::EntryPointCollection* GetEntryPoints() const = 0;

    };


Base Interfaces

Smp::IEntryPoint
Operations

	Name
	Description

	AddEntryPoint
	Add an entry point to the task.

	GetEntryPoints
	Query for the collection of all entry points. The order of entry points in the collection is the order in which they have been added to the task.


3.3.4.1.1 Add Entry Point

Add an entry point to the task.
Entry points in a task will be executed in the order they have been added.
Parameters

	Name
	Dir.
	Type
	Description

	entryPoint
	in
	IEntryPoint
	Entry point to add to task. 


Exceptions

None

3.3.4.1.2 Get Entry Points

Query for the collection of all entry points. The order of entry points in the collection is the order in which they have been added to the task.
The returned collection may be empty if no entry points have been added to the task.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	EntryPointCollection
	Collection of entry points. 


Exceptions

None

3.3.4.2 IEntry Point

Interface of an entry point.
This interface provides a notification method (event handler) that can be called e.g. by the Scheduler or Event Manager when an event is emitted.
File

#include "Smp/IEntryPoint.h"

Namespace

Smp
Declaration of IEntryPoint

	    /// Unique Identifier of type IEntryPoint.

    extern const Uuid Uuid_IEntryPoint;

    /// Interface of an entry point.

    /// This interface provides a notification method (event handler) that can 

    /// be called e.g. by the Scheduler or Event Manager when an event is 

    /// emitted.

    class IEntryPoint :

        public virtual Smp::IObject

    {

    public:

        /// Virtual destructor to release memory.

        virtual ~IEntryPoint() {}    

        /// This method returns the Component that owns the entry point.

        /// @remarks This is required to be able to store and restore entry 

        ///          points.

        /// @return  Owner of entry point.

        virtual Smp::IComponent* GetOwner() const = 0;

        /// This method is called when an associated event is emitted.

        /// Components providing entry points must ensure that these entry 

        /// points do not throw exceptions.

        virtual void Execute() const = 0;

    };


Base Interfaces

Smp::IObject
Operations

	Name
	Description

	Execute
	This method is called when an associated event is emitted.

	GetOwner
	This method returns the Component that owns the entry point.


3.3.4.2.1 Execute

This method is called when an associated event is emitted.
Components providing entry points must ensure that these entry points do not throw exceptions.
Parameters

None

Exceptions

None

3.3.4.2.2 Get Owner

This method returns the Component that owns the entry point.
Remark: This is required to be able to store and restore entry points.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	IComponent
	Owner of entry point. 


Exceptions

None

3.3.4.3 Entry Point Collection

An entry point collection is an ordered collection of entry points, which allows iterating all members.
This type is platform specific. For details see the SMP Platform Mappings.
File

#include "Smp/IEntryPoint.h"

Namespace

Smp
Declaration of EntryPointCollection

	    /// Unique Identifier of type EntryPointCollection.

    extern const Uuid Uuid_EntryPointCollection;

    /// An entry point collection is an ordered collection of entry points, 

    /// which allows iterating all members.

    /// This type is platform specific. For details see the SMP Platform 

    /// Mappings.

    typedef std::vector<const IEntryPoint*> EntryPointCollection;


3.3.5 Dynamic Invocation

Dynamic invocation is a mechanism that makes the operations of a component available via a standardised interface (as opposed to a custom interface of the component which is not known at compile time of the simulation environment). In order to allow calling a named method with any number of parameters, a request object has to be created which contains all information needed for the method invocation. This request object is as well used to transfer back a return value of the operation. 

The dynamic invocation concept presented here standardises the request objects (IRequest interface). In addition, two methods are provided as part of IDynamicInvocation to create and delete request objects. However, it is not mandatory to use these methods, as request objects can well be created and deleted using another implementation. A reason for doing this could be to minimise the number of round-trips between a client (that calls a method) and a component that implements IDynamicInvocation. The sequence diagram in Figure 1 shows all steps involved when using the CreateRequest() and DeleteRequest() methods.

Remark: Especially when running distributed components, this implementation is slow. In these cases, the request object should be created by the client, and only passed to the component on Invoke().

[image: image1.emf]Model : IDynamicInvocation Client : IComponent Request : IRequest Create () 2:  GetParameterValue(index=index) 6:  SetReturnValue(value=value) 8:  return 9:  return 13:  destroy 12:  return 3:  Invoke Native Operation 7:  CreateRequest(operationName=operationName) 1:  SetParameterValue(index=index, value=value) 4:  Invoke () 5:  GetReturnValue() 10:  DeleteRequest() 11: 


Figure 1 - Sequence of calls for dynamic invocation

The sequence diagram in Figure 1, using a Client component and a Model implementing IDynamicInvocation, contains the following steps: 

1. The client calls the CreateRequest() operation of the component to create a request object for the operation, passing it the name of the operation. 

2. The component creates a request object for the operation, using the default values of all parameters. 

3. The component returns the Request object via its IRequest interface to the client. 

4. The client calls the SetParameterValue() operation of the Request object to set parameters to non-default values. 

5. The client calls the Invoke() operation of the component to invoke the corresponding operation. 

6. The component calls the GetParameterValue() operation of the Request object to get parameters. 

7. The component calls its internal operation that corresponds to the invoked operation. 

8. The component calls the SetReturnValue() operation of the Request object to set the return value. 

9. The component returns control to the client. 

10. The client calls the GetReturnValue() operation of the Request object to get the return value. 

11. The client calls the DeleteRequest() operation of the component to delete the Request object. 

12. The component destroys the request object. 

13. The component returns control to the client. 

Like all mechanisms in this section, dynamic invocation is an optional mechanism.

3.3.5.1 IDynamic Invocation

Interface for a component that supports dynamic invocation of operations.
A component may implement this interface in order to allow dynamic invocation of its operations.
File

#include "Smp/IDynamicInvocation.h"

Namespace

Smp
Declaration of IDynamicInvocation

	    /// Unique Identifier of type IDynamicInvocation.

    extern const Uuid Uuid_IDynamicInvocation;

    /// Interface for a component that supports dynamic invocation of 

    /// operations.

    /// @remarks Dynamic invocation is typically used for scripting.

    /// A component may implement this interface in order to allow dynamic 

    /// invocation of its operations.

    class IDynamicInvocation :

        public virtual Smp::IComponent

    {

    public:

        /// Virtual destructor to release memory.

        virtual ~IDynamicInvocation() {}    

        /// Return a request object for the given operation that describes the 

        /// parameters and the return value.

        /// The request object may be null if no operation with the given name 

        /// could be found, or if the operation with the given name does not 

        /// support dynamic invocation.

        /// @param   operationName Name of operation.

        /// @return  Request object for operation, or null if either no 

        ///          operation with the given name could be found, or the 

        ///          operation with the given name does not support dynamic 

        ///          invocation.

        virtual Smp::IRequest* CreateRequest(Smp::String8 operationName) = 0;

        /// Dynamically invoke an operation using a request object that has 

        /// been created and filled with parameter values by the caller.

        /// @remarks The same request object can be used to invoke a method 

        ///          several times.

        ///          This method raises the InvalidOperationName exception if 

        ///          the request object passed does not name an operation that 

        ///          allows dynamic invocation. When calling invoke with a 

        ///          wrong number of parameters, the InvalidParameterCount 

        ///          exception is raised. When passing a parameter of wrong 

        ///          type, the InvalidParameterType exception is raised.

        /// @param   request Request object to invoke.

        /// @throws  Smp::IDynamicInvocation::InvalidOperationName

        /// @throws  Smp::IDynamicInvocation::InvalidParameterCount

        /// @throws  Smp::IDynamicInvocation::InvalidParameterType

        virtual void Invoke(Smp::IRequest* request) throw (

            Smp::IDynamicInvocation::InvalidOperationName,

            Smp::IDynamicInvocation::InvalidParameterCount,

            Smp::IDynamicInvocation::InvalidParameterType) = 0;

        /// Destroy a request object that has been created with the 

        /// CreateRequest() method before.

        /// The request object must not be used anymore after DeleteRequest() 

        /// has been called for it.

        /// @param   request Request object to destroy.

        virtual void DeleteRequest(Smp::IRequest* request) = 0;

    };


Remark: Dynamic invocation is typically used for scripting.

Base Interfaces

Smp::IComponent
Operations

	Name
	Description

	CreateRequest
	Return a request object for the given operation that describes the parameters and the return value.

	DeleteRequest
	Destroy a request object that has been created with the CreateRequest() method before.

	Invoke
	Dynamically invoke an operation using a request object that has been created and filled with parameter values by the caller.


3.3.5.1.1 Create Request

Return a request object for the given operation that describes the parameters and the return value.
The request object may be null if no operation with the given name could be found, or if the operation with the given name does not support dynamic invocation.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	IRequest
	Request object for operation, or null if either no operation with the given name could be found, or the operation with the given name does not support dynamic invocation. 

	operationName
	in
	String8
	Name of operation. 


Exceptions

None

3.3.5.1.2 Delete Request

Destroy a request object that has been created with the CreateRequest() method before.
The request object must not be used anymore after DeleteRequest() has been called for it.
Parameters

	Name
	Dir.
	Type
	Description

	request
	in
	IRequest
	Request object to destroy. 


Exceptions

None

3.3.5.1.3 Invoke

Dynamically invoke an operation using a request object that has been created and filled with parameter values by the caller.
This method raises the InvalidOperationName exception if the request object passed does not name an operation that allows dynamic invocation. When calling invoke with a wrong number of parameters, the InvalidParameterCount exception is raised. When passing a parameter of wrong type, the InvalidParameterType exception is raised.
Remark: The same request object can be used to invoke a method several times.
Parameters

	Name
	Dir.
	Type
	Description

	request
	in
	IRequest
	Request object to invoke. 


Exceptions

Smp::IDynamicInvocation::InvalidOperationName, Smp::IDynamicInvocation::InvalidParameterCount, Smp::IDynamicInvocation::InvalidParameterType
3.3.5.1.4 Invalid Operation Name

This exception is raised by the Invoke() method when trying to invoke a method that does not exist, or that does not support dynamic invocation.
File

#include "Smp/IDynamicInvocation.h"

Namespace

Smp::IDynamicInvocation
Declaration of InvalidOperationName

	        /// This exception is raised by the Invoke() method when trying to 

        /// invoke a method that does not exist, or that does not support 

        /// dynamic invocation.

        class InvalidOperationName : public Smp::Exception    

        {

        public:

            /// Constructor for new exception.

            /// @param   operationName Operation name of request passed to the 

            ///          Invoke() method.

            InvalidOperationName(

                Smp::String8 operationName) throw();        

            /// Copy constructor.

            InvalidOperationName(

                InvalidOperationName& ex) throw();

            /// Virtual destructor to release memory.

            virtual ~InvalidOperationName();    

            /// Operation name of request passed to the Invoke() method.

            Smp::String8 operationName;

        };


Fields

	Name
	Type
	Description

	operationName
	String8
	Operation name of request passed to the Invoke() method.


3.3.5.1.5 Invalid Parameter Count

This exception is raised by the Invoke() method when trying to invoke a method with a wrong number of parameters.
File

#include "Smp/IDynamicInvocation.h"

Namespace

Smp::IDynamicInvocation
Declaration of InvalidParameterCount

	        /// This exception is raised by the Invoke() method when trying to 

        /// invoke a method with a wrong number of parameters.

        class InvalidParameterCount : public Smp::Exception    

        {

        public:

            /// Constructor for new exception.

            /// @param   operationName Operation name of request passed to the 

            ///          Invoke() method.

            /// @param   operationParameters Correct number of parameters of 

            ///          operation.

            /// @param   requestParameters Wrong number of parameters of 

            ///          operation.

            InvalidParameterCount(

                Smp::String8 operationName,

                Smp::Int32 operationParameters,

                Smp::Int32 requestParameters) throw();        

            /// Copy constructor.

            InvalidParameterCount(

                InvalidParameterCount& ex) throw();

            /// Virtual destructor to release memory.

            virtual ~InvalidParameterCount();    

            /// Operation name of request passed to the Invoke() method.

            Smp::String8 operationName;

            /// Correct number of parameters of operation.

            Smp::Int32 operationParameters;

            /// Wrong number of parameters of operation.

            Smp::Int32 requestParameters;

        };


Fields

	Name
	Type
	Description

	operationName
	String8
	Operation name of request passed to the Invoke() method.

	operationParameters
	Int32
	Correct number of parameters of operation.

	requestParameters
	Int32
	Wrong number of parameters of operation.


3.3.5.1.6 Invalid Parameter Type

This exception is raised by the Invoke() method when trying to invoke a method passing a parameter of wrong type.
File

#include "Smp/IDynamicInvocation.h"

Namespace

Smp::IDynamicInvocation
Declaration of InvalidParameterType

	        /// This exception is raised by the Invoke() method when trying to 

        /// invoke a method passing a parameter of wrong type.

        /// @remarks The index of the parameter of wrong type can be extracted 

        ///          from the request using the method GetParameterIndex().

        class InvalidParameterType : public Smp::Exception    

        {

        public:

            /// Constructor for new exception.

            /// @param   operationName Operation name of request passed to the 

            ///          Invoke() method.

            /// @param   parameterName Name of parameter of wrong type.

            /// @param   invalidType Type that is not valid.

            /// @param   expectedType Type that was expected.

            InvalidParameterType(

                Smp::String8 operationName,

                Smp::String8 parameterName,

                Smp::PrimitiveTypeKind invalidType,

                Smp::PrimitiveTypeKind expectedType) throw();        

            /// Copy constructor.

            InvalidParameterType(

                InvalidParameterType& ex) throw();

            /// Virtual destructor to release memory.

            virtual ~InvalidParameterType();    

            /// Operation name of request passed to the Invoke() method.

            Smp::String8 operationName;

            /// Name of parameter of wrong type.

            Smp::String8 parameterName;

            /// Type that is not valid.

            Smp::PrimitiveTypeKind invalidType;

            /// Type that was expected.

            Smp::PrimitiveTypeKind expectedType;

        };


Remark: The index of the parameter of wrong type can be extracted from the request using the method GetParameterIndex().

Fields

	Name
	Type
	Description

	expectedType
	PrimitiveTypeKind
	Type that was expected.

	invalidType
	PrimitiveTypeKind
	Type that is not valid.

	operationName
	String8
	Operation name of request passed to the Invoke() method.

	parameterName
	String8
	Name of parameter of wrong type.


3.3.5.2 IRequest

A request holds information, which is passed between a client invoking an operation via the IDynamicInvocation interface and a component being invoked.
File

#include "Smp/IRequest.h"

Namespace

Smp
Declaration of IRequest

	    /// Unique Identifier of type IRequest.

    extern const Uuid Uuid_IRequest;

    /// A request holds information, which is passed between a client invoking 

    /// an operation via the IDynamicInvocation interface and a component being

    /// invoked.

    class IRequest

    {

    public:

        /// Virtual destructor to release memory.

        virtual ~IRequest() {}    

        /// Return the name of the operation that this request is for.

        /// @remarks A request is typically created using the CreateRequest() 

        ///          method to dynamically call a specific method of a 

        ///          component implementing the IDynamicInvocation interface. 

        ///          This method returns the name passed to it, to allow 

        ///          finding out which method is actually called on Invoke().

        /// @return  Name of the operation.

        virtual Smp::String8 GetOperationName() const = 0;

        /// Return the number of parameters stored in the request.

        /// Parameters can be accessed by their 0-based index. This index

        ///      - must not be negative,

        ///      - must be smaller than the parameter count.

        /// @remarks The GetParameterIndex() method may be used to access 

        ///          parameters by name.

        /// @return  Number of parameters in request object.

        virtual Smp::Int32 GetParameterCount() const = 0;

        /// Query for a parameter index by parameter name.

        /// The index values are 0-based. An index of -1 indicates a wrong 

        /// parameter name.

        /// @param   parameterName Name of parameter.

        /// @return  Index of parameter with the given name, or -1 if no 

        ///          parameter with the given name could be found.

        virtual Smp::Int32 GetParameterIndex(Smp::String8 parameterName) const = 0;

        /// Assign a value to a parameter at a given position.

        /// This method raises an exception of type InvalidParameterIndex if 

        /// called with an illegal parameter index. If called with an invalid 

        /// parameter type, it raises an exception of type InvalidAnyType. If 

        /// called with an invalid value for the parameter, it raises an 

        /// exception of type InvalidParameterValue.

        /// @param   index Index of parameter (0-based).

        /// @param   value Value of parameter.

        /// @throws  Smp::InvalidAnyType

        /// @throws  Smp::IRequest::InvalidParameterIndex

        /// @throws  Smp::IRequest::InvalidParameterValue

        virtual void SetParameterValue(Smp::Int32 index, Smp::AnySimple value) throw (

            Smp::InvalidAnyType,

            Smp::IRequest::InvalidParameterIndex,

            Smp::IRequest::InvalidParameterValue) = 0;

        /// Query a value of a parameter at a given position.

        /// This method raises an exception of type InvalidParameterIndex if 

        /// called with an illegal parameter index.

        /// @param   index Index of parameter (0-based).

        /// @return  Value of parameter.

        /// @throws  Smp::IRequest::InvalidParameterIndex

        virtual Smp::AnySimple GetParameterValue(Smp::Int32 index) const throw (

            Smp::IRequest::InvalidParameterIndex) = 0;

        /// Assign the return value of the operation.

        /// This method raises an exception of type VoidOperation if called for

        /// a request object of a void operation. If called with an invalid 

        /// return type, it raises an exception of type InvalidAnyType. If 

        /// called with an invalid value for the return type, this method 

        /// raises an exception of type InvalidReturnValue.

        /// @param   value Return value.

        /// @throws  Smp::InvalidAnyType

        /// @throws  Smp::IRequest::InvalidReturnValue

        /// @throws  Smp::IRequest::VoidOperation

        virtual void SetReturnValue(Smp::AnySimple value) throw (

            Smp::InvalidAnyType,

            Smp::IRequest::InvalidReturnValue,

            Smp::IRequest::VoidOperation) = 0;

        /// Query the return value of the operation.

        /// This method raises an exception of type VoidOperation if called for

        /// a request object of a void operation.

        /// @return  Return value of the operation.

        /// @throws  Smp::IRequest::VoidOperation

        virtual Smp::AnySimple GetReturnValue() const throw (

            Smp::IRequest::VoidOperation) = 0;

    };


Base Interfaces

None

Operations

	Name
	Description

	GetOperationName
	Return the name of the operation that this request is for.

	GetParameterCount
	Return the number of parameters stored in the request.

	GetParameterIndex
	Query for a parameter index by parameter name.

	GetParameterValue
	Query a value of a parameter at a given position.

	GetReturnValue
	Query the return value of the operation.

	SetParameterValue
	Assign a value to a parameter at a given position.

	SetReturnValue
	Assign the return value of the operation.


3.3.5.2.1 Get Operation Name

Return the name of the operation that this request is for.
Remark: A request is typically created using the CreateRequest() method to dynamically call a specific method of a component implementing the IDynamicInvocation interface. This method returns the name passed to it, to allow finding out which method is actually called on Invoke().
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	String8
	Name of the operation. 


Exceptions

None

3.3.5.2.2 Get Parameter Count

Return the number of parameters stored in the request.
Parameters can be accessed by their 0-based index. This index
· must not be negative,

· must be smaller than the parameter count.

Remark: The GetParameterIndex() method may be used to access parameters by name.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	Int32
	Number of parameters in request object. 


Exceptions

None

3.3.5.2.3 Get Parameter Index

Query for a parameter index by parameter name.
The index values are 0-based. An index of -1 indicates a wrong parameter name.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	Int32
	Index of parameter with the given name, or -1 if no parameter with the given name could be found. 

	parameterName
	in
	String8
	Name of parameter. 


Exceptions

None

3.3.5.2.4 Get Parameter Value

Query a value of a parameter at a given position.
This method raises an exception of type InvalidParameterIndex if called with an illegal parameter index.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	AnySimple
	Value of parameter. 

	index
	in
	Int32
	Index of parameter (0-based). 


Exceptions

Smp::IRequest::InvalidParameterIndex
3.3.5.2.5 Get Return Value

Query the return value of the operation.
This method raises an exception of type VoidOperation if called for a request object of a void operation.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	AnySimple
	Return value of the operation. 


Exceptions

Smp::IRequest::VoidOperation
3.3.5.2.6 Set Parameter Value

Assign a value to a parameter at a given position.
This method raises an exception of type InvalidParameterIndex if called with an illegal parameter index. If called with an invalid parameter type, it raises an exception of type InvalidAnyType. If called with an invalid value for the parameter, it raises an exception of type InvalidParameterValue.
Parameters

	Name
	Dir.
	Type
	Description

	index
	in
	Int32
	Index of parameter (0-based). 

	value
	in
	AnySimple
	Value of parameter. 


Exceptions

Smp::InvalidAnyType, Smp::IRequest::InvalidParameterIndex, Smp::IRequest::InvalidParameterValue
3.3.5.2.7 Set Return Value

Assign the return value of the operation.
This method raises an exception of type VoidOperation if called for a request object of a void operation. If called with an invalid return type, it raises an exception of type InvalidAnyType. If called with an invalid value for the return type, this method raises an exception of type InvalidReturnValue.
Parameters

	Name
	Dir.
	Type
	Description

	value
	in
	AnySimple
	Return value. 


Exceptions

Smp::InvalidAnyType, Smp::IRequest::InvalidReturnValue, Smp::IRequest::VoidOperation
3.3.5.2.8 Invalid Parameter Index

This exception is raised when using an invalid parameter index to set (SetParameterValue()) or get (GetParameterValue()) a parameter value of an operation in a request.
File

#include "Smp/IRequest.h"

Namespace

Smp::IRequest
Declaration of InvalidParameterIndex

	        /// This exception is raised when using an invalid parameter index to 

        /// set (SetParameterValue()) or get (GetParameterValue()) a parameter 

        /// value of an operation in a request.

        class InvalidParameterIndex : public Smp::Exception    

        {

        public:

            /// Constructor for new exception.

            /// @param   operationName Name of operation.

            /// @param   parameterIndex Invalid parameter index used.

            /// @param   parameterCount Number of parameters of the operation.

            InvalidParameterIndex(

                Smp::String8 operationName,

                Smp::Int32 parameterIndex,

                Smp::Int32 parameterCount) throw();        

            /// Copy constructor.

            InvalidParameterIndex(

                InvalidParameterIndex& ex) throw();

            /// Virtual destructor to release memory.

            virtual ~InvalidParameterIndex();    

            /// Name of operation.

            Smp::String8 operationName;

            /// Invalid parameter index used.

            Smp::Int32 parameterIndex;

            /// Number of parameters of the operation.

            Smp::Int32 parameterCount;

        };


Fields

	Name
	Type
	Description

	operationName
	String8
	Name of operation.

	parameterCount
	Int32
	Number of parameters of the operation.

	parameterIndex
	Int32
	Invalid parameter index used.


3.3.5.2.9 Invalid Parameter Value

This exception is raised when trying to assign an illegal value to a parameter of an operation in a request using SetParameterValue().
File

#include "Smp/IRequest.h"

Namespace

Smp::IRequest
Declaration of InvalidParameterValue

	        /// This exception is raised when trying to assign an illegal value to 

        /// a parameter of an operation in a request using SetParameterValue().

        class InvalidParameterValue : public Smp::Exception    

        {

        public:

            /// Constructor for new exception.

            /// @param   parameterName Name of parameter value was assigned to.

            /// @param   value Value that was passed as parameter.

            InvalidParameterValue(

                Smp::String8 parameterName,

                Smp::AnySimple value) throw();        

            /// Copy constructor.

            InvalidParameterValue(

                InvalidParameterValue& ex) throw();

            /// Virtual destructor to release memory.

            virtual ~InvalidParameterValue();    

            /// Name of parameter value was assigned to.

            Smp::String8 parameterName;

            /// Value that was passed as parameter.

            Smp::AnySimple value;

        };


Fields

	Name
	Type
	Description

	parameterName
	String8
	Name of parameter value was assigned to.

	value
	AnySimple
	Value that was passed as parameter.


3.3.5.2.10 Invalid Return Value

This exception is raised when trying to assign an invalid return value of an operation in a request using SetReturnValue().
File

#include "Smp/IRequest.h"

Namespace

Smp::IRequest
Declaration of InvalidReturnValue

	        /// This exception is raised when trying to assign an invalid return 

        /// value of an operation in a request using SetReturnValue().

        class InvalidReturnValue : public Smp::Exception    

        {

        public:

            /// Constructor for new exception.

            /// @param   operationName Name of operation the return value was 

            ///          assigned to.

            /// @param   value Value that was passed as return value.

            InvalidReturnValue(

                Smp::String8 operationName,

                Smp::AnySimple value) throw();        

            /// Copy constructor.

            InvalidReturnValue(

                InvalidReturnValue& ex) throw();

            /// Virtual destructor to release memory.

            virtual ~InvalidReturnValue();    

            /// Name of operation the return value was assigned to.

            Smp::String8 operationName;

            /// Value that was passed as return value.

            Smp::AnySimple value;

        };


Fields

	Name
	Type
	Description

	operationName
	String8
	Name of operation the return value was assigned to.

	value
	AnySimple
	Value that was passed as return value.


3.3.5.2.11 Void Operation

This exception is raised when trying to read (GetReturnValue()) or write (SetReturnValue()) the return value of a void operation.
File

#include "Smp/IRequest.h"

Namespace

Smp::IRequest
Declaration of VoidOperation

	        /// This exception is raised when trying to read (GetReturnValue()) or 

        /// write (SetReturnValue()) the return value of a void operation.

        class VoidOperation : public Smp::Exception    

        {

        public:

            /// Constructor for new exception.

            /// @param   operationName Name of operation.

            VoidOperation(

                Smp::String8 operationName) throw();        

            /// Copy constructor.

            VoidOperation(

                VoidOperation& ex) throw();

            /// Virtual destructor to release memory.

            virtual ~VoidOperation();    

            /// Name of operation.

            Smp::String8 operationName;

        };


Fields

	Name
	Type
	Description

	operationName
	String8
	Name of operation.


3.3.6 Persistence

Persistence of SMP components can be handled in one of two ways: 

1. External Persistence: The simulation environment stores and restores the model’s state by directly accessing the fields that are published to the simulation environment, i.e. via the IPublication interface. 

Remark: This should be the preferred mechanism for the majority of models. 

2. Self-Persistence: The component may implement the IPersist interface, which allows it to store and restore (part of) its state into or from storage that is provided by the simulation environment. 

Remark: This mechanism is usually only needed by specialised models, for example embedded models that need to load on-board software from a specific file. Further, this mechanism can be used by simulation services if desired. For example, the Scheduler service may use it to store and restore its current state. 

Like all mechanisms in this section, self-persistence of models and components is an optional mechanism, while external persistence (via the Store() and Restore() methods of the ISimulator interface) is a mandatory feature of every SMP simulation environment.

3.3.6.1 IPersist

Interface of a self-persisting component that provides operations to allow for storing and restoring its state.
A component may implement this interface if it wants to have control over storing and restoring of its state. This is an optional interface which needs to be implemented by components with self-persistence only.
File

#include "Smp/IPersist.h"

Namespace

Smp
Declaration of IPersist

	    /// Unique Identifier of type IPersist.

    extern const Uuid Uuid_IPersist;

    /// Interface of a self-persisting component that provides operations to 

    /// allow for storing and restoring its state.

    /// A component may implement this interface if it wants to have control 

    /// over storing and restoring of its state. This is an optional interface 

    /// which needs to be implemented by components with self-persistence only.

    class IPersist :

        public virtual Smp::IComponent

    {

    public:

        /// Virtual destructor to release memory.

        virtual ~IPersist() {}    

        /// Restore component state from storage.

        /// This method raises an exception of type CannotRestore if reading 

        /// data from the storage reader fails.

        /// @param   reader Interface that allows reading from storage.

        /// @throws  Smp::IPersist::CannotRestore

        virtual void Restore(Smp::IStorageReader* reader) throw (

            Smp::IPersist::CannotRestore) = 0;

        /// Store component state to storage.

        /// This method raises an exception of type CannotStore if writing data

        /// to the storage writer fails.

        /// @param   writer Interface that allows writing to storage.

        /// @throws  Smp::IPersist::CannotStore

        virtual void Store(Smp::IStorageWriter* writer) throw (

            Smp::IPersist::CannotStore) = 0;

    };


Base Interfaces

Smp::IComponent
Operations

	Name
	Description

	Restore
	Restore component state from storage.

	Store
	Store component state to storage.


3.3.6.1.1 Restore

Restore component state from storage.
This method raises an exception of type CannotRestore if reading data from the storage reader fails.
Parameters

	Name
	Dir.
	Type
	Description

	reader
	in
	IStorageReader
	Interface that allows reading from storage. 


Exceptions

Smp::IPersist::CannotRestore
3.3.6.1.2 Store

Store component state to storage.
This method raises an exception of type CannotStore if writing data to the storage writer fails.
Parameters

	Name
	Dir.
	Type
	Description

	writer
	in
	IStorageWriter
	Interface that allows writing to storage. 


Exceptions

Smp::IPersist::CannotStore
3.3.6.1.3 Cannot Restore

This exception is raised when the content of the storage reader passed to the Restore() method contains invalid data.
File

#include "Smp/IPersist.h"

Namespace

Smp::IPersist
Declaration of CannotRestore

	        /// This exception is raised when the content of the storage reader 

        /// passed to the Restore() method contains invalid data.

        /// @remarks This typically happens when a Store() has been created 

        ///          from a different configuration of components.

        class CannotRestore : public Smp::Exception    

        {

        public:

            /// Constructor for new exception.

            CannotRestore() throw();        

            /// Copy constructor.

            CannotRestore(

                CannotRestore& ex) throw();

            /// Virtual destructor to release memory.

            virtual ~CannotRestore();    

        };


Remark: This typically happens when a Store() has been created from a different configuration of components.

Fields

None

3.3.6.1.4 Cannot Store

This exception is raised when the component cannot store its data to the storage writer given to the Store() method.
File

#include "Smp/IPersist.h"

Namespace

Smp::IPersist
Declaration of CannotStore

	        /// This exception is raised when the component cannot store its data 

        /// to the storage writer given to the Store() method.

        /// @remarks This may e.g. be if there is no disk space left.

        class CannotStore : public Smp::Exception    

        {

        public:

            /// Constructor for new exception.

            CannotStore() throw();        

            /// Copy constructor.

            CannotStore(

                CannotStore& ex) throw();

            /// Virtual destructor to release memory.

            virtual ~CannotStore();    

        };


Remark: This may e.g. be if there is no disk space left.

Fields

None

3.3.6.2 IStorage Reader

This interface provides functionality to read data from storage.
This interface is platform specific. For details see the SMP Platform Mappings.
File

#include "Smp/IStorageReader.h"

Namespace

Smp
Declaration of IStorageReader

	    /// Unique Identifier of type IStorageReader.

    extern const Uuid Uuid_IStorageReader;

    /// This interface provides functionality to read data from storage.

    /// @remarks A client (typically the simulation environment) provides this 

    ///          interface to allow components implementing the IPersist 

    ///          interface to restore their state. It is passed to the 

    ///          Restore() method of every model implementing IPersist.

    ///          This interface is platform specific. For details see the SMP 

    ///          Platform Mappings.

    class IStorageReader

    {

    public:

        /// Virtual destructor to release memory.

        virtual ~IStorageReader() {}    

        /// Restore data from storage.

        /// This method reads a memory block of data from the state vector. It 

        /// is the component's responsibility to Store a block of the same size

        /// to IStorageWriter on Store.

        /// @param   address Memory address of memory block.

        /// @param   size Size of memory block.

        virtual void Restore(void* address, Smp::Int32 size) = 0;

    };


Remark: A client (typically the simulation environment) provides this interface to allow components implementing the IPersist interface to restore their state. It is passed to the Restore() method of every model implementing IPersist.

Base Interfaces

None

Operations

	Name
	Description

	Restore
	Restore data from storage.


3.3.6.2.1 Restore

Restore data from storage.
This method reads a memory block of data from the state vector. It is the component's responsibility to Store a block of the same size to IStorageWriter on Store.
Parameters

	Name
	Dir.
	Type
	Description

	address
	inout
	void
	Memory address of memory block. 

	size
	in
	Int32
	Size of memory block. 


Exceptions

None

3.3.6.3 IStorage Writer

This interface provides functionality to write data to storage.
This interface is platform specific. For details see the SMP Platform Mappings.
File

#include "Smp/IStorageWriter.h"

Namespace

Smp
Declaration of IStorageWriter

	    /// Unique Identifier of type IStorageWriter.

    extern const Uuid Uuid_IStorageWriter;

    /// This interface provides functionality to write data to storage.

    /// @remarks A client (typically the simulation environment) provides this 

    ///          interface to allow components implementing the IPersist 

    ///          interface to store their state. It is passed to the Store() 

    ///          method of every model implementing IPersist.

    ///          This interface is platform specific. For details see the SMP 

    ///          Platform Mappings.

    class IStorageWriter

    {

    public:

        /// Virtual destructor to release memory.

        virtual ~IStorageWriter() {}    

        /// Store data to storage.

        /// This method writes a memory block of data to the state vector. It 

        /// is the component's responsibility to Restore a block of the same 

        /// size from IStorageReader on Restore.

        /// @param   address Memory address of memory block.

        /// @param   size Size of memory block.

        virtual void Store(void* address, Smp::Int32 size) = 0;

    };


Remark: A client (typically the simulation environment) provides this interface to allow components implementing the IPersist interface to store their state. It is passed to the Store() method of every model implementing IPersist.

Base Interfaces

None

Operations

	Name
	Description

	Store
	Store data to storage.


3.3.6.3.1 Store

Store data to storage.
This method writes a memory block of data to the state vector. It is the component's responsibility to Restore a block of the same size from IStorageReader on Restore.
Parameters

	Name
	Dir.
	Type
	Description

	address
	inout
	void
	Memory address of memory block. 

	size
	in
	Int32
	Size of memory block. 


Exceptions

None

3.4 Model Mechanisms 

While the IModel interface defines the mandatory functionality every SMP model has to provide, this section introduces additional mechanisms available for more advanced use.

3.4.1 Fallible Models

Fallible models expose their failure state and a collection of failures.

3.4.1.1 IFailure

Interface for a failure.
A Failure allows to query and to set its state to Failed or Unfailed.
File

#include "Smp/IFailure.h"

Namespace

Smp
Declaration of IFailure

	    /// Unique Identifier of type IFailure.

    extern const Uuid Uuid_IFailure;

    /// Interface for a failure.

    /// A Failure allows to query and to set its state to Failed or Unfailed.

    class IFailure :

        public virtual Smp::IObject

    {

    public:

        /// Virtual destructor to release memory.

        virtual ~IFailure() {}    

        /// Sets the state of the failure to failed.

        virtual void Fail() = 0;

        /// Sets the state of the failure to unfailed.

        virtual void Unfail() = 0;

        /// Returns whether the failure's state is set to failed.

        /// @return  Returns true if the failure state is Failed, false 

        ///          otherwise.

        virtual Smp::Bool IsFailed() const = 0;

    };


Base Interfaces

Smp::IObject
Operations

	Name
	Description

	Fail
	Sets the state of the failure to failed.

	IsFailed
	Returns whether the failure's state is set to failed.

	Unfail
	Sets the state of the failure to unfailed.


3.4.1.1.1 Fail

Sets the state of the failure to failed.
Parameters

None

Exceptions

None

3.4.1.1.2 Is Failed

Returns whether the failure's state is set to failed.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	Bool
	Returns true if the failure state is Failed, false otherwise. 


Exceptions

None

3.4.1.1.3 Unfail

Sets the state of the failure to unfailed.
Parameters

None

Exceptions

None

3.4.1.2 IFallible Model

Interface for a fallible model that exposes its failure state and a collection of failures.
A fallible model allows querying for its failures by name.
File

#include "Smp/IFallibleModel.h"

Namespace

Smp
Declaration of IFallibleModel

	    /// Unique Identifier of type IFallibleModel.

    extern const Uuid Uuid_IFallibleModel;

    /// Interface for a fallible model that exposes its failure state and a 

    /// collection of failures.

    /// A fallible model allows querying for its failures by name.

    class IFallibleModel :

        public virtual Smp::IModel

    {

    public:

        /// Virtual destructor to release memory.

        virtual ~IFallibleModel() {}    

        /// Query for whether the model is failed. A model is failed when at 

        /// least one of its failures is failed.

        /// @return  Whether the model is failed or not.

        virtual Smp::Bool IsFailed() = 0;

        /// Get a failure by name.

        /// The returned failure may be null if no child with the given name 

        /// could be found.

        /// @param   name Name of the failure to return.

        /// @return  Failure queried for by name, or null if no failure with 

        ///          this name exists.

        virtual Smp::IFailure* GetFailure(Smp::String8 name) const = 0;

        /// Query for the collection of all failures.

        /// The returned collection may be empty if no failures exist for the 

        /// fallible model.

        /// @return  Failure collection of the model.

        virtual const Smp::FailureCollection* GetFailures() const = 0;

    };


Base Interfaces

Smp::IModel
Operations

	Name
	Description

	GetFailure
	Get a failure by name.

	GetFailures
	Query for the collection of all failures.

	IsFailed
	Query for whether the model is failed. A model is failed when at least one of its failures is failed.


3.4.1.2.1 Get Failure

Get a failure by name.
The returned failure may be null if no child with the given name could be found.
Parameters

	Name
	Dir.
	Type
	Description

	name
	in
	String8
	Name of the failure to return. 

	
	return
	IFailure
	Failure queried for by name, or null if no failure with this name exists. 


Exceptions

None

3.4.1.2.2 Get Failures

Query for the collection of all failures.
The returned collection may be empty if no failures exist for the fallible model.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	FailureCollection
	Failure collection of the model. 


Exceptions

None

3.4.1.2.3 Is Failed

Query for whether the model is failed. A model is failed when at least one of its failures is failed.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	Bool
	Whether the model is failed or not. 


Exceptions

None

3.5 Management Interfaces 

Managed interfaces allow external components to access all mechanisms by name. This includes the basic component mechanisms, optional component mechanisms and optional model mechanisms. 

Managed interfaces allow full access to all functionality of components. For composition and aggregation, they extend the existing interfaces by methods to add new components or references, respectively. For entry points, event sources and event sinks, the managed interfaces provide access to the elements by name. For fields, access by name is provided by an extended model interface. 

All management interfaces are optional, and only need to be provided for models used in a managed environment. Typically, in a managed environment a model configuration is built from an XML document (namely an SMDL Assembly) during the Creating phase. 

Remark: Typically, a Loader or Model Manager component calls these interfaces to push configuration information into the models, which has been read from an SMDL Assembly file. Initialisation of models from an SMDL Configuration file does not require managed models.

3.5.1 Managed Components 

Managed components provide write access to their properties, i.e. they provide corresponding “setter” methods for the Name, Description, and Parent properties. This allows putting them into a hierarchy with a given name and description.

3.5.1.1 IManaged Object

Interface of a managed object.
A managed object additionally allows assigning name and description.
File

#include "Smp/Management/IManagedObject.h"

Namespace

Smp::Management
Declaration of IManagedObject

	        /// Unique Identifier of type IManagedObject.

        extern const Uuid Uuid_IManagedObject;

        /// Interface of a managed object.

        /// A managed object additionally allows assigning name and 

        /// description.

        class IManagedObject :

            public virtual Smp::IObject

        {

        public:

            /// Virtual destructor to release memory.

            virtual ~IManagedObject() {}    

            /// Define the name of the managed object ("property setter").

            /// This method throws an exception of type InvalidObjectName when 

            /// the given name is not valid.

            /// Names must

            /// <ul>

            ///      - be unique within their context,

            ///      - not be empty,

            ///      - start with a letter, and

            ///      - only contain letters, digits, the underscore ("_") and 

            /// brackets ("[" and "]").

            /// </ul>

            /// 

            /// @remarks Except for the first rule (uniqueness of names), the 

            ///          SetName() method should test for all other rules.

            /// @remarks It is recommended that names do not exceed 32 

            ///          characters in size.

            /// @param   name Name of object.

            /// @throws  Smp::Management::IManagedObject::InvalidObjectName

            virtual void SetName(Smp::String8 name) throw (

                Smp::Management::IManagedObject::InvalidObjectName) = 0;

            /// Define the description of the managed object ("property 

            /// setter").

            /// @param   description Description of object.

            virtual void SetDescription(Smp::String8 description) = 0;

        };


Base Interfaces

Smp::IObject
Operations

	Name
	Description

	SetDescription
	Define the description of the managed object ("property setter").

	SetName
	Define the name of the managed object ("property setter").


3.5.1.1.1 Set Description

Define the description of the managed object ("property setter").
Parameters

	Name
	Dir.
	Type
	Description

	description
	in
	String8
	Description of object. 


Exceptions

None

3.5.1.1.2 Set Name

Define the name of the managed object ("property setter").
This method throws an exception of type InvalidObjectName when the given name is not valid.
Names must
· be unique within their context,

· not be empty,

· start with a letter, and

· only contain letters, digits, the underscore ("_") and brackets ("[" and "]").

Remark: Except for the first rule (uniqueness of names), the SetName() method should test for all other rules.
Remark: It is recommended that names do not exceed 32 characters in size.
Parameters

	Name
	Dir.
	Type
	Description

	name
	in
	String8
	Name of object. 


Exceptions

Smp::Management::IManagedObject::InvalidObjectName
3.5.1.1.3 Invalid Object Name

This exception is raised when trying to set an object's name to an invalid name. Names
· must not be empty,

· must start with a letter, and

· must only contain letters, digits, the underscore ("_") and brackets ("[" and "]").

File

#include "Smp/Management/IManagedObject.h"

Namespace

Smp::Management::IManagedObject
Declaration of InvalidObjectName

	            /// This exception is raised when trying to set an object's name to

            /// an invalid name. Names

            /// <ul>

            ///      - must not be empty,

            ///      - must start with a letter, and

            ///      - must only contain letters, digits, the underscore ("_") 

            /// and brackets ("[" and "]").

            /// </ul>

            class InvalidObjectName : public Smp::Exception    

            {

            public:

                /// Constructor for new exception.

                /// @param   objectName Invalid object name passed to SetName().

                InvalidObjectName(

                    Smp::String8 objectName) throw();        

                /// Copy constructor.

                InvalidObjectName(

                    InvalidObjectName& ex) throw();

                /// Virtual destructor to release memory.

                virtual ~InvalidObjectName();    

                /// Invalid object name passed to SetName().

                Smp::String8 objectName;

            };


Fields

	Name
	Type
	Description

	objectName
	String8
	Invalid object name passed to SetName().


3.5.1.2 IManaged Component

Interface of a managed component.
A managed component additionally allows assigning the parent.
File

#include "Smp/Management/IManagedComponent.h"

Namespace

Smp::Management
Declaration of IManagedComponent

	        /// Unique Identifier of type IManagedComponent.

        extern const Uuid Uuid_IManagedComponent;

        /// Interface of a managed component.

        ///  A managed component additionally allows assigning the parent.

        class IManagedComponent :

            public virtual Smp::IComponent,

            public virtual Smp::Management::IManagedObject

        {

        public:

            /// Virtual destructor to release memory.

            virtual ~IManagedComponent() {}    

            /// Define the parent component ("property setter"). Components 

            /// link to their parent to allow traversing the tree of components

            /// upwards.

            /// @param   parent Parent composite of component.

            virtual void SetParent(Smp::IComposite* parent) = 0;

        };


Base Interfaces

Smp::Management::IManagedObject, Smp::IComponent
Operations

	Name
	Description

	SetParent
	Define the parent component ("property setter"). Components link to their parent to allow traversing the tree of components upwards.


3.5.1.2.1 Set Parent

Define the parent component ("property setter"). Components link to their parent to allow traversing the tree of components upwards.
Parameters

	Name
	Dir.
	Type
	Description

	parent
	in
	IComposite
	Parent composite of component. 


Exceptions

None

3.5.2 Managed Component Mechanisms 

The component mechanisms introduced in section 3.3 (Component Mechanisms) do not provide full access for external components, but only limited access: 

· Aggregation provides collections of references, but does not allow adding new references to a Reference. 

· Composition provides a tree of components, but does not allow adding new components to a Container. 

· Event sinks can be connected by models if they have access to event sources, but an external component can not query for event sinks and event sources by name. 

· Entry points can be registered with services by models, but an external component can not query for entry points by name. 

To overcome these limitations, managed interfaces are provided with full access to all functionality. For composition and aggregation, these extend the existing interfaces by methods to add new components or references, respectively. For event sources and event sinks, the managed interfaces provide access to the elements by name. For entry points, the managed interface provides access to the entry points by name.

3.5.2.1 IComponent Collection

Base interface for managed collections, which are either references or containers.
File

#include "Smp/Management/IComponentCollection.h"

Namespace

Smp::Management
Declaration of IComponentCollection

	        /// Unique Identifier of type IComponentCollection.

        extern const Uuid Uuid_IComponentCollection;

        /// Base interface for managed collections, which are either references

        /// or containers.

        class IComponentCollection

        {

        public:

            /// Virtual destructor to release memory.

            virtual ~IComponentCollection() {}    

            /// Query for the number of components in the collection.

            /// @return  Current number of components in the collection.

            virtual Smp::Int64 GetCount() const = 0;

            /// Query the maximum number of components in the collection.

            /// A return value of -1 indicates that the collection has no upper

            /// limit.

            /// 

            /// @remarks This information can be used to check whether another 

            ///          component can be added to the collection.

            /// @remarks This is consistent with the use of upper bounds in 

            ///          UML, where a value of -1 represents no limit 

            ///          (typically shown as *).

            /// @return  Maximum number of components in the collection. (-1 = 

            ///          unlimited).

            virtual Smp::Int64 GetUpper() const = 0;

            /// Query the minimum number of components in the collection.

            /// @remarks This information can be used to validate a model 

            ///          hierarchy. If a collection specifies a Lower value 

            ///          above its current Count, then it is not properly 

            ///          configured. An external component may use this 

            ///          information to validate the configuration before 

            ///          executing it.

            /// @return  Minimum number of components in the collection.

            virtual Smp::Int64 GetLower() const = 0;

        };

    }


Base Interfaces

None

Operations

	Name
	Description

	GetCount
	Query for the number of components in the collection.

	GetLower
	Query the minimum number of components in the collection.

	GetUpper
	Query the maximum number of components in the collection.


3.5.2.1.1 Get Count

Query for the number of components in the collection.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	Int64
	Current number of components in the collection. 


Exceptions

None

3.5.2.1.2 Get Lower

Query the minimum number of components in the collection.
Remark: This information can be used to validate a model hierarchy. If a collection specifies a Lower value above its current Count, then it is not properly configured. An external component may use this information to validate the configuration before executing it.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	Int64
	Minimum number of components in the collection. 


Exceptions

None

3.5.2.1.3 Get Upper

Query the maximum number of components in the collection.
A return value of -1 indicates that the collection has no upper limit.
Remark: This information can be used to check whether another component can be added to the collection.
Remark: This is consistent with the use of upper bounds in UML, where a value of -1 represents no limit (typically shown as *).
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	Int64
	Maximum number of components in the collection. (-1 = unlimited). 


Exceptions

None

3.5.2.2 IManaged Reference

Interface of a managed reference.
A managed reference additionally allows querying the size limits and adding and removing referenced components.
File

#include "Smp/Management/IManagedReference.h"

Namespace

Smp::Management
Declaration of IManagedReference

	        /// Unique Identifier of type IManagedReference.

        extern const Uuid Uuid_IManagedReference;

        /// Interface of a managed reference.

        /// A managed reference additionally allows querying the size limits 

        /// and adding and removing referenced components.

        class IManagedReference :

            public virtual Smp::IReference,

            public virtual Smp::Management::IComponentCollection

        {

        public:

            /// Virtual destructor to release memory.

            virtual ~IManagedReference() {}    

            /// Add a referenced component.

            /// This method raises an exception of type ReferenceFull if called

            /// for a full reference, i.e. when the Count has reached the Upper

            /// limit. This method may raise an exception of type 

            /// InvalidObjectType when it expects the given component to 

            /// implement another interface as well.

            /// Adding a component with a name that already exists in the 

            /// reference does not throw an exception, although GetComponent() 

            /// will no longer allow to return both referenced components by 

            /// name.

            /// @param   component New referenced component.

            /// @throws  Smp::InvalidObjectType

            /// @throws  Smp::Management::IManagedReference::ReferenceFull

            virtual void AddComponent(Smp::IComponent* component) throw (

                Smp::InvalidObjectType,

                Smp::Management::IManagedReference::ReferenceFull) = 0;

            /// Remove a referenced component.

            /// This method raises an exception of type NotReferenced if called

            /// with a component that is not referenced. If the number of 

            /// referenced components is less than or equal to the Lower limit,

            /// this method raises an exception of type CannotRemove.

            /// @param   component Referenced component to remove.

            /// @throws  Smp::Management::IManagedReference::CannotRemove

            /// @throws  Smp::Management::IManagedReference::NotReferenced

            virtual void RemoveComponent(Smp::IComponent* component) throw (

                Smp::Management::IManagedReference::CannotRemove,

                Smp::Management::IManagedReference::NotReferenced) = 0;

        };


Base Interfaces

Smp::Management::IComponentCollection, Smp::IReference
Operations

	Name
	Description

	AddComponent
	Add a referenced component.

	RemoveComponent
	Remove a referenced component.


3.5.2.2.1 Add Component

Add a referenced component.
This method raises an exception of type ReferenceFull if called for a full reference, i.e. when the Count has reached the Upper limit. This method may raise an exception of type InvalidObjectType when it expects the given component to implement another interface as well.
Adding a component with a name that already exists in the reference does not throw an exception, although GetComponent() will no longer allow to return both referenced components by name.
Parameters

	Name
	Dir.
	Type
	Description

	component
	in
	IComponent
	New referenced component. 


Exceptions

Smp::InvalidObjectType, Smp::Management::IManagedReference::ReferenceFull
3.5.2.2.2 Remove Component

Remove a referenced component.
This method raises an exception of type NotReferenced if called with a component that is not referenced. If the number of referenced components is less than or equal to the Lower limit, this method raises an exception of type CannotRemove.
Parameters

	Name
	Dir.
	Type
	Description

	component
	in
	IComponent
	Referenced component to remove. 


Exceptions

Smp::Management::IManagedReference::CannotRemove, Smp::Management::IManagedReference::NotReferenced
3.5.2.2.3 Cannot Remove

This exception is thrown when trying to remove a component from a reference when the number of referenced components is lower than or equal to the Lower limit.
File

#include "Smp/Management/IManagedReference.h"

Namespace

Smp::Management::IManagedReference
Declaration of CannotRemove

	            /// This exception is thrown when trying to remove a component from

            /// a reference when the number of referenced components is lower 

            /// than or equal to the Lower limit.

            class CannotRemove : public Smp::Exception    

            {

            public:

                /// Constructor for new exception.

                /// @param   referenceName Name of reference.

                /// @param   component Component that could not be removed.

                /// @param   lowerLimit Lower limit of the reference.

                CannotRemove(

                    Smp::String8 referenceName,

                    Smp::IComponent* component,

                    Smp::Int64 lowerLimit) throw();        

                /// Copy constructor.

                CannotRemove(

                    CannotRemove& ex) throw();

                /// Virtual destructor to release memory.

                virtual ~CannotRemove();    

                /// Name of reference.

                Smp::String8 referenceName;

                /// Component that could not be removed.

                Smp::IComponent* component;

                /// Lower limit of the reference.

                Smp::Int64 lowerLimit;

            };


Fields

	Name
	Type
	Description

	component
	IComponent
	Component that could not be removed.

	lowerLimit
	Int64
	Lower limit of the reference.

	referenceName
	String8
	Name of reference.


3.5.2.2.4 Not Referenced

This exception is thrown when trying to remove a component from a reference which was not referenced before.
File

#include "Smp/Management/IManagedReference.h"

Namespace

Smp::Management::IManagedReference
Declaration of NotReferenced

	            /// This exception is thrown when trying to remove a component from

            /// a reference which was not referenced before.

            class NotReferenced : public Smp::Exception    

            {

            public:

                /// Constructor for new exception.

                /// @param   referenceName Name of reference.

                /// @param   component Component that is not referenced.

                NotReferenced(

                    Smp::String8 referenceName,

                    Smp::IComponent* component) throw();        

                /// Copy constructor.

                NotReferenced(

                    NotReferenced& ex) throw();

                /// Virtual destructor to release memory.

                virtual ~NotReferenced();    

                /// Name of reference.

                Smp::String8 referenceName;

                /// Component that is not referenced.

                Smp::IComponent* component;

            };


Fields

	Name
	Type
	Description

	component
	IComponent
	Component that is not referenced.

	referenceName
	String8
	Name of reference.


3.5.2.2.5 Reference Full

This exception is raised when trying to add a component to a reference that is full, i.e. where the Count has reached the Upper limit.
File

#include "Smp/Management/IManagedReference.h"

Namespace

Smp::Management::IManagedReference
Declaration of ReferenceFull

	            /// This exception is raised when trying to add a component to a 

            /// reference that is full, i.e. where the Count has reached the 

            /// Upper limit.

            class ReferenceFull : public Smp::Exception    

            {

            public:

                /// Constructor for new exception.

                /// @param   referenceName Name of reference.

                /// @param   referenceSize Number of components in the 

                ///          reference, which is its Upper limit when the 

                ///          reference is full.

                ReferenceFull(

                    Smp::String8 referenceName,

                    Smp::Int64 referenceSize) throw();        

                /// Copy constructor.

                ReferenceFull(

                    ReferenceFull& ex) throw();

                /// Virtual destructor to release memory.

                virtual ~ReferenceFull();    

                /// Name of reference.

                Smp::String8 referenceName;

                /// Number of components in the reference, which is its Upper 

                /// limit when the reference is full.

                Smp::Int64 referenceSize;

            };


Fields

	Name
	Type
	Description

	referenceName
	String8
	Name of reference.

	referenceSize
	Int64
	Number of components in the reference, which is its Upper limit when the reference is full.


3.5.2.3 IManaged Container

Interface of a managed container.
A managed container additionally allows querying the size limits and adding contained components.
File

#include "Smp/Management/IManagedContainer.h"

Namespace

Smp::Management
Declaration of IManagedContainer

	        /// Unique Identifier of type IManagedContainer.

        extern const Uuid Uuid_IManagedContainer;

        /// Interface of a managed container.

        /// A managed container additionally allows querying the size limits 

        /// and adding contained components.

        class IManagedContainer :

            public virtual Smp::IContainer,

            public virtual Smp::Management::IComponentCollection

        {

        public:

            /// Virtual destructor to release memory.

            virtual ~IManagedContainer() {}    

            /// Add a contained component to the container.

            /// This method raises an exception of type ContainerFull if called

            /// for a full container, i.e. when the Count has reached the Upper

            /// limit. It raises an exception of type DuplicateName when trying

            /// to add a component with a name that is already contained in the

            /// container, as this would lead to duplicate names in the 

            /// container. This method may raise an exception of type 

            /// InvalidObjectType when it expects the given component to 

            /// implement another interface as well.

            /// @param   component New contained component.

            /// @throws  Smp::Management::IManagedContainer::ContainerFull

            /// @throws  Smp::DuplicateName

            /// @throws  Smp::InvalidObjectType

            virtual void AddComponent(Smp::IComponent* component) throw (

                Smp::Management::IManagedContainer::ContainerFull,

                Smp::DuplicateName,

                Smp::InvalidObjectType) = 0;

        };


Base Interfaces

Smp::Management::IComponentCollection, Smp::IContainer
Operations

	Name
	Description

	AddComponent
	Add a contained component to the container.


3.5.2.3.1 Add Component

Add a contained component to the container.
This method raises an exception of type ContainerFull if called for a full container, i.e. when the Count has reached the Upper limit. It raises an exception of type DuplicateName when trying to add a component with a name that is already contained in the container, as this would lead to duplicate names in the container. This method may raise an exception of type InvalidObjectType when it expects the given component to implement another interface as well.
Parameters

	Name
	Dir.
	Type
	Description

	component
	in
	IComponent
	New contained component. 


Exceptions

Smp::DuplicateName, Smp::InvalidObjectType, Smp::Management::IManagedContainer::ContainerFull
3.5.2.3.2 Container Full

This exception is raised when trying to add a component to a container that is full, i.e. where the Count has reached the Upper limit.
File

#include "Smp/Management/IManagedContainer.h"

Namespace

Smp::Management::IManagedContainer
Declaration of ContainerFull

	            /// This exception is raised when trying to add a component to a 

            /// container that is full, i.e. where the Count has reached the 

            /// Upper limit.

            class ContainerFull : public Smp::Exception    

            {

            public:

                /// Constructor for new exception.

                /// @param   containerName Name of full container.

                /// @param   containerSize Number of components in the 

                ///          container, which is its Upper limit when the 

                ///          container is full.

                ContainerFull(

                    Smp::String8 containerName,

                    Smp::Int64 containerSize) throw();        

                /// Copy constructor.

                ContainerFull(

                    ContainerFull& ex) throw();

                /// Virtual destructor to release memory.

                virtual ~ContainerFull();    

                /// Name of full container.

                Smp::String8 containerName;

                /// Number of components in the container, which is its Upper 

                /// limit when the container is full.

                Smp::Int64 containerSize;

            };


Fields

	Name
	Type
	Description

	containerName
	String8
	Name of full container.

	containerSize
	Int64
	Number of components in the container, which is its Upper limit when the container is full.


3.5.2.4 IEvent Consumer

Interface of an event consumer.
An event sonsumer is a omponent that holds event sinks, which may be subscribed to other component's event sources.
This is an optional interface. It needs to be implemented for managed components only, which want to allow access to event sinks by name.
File

#include "Smp/Management/IEventConsumer.h"

Namespace

Smp::Management
Declaration of IEventConsumer

	        /// Unique Identifier of type IEventConsumer.

        extern const Uuid Uuid_IEventConsumer;

        /// Interface of an event consumer.

        /// An event sonsumer is a omponent that holds event sinks, which may 

        /// be subscribed to other component's event sources.

        /// 

        /// This is an optional interface. It needs to be implemented for 

        /// managed components only, which want to allow access to event sinks 

        /// by name.

        class IEventConsumer :

            public virtual Smp::IComponent

        {

        public:

            /// Virtual destructor to release memory.

            virtual ~IEventConsumer() {}    

            /// Query for the collection of all event sinks of the component.

            /// The collection may be empty if no event sinks exist.

            /// @return  Collection of event sinks.

            virtual const Smp::EventSinkCollection* GetEventSinks() const = 0;

            /// Query for an event sink of this component by its name.

            /// The returned event sink may be null if no event sink with the 

            /// given name could be found.

            /// @param   name Event sink name.

            /// @return  Event sink with the given name, or null if no event 

            ///          sink with the given name could be found.

            virtual Smp::IEventSink* GetEventSink(Smp::String8 name) const = 0;

        };


Base Interfaces

Smp::IComponent
Operations

	Name
	Description

	GetEventSink
	Query for an event sink of this component by its name.

	GetEventSinks
	Query for the collection of all event sinks of the component.


3.5.2.4.1 Get Event Sink

Query for an event sink of this component by its name.
The returned event sink may be null if no event sink with the given name could be found.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	IEventSink
	Event sink with the given name, or null if no event sink with the given name could be found. 

	name
	in
	String8
	Event sink name. 


Exceptions

None

3.5.2.4.2 Get Event Sinks

Query for the collection of all event sinks of the component.
The collection may be empty if no event sinks exist.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	EventSinkCollection
	Collection of event sinks. 


Exceptions

None

3.5.2.5 IEvent Provider

Interface of an event provider.
An event provider is a omponent that holds event sources, which allow other components to subscribe their event sinks.
This is an optional interface. It needs to be implemented for managed components only, which want to allow access to event sources by name.
File

#include "Smp/Management/IEventProvider.h"

Namespace

Smp::Management
Declaration of IEventProvider

	        /// Unique Identifier of type IEventProvider.

        extern const Uuid Uuid_IEventProvider;

        /// Interface of an event provider.

        /// An event provider is a omponent that holds event sources, which 

        /// allow other components to subscribe their event sinks.

        /// This is an optional interface. It needs to be implemented for 

        /// managed components only, which want to allow access to event 

        /// sources by name.

        class IEventProvider :

            public virtual Smp::IComponent

        {

        public:

            /// Virtual destructor to release memory.

            virtual ~IEventProvider() {}    

            /// Query for an event source of this component by its name.

            /// The returned event source may be null if no event source with 

            /// the given name could be found.

            /// @param   name Event source name.

            /// @return  Event source with the given name or null if no event 

            ///          source with the given name could be found.

            virtual Smp::IEventSource* GetEventSource(Smp::String8 name) const = 0;

            /// Query for the collection of all event sources of the component.

            /// The collection may be empty if no event sources exist.

            /// @return  Collection of event sources.

            virtual const Smp::EventSourceCollection* GetEventSources() const = 0;

        };


Base Interfaces

Smp::IComponent
Operations

	Name
	Description

	GetEventSource
	Query for an event source of this component by its name.

	GetEventSources
	Query for the collection of all event sources of the component.


3.5.2.5.1 Get Event Source

Query for an event source of this component by its name.
The returned event source may be null if no event source with the given name could be found.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	IEventSource
	Event source with the given name or null if no event source with the given name could be found. 

	name
	in
	String8
	Event source name. 


Exceptions

None

3.5.2.5.2 Get Event Sources

Query for the collection of all event sources of the component.
The collection may be empty if no event sources exist.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	EventSourceCollection
	Collection of event sources. 


Exceptions

None

3.5.2.6 IEntry Point Publisher

Interface of an entry point publisher.
An entry point publisher is a model that publishes entry points.
This is an optional interface. It needs to be implemented for managed models only, which want to provide access to their entry points by name.
File

#include "Smp/Management/IEntryPointPublisher.h"

Namespace

Smp::Management
Declaration of IEntryPointPublisher

	        /// Unique Identifier of type IEntryPointPublisher.

        extern const Uuid Uuid_IEntryPointPublisher;

        /// Interface of an entry point publisher.

        /// An entry point publisher is a model that publishes entry points.

        /// 

        /// @remarks The entry points may be registered, for example, with the 

        ///          Scheduler or the Event Manager services.

        ///          This is an optional interface. It needs to be implemented 

        ///          for managed models only, which want to provide access to 

        ///          their entry points by name.

        class IEntryPointPublisher :

            public virtual Smp::IComponent

        {

        public:

            /// Virtual destructor to release memory.

            virtual ~IEntryPointPublisher() {}    

            /// Query for the collection of all entry points of the model.

            /// The collection may be empty if no entry points exist.

            /// @return  Collection of entry points.

            virtual const Smp::EntryPointCollection* GetEntryPoints() const = 0;

            /// Query for an entry point of this model by its name.

            /// The returned entry point may be null if no entry point with the

            /// given name could be found.

            /// @param   name Entry point name.

            /// @return  Entry point with given name, or null if no entry point

            ///          with given name could be found.

            virtual const Smp::IEntryPoint* GetEntryPoint(Smp::String8 name) const = 0;

        };


Remark: The entry points may be registered, for example, with the Scheduler or the Event Manager services.

Base Interfaces

Smp::IComponent
Operations

	Name
	Description

	GetEntryPoint
	Query for an entry point of this model by its name.

	GetEntryPoints
	Query for the collection of all entry points of the model.


3.5.2.6.1 Get Entry Point

Query for an entry point of this model by its name.
The returned entry point may be null if no entry point with the given name could be found.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	IEntryPoint
	Entry point with given name, or null if no entry point with given name could be found. 

	name
	in
	String8
	Entry point name. 


Exceptions

None

3.5.2.6.2 Get Entry Points

Query for the collection of all entry points of the model.
The collection may be empty if no entry points exist.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	EntryPointCollection
	Collection of entry points. 


Exceptions

None

3.5.3 Managed Model Mechanisms 

The model mechanisms introduced in section 3.4 (Model Mechanisms) do not provide full access for external components, but only limited access: 

· Fields are published against the simulation environment, but an external component can not query for fields by name. 

To overcome these limitations, managed interfaces are provided with full access to all functionality. For fields, the managed interface allows for querying a dedicate field of a model by name. Via the returned ISimpleField and the IArrayField interface it is possible to read and write field values.

Field Names:

In SMP, models can have fields of various types, including not only the base types introduced in section 2 (
Base Types), but also complex types (strings, arrays, structures, classes). The available types are documented in the Metamodel. As the methods GetValue() and SetValue() of ISimpleField only support fields of simple types, structured types have to be accessed by accessing their individual members. 

Rule 1: Members of structures and classes are separated with one of the following characters: "\", "/", "!", "." 

Rule 2: Members of strings and arrays with non-simple item type are addressed by their 0-based index enclosed in brackets ("[" and "]"). 

Examples: 

MyField.Position[2] 

Structure!Field 

Class/Array[1]/Structure/Field

3.5.3.1 IManaged Model

Interface of a managed model.
A managed model additionally allows querying for fields by name.
This is an optional interface. It needs to be implemented for managed models only, which want to allow access to fields by name.
File

#include "Smp/Management/IManagedModel.h"

Namespace

Smp::Management
Declaration of IManagedModel

	        /// Unique Identifier of type IManagedModel.

        extern const Uuid Uuid_IManagedModel;

        /// Interface of a managed model.

        /// A managed model additionally allows querying for fields by name.

        /// This is an optional interface. It needs to be implemented for 

        /// managed models only, which want to allow access to fields by name.

        class IManagedModel :

            public virtual Smp::IModel,

            public virtual Smp::Management::IManagedComponent

        {

        public:

            /// Virtual destructor to release memory.

            virtual ~IManagedModel() {}    

            /// Get the field of given name that is typed by a simple type.

            /// 

            /// This method raises an exception of type InvalidFieldName if 

            /// called with a field name for which no corresponding field 

            /// exists or for which the corresponding field is not of simple 

            /// type.

            /// This method can only be used to get fields of simple types.

            /// 

            /// @remarks For getting access to fields of structured or array 

            ///          types, this method may be called multiply, for example

            ///          by specifying a field name "MyField.Position[2]" in 

            ///          order to access an array item of a structure.

            /// @param   fullName Fully qualified field name (relative to the 

            ///          model).

            /// @return  Simple field.

            /// @throws  Smp::Management::IManagedModel::InvalidFieldName

            virtual Smp::ISimpleField* GetSimpleField(Smp::String8 fullName) const throw (

                Smp::Management::IManagedModel::InvalidFieldName) = 0;

            /// Get the field of given name that is an array of a simple type.

            /// This method raises an exception of type InvalidFieldName if 

            /// called with a field name for which no corresponding field 

            /// exists or for which the corresponding field is not an array of 

            /// simple type.

            /// 

            /// This method can only be used to get array fields with items of 

            /// simple type.

            /// @param   fullName Fully qualified array field name (relative to

            ///          the model)

            /// @return  Array field.

            /// @throws  Smp::Management::IManagedModel::InvalidFieldName

            virtual Smp::IArrayField* GetArrayField(Smp::String8 fullName) const throw (

                Smp::Management::IManagedModel::InvalidFieldName) = 0;

        };


Base Interfaces

Smp::Management::IManagedComponent, Smp::IModel
Operations

	Name
	Description

	GetArrayField
	Get the field of given name that is an array of a simple type.

	GetSimpleField
	Get the field of given name that is typed by a simple type.


3.5.3.1.1 Get Array Field

Get the field of given name that is an array of a simple type.
This method raises an exception of type InvalidFieldName if called with a field name for which no corresponding field exists or for which the corresponding field is not an array of simple type.
This method can only be used to get array fields with items of simple type.
Parameters

	Name
	Dir.
	Type
	Description

	fullName
	in
	String8
	Fully qualified array field name (relative to the model) 

	
	return
	IArrayField
	Array field. 


Exceptions

Smp::Management::IManagedModel::InvalidFieldName
3.5.3.1.2 Get Simple Field

Get the field of given name that is typed by a simple type.
This method raises an exception of type InvalidFieldName if called with a field name for which no corresponding field exists or for which the corresponding field is not of simple type.
This method can only be used to get fields of simple types.
Remark: For getting access to fields of structured or array types, this method may be called multiply, for example by specifying a field name "MyField.Position[2]" in order to access an array item of a structure.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	ISimpleField
	Simple field. 

	fullName
	in
	String8
	Fully qualified field name (relative to the model). 


Exceptions

Smp::Management::IManagedModel::InvalidFieldName
3.5.3.1.3 Invalid Field Name

This exception is raised when an invalid field name is specified.
File

#include "Smp/Management/IManagedModel.h"

Namespace

Smp::Management::IManagedModel
Declaration of InvalidFieldName

	            /// This exception is raised when an invalid field name is 

            /// specified.

            class InvalidFieldName : public Smp::Exception    

            {

            public:

                /// Constructor for new exception.

                /// @param   fieldName Fully qualified field name that is 

                ///          invalid.

                InvalidFieldName(

                    Smp::String8 fieldName) throw();        

                /// Copy constructor.

                InvalidFieldName(

                    InvalidFieldName& ex) throw();

                /// Virtual destructor to release memory.

                virtual ~InvalidFieldName();    

                /// Fully qualified field name that is invalid.

                Smp::String8 fieldName;

            };


Fields

	Name
	Type
	Description

	fieldName
	String8
	Fully qualified field name that is invalid.


3.5.3.2 IField

Interface of a field.
File

#include "Smp/IField.h"

Namespace

Smp
Declaration of IField

	    /// Unique Identifier of type IField.

    extern const Uuid Uuid_IField;

    /// Interface of a field.

    class IField :

        public virtual Smp::IObject

    {

    public:

        /// Virtual destructor to release memory.

        virtual ~IField() {}    

        /// Return View kind of the field.

        /// @return  The View kind of the field.

        /// The view kind indicates which user roles have visibility of the 

        /// field.

        virtual Smp::ViewKind GetView() const = 0;

        /// Return State flag of the field.

        /// @return  The State flag of the field.

        /// When true, the state of the field shall be stored by the simulation

        /// infrastructure persistence mechanism on Store(), and restored on 

        /// Restore().

        virtual Smp::Bool IsState() const = 0;

        /// Return Input flag of the field.

        /// @return  The Input flag of the field.

        /// When true, the field is considered an input into the model and can 

        /// be used as target of a field link in data flow based design.

        virtual Smp::Bool IsInput() const = 0;

        /// Return Output flag of the field.

        /// @return  The Output flag of the field.

        /// When true, the field is considered an output of the model and can 

        /// be used as source of a field link in data flow based design.

        virtual Smp::Bool IsOutput() const = 0;

    };


Base Interfaces

Smp::IObject
Operations

	Name
	Description

	GetView
	Return View kind of the field.

	IsInput
	Return Input flag of the field.

	IsOutput
	Return Output flag of the field.

	IsState
	Return State flag of the field.


3.5.3.2.1 Get View

Return View kind of the field.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	ViewKind
	The View kind of the field.

The view kind indicates which user roles have visibility of the field. 


Exceptions

None

3.5.3.2.2 Is Input

Return Input flag of the field.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	Bool
	The Input flag of the field.

When true, the field is considered an input into the model and can be used as target of a field link in data flow based design. 


Exceptions

None

3.5.3.2.3 Is Output

Return Output flag of the field.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	Bool
	The Output flag of the field.

When true, the field is considered an output of the model and can be used as source of a field link in data flow based design. 


Exceptions

None

3.5.3.2.4 Is State

Return State flag of the field.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	Bool
	The State flag of the field.

When true, the state of the field shall be stored by the simulation infrastructure persistence mechanism on Store(), and restored on Restore(). 


Exceptions

None

3.5.3.2.5 Invalid Field Value

This exception is raised when trying to assign an illegal value to a field.
File

#include "Smp/IField.h"

Namespace

Smp::IField
Declaration of InvalidFieldValue

	        /// This exception is raised when trying to assign an illegal value to 

        /// a field.

        class InvalidFieldValue : public Smp::Exception    

        {

        public:

            /// Constructor for new exception.

            /// @param   fieldName Fully qualified field name the value was 

            ///          assigned to.

            /// @param   invalidFieldValue Value that was passed as new field 

            ///          value.

            InvalidFieldValue(

                Smp::String8 fieldName,

                Smp::AnySimple invalidFieldValue) throw();        

            /// Copy constructor.

            InvalidFieldValue(

                InvalidFieldValue& ex) throw();

            /// Virtual destructor to release memory.

            virtual ~InvalidFieldValue();    

            /// Fully qualified field name the value was assigned to.

            Smp::String8 fieldName;

            /// Value that was passed as new field value.

            Smp::AnySimple invalidFieldValue;

        };        


Fields

	Name
	Type
	Description

	fieldName
	String8
	Fully qualified field name the value was assigned to.

	invalidFieldValue
	AnySimple
	Value that was passed as new field value.


3.5.3.3 IArray Field

Interface of a field which is an array of a simple type.
File

#include "Smp/IArrayField.h"

Namespace

Smp
Declaration of IArrayField

	    /// Unique Identifier of type IArrayField.

    extern const Uuid Uuid_IArrayField;

    /// Interface of a field which is an array of a simple type.

    class IArrayField :

        public virtual Smp::IField

    {

    public:

        /// Virtual destructor to release memory.

        virtual ~IArrayField() {}    

        /// Get a value from a specific index of the array field.

        /// This method raises an exception of type InvalidIndex if called with

        /// an index value beyond the size of the array.

        /// @param   index Index of value to get.

        /// @return  Value from given index.

        /// @throws  Smp::IArrayField::InvalidIndex

        virtual Smp::AnySimple GetValue(Smp::UInt64 index) const throw (

            Smp::IArrayField::InvalidIndex) = 0;

        /// Set a value at given index of the array field.

        /// This method raises an exception of type InvalidFieldValue if called

        /// with an invalid value and an exception of type InvalidIndex if 

        /// called with an index value beyond the size of the array.

        /// @param   index Index of value to set.

        /// @param   value Value to set at given index.

        /// @throws  Smp::IField::InvalidFieldValue

        /// @throws  Smp::IArrayField::InvalidIndex

        virtual void SetValue(Smp::UInt64 index, Smp::AnySimple value) throw (

            Smp::IField::InvalidFieldValue,

            Smp::IArrayField::InvalidIndex) = 0;

        /// Get all values of the array field.

        /// This method raises an exception of type InvalidArraySize if called 

        /// with an array of wrong size.

        /// The array with the values has to be pre-allocated by the caller, 

        /// and has to be released by the caller as well. Therefore, an inout 

        /// parameter is used, not a return value of the method.

        /// @param   length Size of given values array.

        /// @param   values Pre-allocated array of values to store result to.

        /// @throws  Smp::IArrayField::InvalidArraySize

        virtual void GetValues(Smp::UInt64 length, Smp::AnySimpleArray values) const throw (

            Smp::IArrayField::InvalidArraySize) = 0;

        /// Set all values of the array field.

        /// This method raises an exception of type InvalidArraySize if called 

        /// with an array of wrong size and an exception of type 

        /// InvalidArrayValue if called with an invalid values array.

        /// @param   length Size of given values array.

        /// @param   values Array of values to store in array field.

        /// @throws  Smp::IArrayField::InvalidArraySize

        /// @throws  Smp::IArrayField::InvalidArrayValue

        virtual void SetValues(Smp::UInt64 length, Smp::AnySimpleArray values) throw (

            Smp::IArrayField::InvalidArraySize,

            Smp::IArrayField::InvalidArrayValue) = 0;

        /// Get the size (number of array items) of the field.

        /// @return  Size (number of array items) of the field.

        virtual Smp::UInt64 GetSize() const = 0;

    };


Base Interfaces

Smp::IField
Operations

	Name
	Description

	GetSize
	Get the size (number of array items) of the field.

	GetValue
	Get a value from a specific index of the array field.

	GetValues
	Get all values of the array field.

	SetValue
	Set a value at given index of the array field.

	SetValues
	Set all values of the array field.


3.5.3.3.1 Get Size

Get the size (number of array items) of the field.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	UInt64
	Size (number of array items) of the field. 


Exceptions

None

3.5.3.3.2 Get Value

Get a value from a specific index of the array field.
This method raises an exception of type InvalidIndex if called with an index value beyond the size of the array.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	AnySimple
	Value from given index. 

	index
	in
	UInt64
	Index of value to get. 


Exceptions

Smp::IArrayField::InvalidIndex
3.5.3.3.3 Get Values

Get all values of the array field.
This method raises an exception of type InvalidArraySize if called with an array of wrong size.
The array with the values has to be pre-allocated by the caller, and has to be released by the caller as well. Therefore, an inout parameter is used, not a return value of the method.
Parameters

	Name
	Dir.
	Type
	Description

	length
	in
	UInt64
	Size of given values array. 

	values
	inout
	AnySimpleArray
	Pre-allocated array of values to store result to. 


Exceptions

Smp::IArrayField::InvalidArraySize
3.5.3.3.4 Set Value

Set a value at given index of the array field.
This method raises an exception of type InvalidFieldValue if called with an invalid value and an exception of type InvalidIndex if called with an index value beyond the size of the array.
Parameters

	Name
	Dir.
	Type
	Description

	index
	in
	UInt64
	Index of value to set. 

	value
	in
	AnySimple
	Value to set at given index. 


Exceptions

Smp::IField::InvalidFieldValue, Smp::IArrayField::InvalidIndex
3.5.3.3.5 Set Values

Set all values of the array field.
This method raises an exception of type InvalidArraySize if called with an array of wrong size and an exception of type InvalidArrayValue if called with an invalid values array.
Parameters

	Name
	Dir.
	Type
	Description

	length
	in
	UInt64
	Size of given values array. 

	values
	in
	AnySimpleArray
	Array of values to store in array field. 


Exceptions

Smp::IArrayField::InvalidArraySize, Smp::IArrayField::InvalidArrayValue
3.5.3.3.6 Invalid Array Size

This exception is raised when an invalid array size is specified.
File

#include "Smp/IArrayField.h"

Namespace

Smp::IArrayField
Declaration of InvalidArraySize

	        /// This exception is raised when an invalid array size is specified.

        class InvalidArraySize : public Smp::Exception    

        {

        public:

            /// Constructor for new exception.

            /// @param   fieldName Name of field that has been accessed.

            /// @param   invalidSize Invalid array size.

            /// @param   arraySize Real array size.

            InvalidArraySize(

                Smp::String8 fieldName,

                Smp::Int64 invalidSize,

                Smp::Int64 arraySize) throw();        

            /// Copy constructor.

            InvalidArraySize(

                InvalidArraySize& ex) throw();

            /// Virtual destructor to release memory.

            virtual ~InvalidArraySize();    

            /// Name of field that has been accessed.

            Smp::String8 fieldName;

            /// Invalid array size.

            Smp::Int64 invalidSize;

            /// Real array size.

            Smp::Int64 arraySize;

        };


Fields

	Name
	Type
	Description

	arraySize
	Int64
	Real array size.

	fieldName
	String8
	Name of field that has been accessed.

	invalidSize
	Int64
	Invalid array size.


3.5.3.3.7 Invalid Array Value

This exception is raised when trying to assign an illegal value to an array field.
File

#include "Smp/IArrayField.h"

Namespace

Smp::IArrayField
Declaration of InvalidArrayValue

	        /// This exception is raised when trying to assign an illegal value to 

        /// an array field.

        class InvalidArrayValue : public Smp::Exception    

        {

        public:

            /// Constructor for new exception.

            /// @param   fieldName Fully qualified field name the value was 

            ///          assigned to.

            /// @param   validIndex Index in array where the first invalid 

            ///          value was found.

            InvalidArrayValue(

                Smp::String8 fieldName,

                Smp::Int32 invalidValueIndex) throw();        

            /// Copy constructor.

            InvalidArrayValue(

                InvalidArrayValue& ex) throw();

            /// Virtual destructor to release memory.

            virtual ~InvalidArrayValue();    

            /// Fully qualified field name the value was assigned to.

            Smp::String8 fieldName;

            /// Index in array where the first invalid value was found.

            Smp::Int32 invalidValueIndex;

        };


Fields

	Name
	Type
	Description

	fieldName
	String8
	Fully qualified field name the value was assigned to.

	invalidValueIndex
	Int32
	Index in array where the first invalid value was found.


3.5.3.3.8 Invalid Index

This exception is raised when an invalid index is specified.
File

#include "Smp/IArrayField.h"

Namespace

Smp::IArrayField
Declaration of InvalidIndex

	        /// This exception is raised when an invalid index is specified.

        class InvalidIndex : public Smp::Exception    

        {

        public:

            /// Constructor for new exception.

            /// @param   fieldName Fully qualified field name the value was 

            ///          assigned to.

            /// @param   arraySize Real array size.

            /// @param   invalidIndex Invalid Index.

            InvalidIndex(

                Smp::String8 fieldName,

                Smp::Int64 arraySize,

                Smp::Int64 invalidIndex) throw();        

            /// Copy constructor.

            InvalidIndex(

                InvalidIndex& ex) throw();

            /// Virtual destructor to release memory.

            virtual ~InvalidIndex();    

            /// Fully qualified field name the value was assigned to.

            Smp::String8 fieldName;

            /// Real array size.

            Smp::Int64 arraySize;

            /// Invalid Index.

            Smp::Int64 invalidIndex;

        };


Fields

	Name
	Type
	Description

	arraySize
	Int64
	Real array size.

	fieldName
	String8
	Fully qualified field name the value was assigned to.

	invalidIndex
	Int64
	Invalid Index.


3.5.3.4 ISimple Field

Interface of a field of simple type.
File

#include "Smp/ISimpleField.h"

Namespace

Smp
Declaration of ISimpleField

	    /// Unique Identifier of type ISimpleField.

    extern const Uuid Uuid_ISimpleField;

    /// Interface of a field of simple type.

    class ISimpleField :

        public virtual Smp::IField

    {

    public:

        /// Virtual destructor to release memory.

        virtual ~ISimpleField() {}    

        /// Get the value of the simple field.

        /// @return  Field value.

        virtual Smp::AnySimple GetValue() const = 0;

        /// Set the value of the simple field.

        /// This method raises an exception of type InvalidFieldValue if called

        /// with an invalid value.

        /// @param   value Field value.

        /// @throws  Smp::IField::InvalidFieldValue

        virtual void SetValue(Smp::AnySimple value) throw (

            Smp::IField::InvalidFieldValue) = 0;

    };


Base Interfaces

Smp::IField
Operations

	Name
	Description

	GetValue
	Get the value of the simple field.

	SetValue
	Set the value of the simple field.


3.5.3.4.1 Get Value

Get the value of the simple field.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	AnySimple
	Field value. 


Exceptions

None

3.5.3.4.2 Set Value

Set the value of the simple field.
This method raises an exception of type InvalidFieldValue if called with an invalid value.
Parameters

	Name
	Dir.
	Type
	Description

	value
	in
	AnySimple
	Field value. 


Exceptions

Smp::IField::InvalidFieldValue
3.5.3.5 IForcible Field

Interface of a forcible field.
File

#include "Smp/IForcibleField.h"

Namespace

Smp
Declaration of IForcibleField

	    /// Unique Identifier of type IForcibleField.

    extern const Uuid Uuid_IForcibleField;

    /// Interface of a forcible field.

    class IForcibleField :

        public virtual Smp::ISimpleField

    {

    public:

        /// Virtual destructor to release memory.

        virtual ~IForcibleField() {}    

        /// Force field to given value.

        /// This method raises an exception of type InvalidFieldValue if called

        /// with an invalid value.

        /// @param   value Value to force field to.

        /// @throws  Smp::IField::InvalidFieldValue

        virtual void Force(Smp::AnySimple value) throw (

            Smp::IField::InvalidFieldValue) = 0;

        /// Force field to its current value.

        virtual void Freeze() = 0;

        /// Unforce field.

        virtual void Unforce() = 0;

        /// Query for the forced state of the field.

        /// @return  Whether the field is forced or not.

        virtual Smp::Bool IsForced() = 0;

    };


Base Interfaces

Smp::ISimpleField
Operations

	Name
	Description

	Force
	Force field to given value.

	Freeze
	Force field to its current value.

	IsForced
	Query for the forced state of the field.

	Unforce
	Unforce field.


3.5.3.5.1 Force

Force field to given value.
This method raises an exception of type InvalidFieldValue if called with an invalid value.
Parameters

	Name
	Dir.
	Type
	Description

	value
	in
	AnySimple
	Value to force field to. 


Exceptions

Smp::IField::InvalidFieldValue
3.5.3.5.2 Freeze

Force field to its current value.
Parameters

None

Exceptions

None

3.5.3.5.3 Is Forced

Query for the forced state of the field.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	Bool
	Whether the field is forced or not. 


Exceptions

None

3.5.3.5.4 Unforce

Unforce field.
Parameters

None

Exceptions

None

3.5.3.6 View Kind

This enumeration defines possible options for the View attribute, which can be used to control if and how an element is made visible when published to the simulation infrastructure.
The simulation infrastructure must at least support the "None" and the "EndUser" roles (i.e. hidden or always visible).
The simulation infrastructure may support the selection of different user roles ("Debug", "Expert", "End User"), in which case the "Debug" and the "Expert" role must also be supported as described.
File

#include "Smp/ViewKind.h"

Namespace

Smp
Declaration of ViewKind

	    /// Unique Identifier of type ViewKind.

    extern const Uuid Uuid_ViewKind;

    /// This enumeration defines possible options for the View attribute, which

    /// can be used to control if and how an element is made visible when 

    /// published to the simulation infrastructure.

    /// The simulation infrastructure must at least support the "None" and the 

    /// "EndUser" roles (i.e. hidden or always visible).

    /// The simulation infrastructure may support the selection of different 

    /// user roles ("Debug", "Expert", "End User"), in which case the "Debug" 

    /// and the "Expert" role must also be supported as described.

    enum ViewKind

    {

        /// The element is not made visible to the user (this is the default).

        VK_None,

        /// The element is made visible for debugging purposes.

        /// The element is not visible to end users. If the simulation 

        /// infrastructure supports the selection of different user roles, then

        /// the element shall be visible to "Debug" users only.

        VK_Debug,

        /// The element is made visible for expert users.

        /// The element is not visible to end users. If the simulation 

        /// infrastructure supports the selection of different user roles, then

        /// the element shall be visible to "Debug" and "Expert" users.

        VK_Expert,

        /// The element is made visible to all users.

        VK_All

    };


Table 4 - Enumeration Literals of ViewKind

	Name
	Description

	VK_None
	The element is not made visible to the user (this is the default).

	VK_Debug
	The element is made visible for debugging purposes.

The element is not visible to end users. If the simulation infrastructure supports the selection of different user roles, then the element shall be visible to "Debug" users only.

	VK_Expert
	The element is made visible for expert users.

The element is not visible to end users. If the simulation infrastructure supports the selection of different user roles, then the element shall be visible to "Debug" and "Expert" users.

	VK_All
	The element is made visible to all users.


3.6 Simulation Environments

A Simulation Environment has to implement the ISimulator interface to give access to the models and services. This interface is derived from IComposite to give access to at least two managed containers, namely the “Models” and “Services” containers. Finally, a simulation environment has to pass a publication server to all models in the Publishing state.

3.6.1 Simulators

The Simulation Environment is always in one of the defined simulator states, with well-defined state transition methods between these states.

[image: image2.emf]Reconnecting Initialising Executing Standby Storing Connecting Building Exiting Aborting Restoring Abort can be  called from any  state Termination Execution Setup Store() Restore() Reconnect() Hold() Configure() (automatic) Initialise() (automatic) (automatic) (automatic) Run() Exit() Publish() Connect() Abort()


Figure 2 - Simulation Environment State Diagram with State Transition Methods

The available simulator states are enumerated by the SimulatorStateKind enumeration, while the ISimulator interface provides the corresponding state transition methods. Except for the Abort() state transition, which can be called from any other state, all other state transitions should be called only from the appropriate states, as shown in the Simulation Environment State Diagram in Figure 2, and explained in the following subsections. However, when calling a state transition from another state, the simulation environment shall not raise an exception, but ignore the state transition. It may use the Logger service to log a warning message.

The simulator states correspond to dedicated Model states. Therefore a model is always in one of the defined model states too, with well-defined state transition methods between these states. The available model states are enumerated by the ModelStateKind enumeration, while the IModel interface provides the corresponding state transition methods. 

[image: image3.emf]Created Configured Connected Published Configure() Connect() Publish()


Figure 3 - Model State Diagram with State Transition Methods

During the Building state the Simulation Environment builds the models and calls Publish() and Configure() to initiate the transition of the models from Created via Published to Configured state. During the Connecting state the Simulation Environment initiates the transition of the models into Connected state.

3.6.1.1 Simulator State Kind

This is an enumeration of the available states of the simulator. The Setup phase is split into three different states, the Execution phase has five different states, and the Termination phase has two states.
File

#include "Smp/ISimulator.h"

Namespace

Smp
Declaration of SimulatorStateKind

	    /// Unique Identifier of type SimulatorStateKind.

    extern const Uuid Uuid_SimulatorStateKind;

    /// This is an enumeration of the available states of the simulator. The 

    /// Setup phase is split into three different states, the Execution phase 

    /// has five different states, and the Termination phase has two states.

    enum SimulatorStateKind

    {

        /// In Building state, the model hierarchy is created. This is done by 

        /// an external component, not by the simulator.

        /// This state is entered automatically after the simulation 

        /// environment has performed its initialisation.

        /// This state is left with the Connect() state transition method.

        SSK_Building,

        /// In Connecting state, the simulation environment traverses the model

        /// hierarchy and calls the Connect() method of each model.

        /// This state is entered using the Connect() state transition.

        /// After connecting all models to the simulator, an automatic state 

        /// transition to the Initialising state is performed.

        SSK_Connecting,

        /// In Initialising state, the simulation environment executes all 

        /// initialisation entry points in the order they have been added to 

        /// the simulator using the AddInitEntryPoint() method.

        /// This state is either entered automatically after the simulation 

        /// environment has connected all models to the simulator, or manually 

        /// from Standby state using the Initialise() state transition.

        /// After calling all initialisation entry points, an automatic state 

        /// transition to the Standby state is performed.

        SSK_Initialising,

        /// In Standby state, the simulation environment (namely the Time 

        /// Keeper Service) does not progress simulation time. Only entry 

        /// points registered relative to Zulu time are executed.

        /// This state is entered automatically from the Initialising, Storing,

        /// and Restoring states, or manually from the Executing state using 

        /// the Hold() state transition.

        /// This state is left with one of the Run(), Store(), Restore(), 

        /// Initialise(), Reconnect() or Exit() state transitions.

        SSK_Standby,

        /// In Executing state, the simulation environment (namely the Time 

        /// Keeper Service) does progress simulation time. Entry points 

        /// registered with any of the available time kinds are executed.

        /// This state is entered using the Run() state transition.

        /// This state is left using the Hold() state transition.

        SSK_Executing,

        /// In Storing state, the simulation environment first stores the 

        /// values of all fields published with the State attribute to storage 

        /// (typically a file). Afterwards, the Store() method of all 

        /// components (Models and Services) implementing the optional IPersist

        /// interface is called, to allow custom storing of additional 

        /// information. While in this state, fields published with the State 

        /// attribute must not be modified by the models, to ensure that a 

        /// consistent set of field values is stored.

        /// This state is entered using the Store() state transition.

        /// After storing the simulator state, an automatic state transition to

        /// the Standby state is performed.

        SSK_Storing,

        /// In Restoring state, the simulation environment first restores the 

        /// values of all fields published with the State attribute from 

        /// storage. Afterwards, the Restore() method of all components 

        /// implementing the optional IPersist interface is called, to allow 

        /// custom restoring of additional information. While in this state, 

        /// fields published with the State attribute must not be modified by 

        /// the models, to ensure that a consistent set of field values is 

        /// restored.

        /// This state is entered using the Restore() state transition.

        /// After restoring the simulator state, an automatic state transition 

        /// to the Standby state is performed.

        SSK_Restoring,

        /// In Reconnecting state, the simulation environment makes sure that 

        /// models that have been added to the simulator after leaving the 

        /// Building state are properly published, configured and connected.

        /// This state is entered using the Reconnect() state transition.

        /// After connecting all new models, an automatic state transition to 

        /// the Standby state is performed.

        SSK_Reconnecting,

        /// In Exiting state, the simulation environment is properly 

        /// terminating a running simulation.

        /// This state is entered using the Exit() state transition. After 

        /// exiting, the simulator is in an undefined state.

        SSK_Exiting,

        /// In this state, the simulation environment performs an abnormal 

        /// simulation shut-down.

        /// This state is entered using the Abort() state transition. After 

        /// aborting, the simulator is in an undefined state.

        SSK_Aborting

    };


Table 5 - Enumeration Literals of SimulatorStateKind

	Name
	Description

	SSK_Building
	In Building state, the model hierarchy is created. This is done by an external component, not by the simulator. 

This state is entered automatically after the simulation environment has performed its initialisation.

This state is left with the Connect() state transition method.

	SSK_Connecting
	In Connecting state, the simulation environment traverses the model hierarchy and calls the Connect() method of each model.

This state is entered using the Connect() state transition.

After connecting all models to the simulator, an automatic state transition to the Initialising state is performed.

	SSK_Initialising
	In Initialising state, the simulation environment executes all initialisation entry points in the order they have been added to the simulator using the AddInitEntryPoint() method.

This state is either entered automatically after the simulation environment has connected all models to the simulator, or manually from Standby state using the Initialise() state transition.

After calling all initialisation entry points, an automatic state transition to the Standby state is performed.

	SSK_Standby
	In Standby state, the simulation environment (namely the Time Keeper Service) does not progress simulation time. Only entry points registered relative to Zulu time are executed.

This state is entered automatically from the Initialising, Storing, and Restoring states, or manually from the Executing state using the Hold() state transition.

This state is left with one of the Run(), Store(), Restore(), Initialise(), Reconnect() or Exit() state transitions.

	SSK_Executing
	In Executing state, the simulation environment (namely the Time Keeper Service) does progress simulation time. Entry points registered with any of the available time kinds are executed.

This state is entered using the Run() state transition.

This state is left using the Hold() state transition.

	SSK_Storing
	In Storing state, the simulation environment first stores the values of all fields published with the State attribute to storage (typically a file). Afterwards, the Store() method of all components (Models and Services) implementing the optional IPersist interface is called, to allow custom storing of additional information. While in this state, fields published with the State attribute must not be modified by the models, to ensure that a consistent set of field values is stored. 

This state is entered using the Store() state transition.

After storing the simulator state, an automatic state transition to the Standby state is performed.

	SSK_Restoring
	In Restoring state, the simulation environment first restores the values of all fields published with the State attribute from storage. Afterwards, the Restore() method of all components implementing the optional IPersist interface is called, to allow custom restoring of additional information. While in this state, fields published with the State attribute must not be modified by the models, to ensure that a consistent set of field values is restored. 

This state is entered using the Restore() state transition.

After restoring the simulator state, an automatic state transition to the Standby state is performed.

	SSK_Reconnecting
	In Reconnecting state, the simulation environment makes sure that models that have been added to the simulator after leaving the Building state are properly published, configured and connected.

This state is entered using the Reconnect() state transition.

After connecting all new models, an automatic state transition to the Standby state is performed.

	SSK_Exiting
	In Exiting state, the simulation environment is properly terminating a running simulation.

This state is entered using the Exit() state transition. After exiting, the simulator is in an undefined state.

	SSK_Aborting
	In this state, the simulation environment performs an abnormal simulation shut-down.

This state is entered using the Abort() state transition. After aborting, the simulator is in an undefined state.


3.6.1.2 ISimulator

This interface gives access to the simulation environment state and state transitions. Further, it provides convenience methods to add models, and to add and retrieve simulation services.
This is a mandatory interface that every SMP compliant simulation environment has to implement.
File

#include "Smp/ISimulator.h"

Namespace

Smp
Declaration of ISimulator

	    /// Unique Identifier of type ISimulator.

    extern const Uuid Uuid_ISimulator;

    /// This interface gives access to the simulation environment state and 

    /// state transitions. Further, it provides convenience methods to add 

    /// models, and to add and retrieve simulation services.

    /// This is a mandatory interface that every SMP compliant simulation 

    /// environment has to implement.

    class ISimulator :

        public virtual Smp::IComposite

    {

    public:

        /// Virtual destructor to release memory.

        virtual ~ISimulator() {}    

        /// This method asks the simulation environment to call all 

        /// initialisation entry points again.

        /// This method can only be called when in Standby state, and enters 

        /// Initialising state. After completion, the simulator automatically 

        /// returns to Standby state.

        /// The entry points will be executed in the order they have been added

        /// to the simulator using the AddInitEntryPoint() method.

        virtual void Initialise() = 0;

        /// This method asks the simulation environment to call the Publish() 

        /// method of all model instances in the model hierarchy which are 

        /// still in Created state.

        /// 

        /// This method must only be called when in Building state.

        /// @remarks This method is typically called by an external component 

        ///          after creating new model instances, typically from 

        ///          information in an SMDL Assembly.

        virtual void Publish() = 0;

        /// This method asks the simulation environment to call the Configure()

        /// method of all model instances which are still in Publishing state.

        /// 

        /// This method must only be called when in Building state.

        /// @remarks This method is typically called by an external component 

        ///          after setting field values of new model instances, 

        ///          typically using the information in an SMDL Assembly or 

        ///          SMDL Configuration.

        virtual void Configure() = 0;

        /// This method informs the simulation environment that the hierarchy 

        /// of model instances has been configured, and can now be connected to

        /// the simulator. Thus, the simulation environment calls the Connect()

        /// method of all model instances.

        /// In this method, the simulation environment first enters Connecting 

        /// state and calls the Connect() method of every model in the model 

        /// hierarchy, then enters Initialising state and calls the 

        /// initialisation entry points, and finally enters Standby state.

        /// This method must only be called when in Building state.

        /// @remarks This method is typically called by an external component 

        ///          after configuring all model instances.

        virtual void Connect() = 0;

        /// This method changes from Standby to Executing state.

        /// This method must only be called when in Standby state, and enters 

        /// Executing state.

        virtual void Run() = 0;

        /// This method changes from Executing to Standby state.

        /// This method must only be called when in Executing state, and enters

        /// Standby state.

        virtual void Hold() = 0;

        /// This method is used to store a state vector to file.

        /// This method must only be called when in Standby state, and enters 

        /// Storing state. On completion, it automatically returns to Standby 

        /// state.

        /// @param   filename Name to use for simulation state vector file.

        virtual void Store(Smp::String8 filename) = 0;

        /// This method is used to restore a state vector from file.

        /// This method must only be called when in Standby state, and enters 

        /// Restoring state. On completion, it automatically returns to Standby

        /// state.

        /// @param   filename Name of simulation state vector file.

        virtual void Restore(Smp::String8 filename) = 0;

        /// This method asks the simulation environment to reconnect the 

        /// component hierarchy starting at the given root component.

        ///  This method must only be called when in Standby state.

        /// @remarks This method is typically called after creating additional 

        ///          model instances and adding them to the existing model 

        ///          hierarchy.

        ///          The simulation environment has to ensure that all models 

        ///          under the given root (but not the root itself) are 

        ///          published, configured and connected, so that all child 

        ///          models are finally in Connected state.

        /// @param   root Root component to start reconnecting from. This can 

        ///          be the parent component of a newly added model, or e.g. 

        ///          the simulator itself.

        virtual void Reconnect(Smp::IComponent* root) = 0;

        /// This method is used for a normal termination of a simulation.

        /// This method must only be called when in Standby state, and enters 

        /// Exiting state.

        virtual void Exit() = 0;

        /// This method is used for an abnormal termination of a simulation.

        /// This method can be called from any other state, and enters Aborting

        /// state.

        virtual void Abort() = 0;

        /// Return the current simulator state.

        /// @return  Current simulator state.

        virtual Smp::SimulatorStateKind GetState() const = 0;

        /// This method can be used to add entry points that shall be executed 

        /// in the Initialising state.

        /// @remarks The ITask interface (which is derived from IEntryPoint) 

        ///          can be used to add several entry points in a well-defined 

        ///          order.

        ///          The entry points will be executed in the order they have 

        ///          been added to the simulator.

        /// @param   entryPoint Entry point to execute in Initialising state.

        virtual void AddInitEntryPoint(Smp::IEntryPoint* entryPoint) = 0;

        /// This method adds a model to the models collection of the simulator,

        /// i.e. to the "Models" container.

        /// This method raises an exception of type DuplicateName if the name 

        /// of the new model conflicts with the name of an existing component 

        /// (model or service).

        /// The container for the models has no upper limit and thus the 

        /// ContainerFull exception will never be thrown.

        /// The method will never throw the InvalidObjectType exception either,

        /// as it gets a component implementing the IModel interface.

        /// @param   model New model to add to collection of root models, i.e. 

        ///          to the "Models" container.

        /// @throws  Smp::DuplicateName

        virtual void AddModel(Smp::IModel* model) throw (

            Smp::DuplicateName) = 0;

        /// This method adds a user-defined service to the services collection,

        /// i.e. to the "Services" container.

        /// This method raises an exception of type DuplicateName if the name 

        /// of the new service conflicts with the name of an existing component

        /// (model or service).

        /// The container for the services has no upper limit and thus the 

        /// ContainerFull exception will never be thrown.

        /// The method will never throw the InvalidObjectType exception either,

        /// as it gets a component implementing the IService interface.

        /// @remarks It is recommended that custom services include a project 

        ///          or company acronym as prefix in their name, to avoid 

        ///          collision of service names.

        /// 

        ///          The container for the services has no upper limit and thus

        ///          the ContainerFull exception will never be thrown.

        ///          The method will never throw the InvalidObjectType 

        ///          exception, as it expects a component implementing the 

        ///          IService interface.

        /// @param   service Service to add to services collection.

        /// @throws  Smp::DuplicateName

        virtual void AddService(Smp::IService* service) throw (

            Smp::DuplicateName) = 0;

        /// Query for a service component by its name.

        /// The returned component is null if no service with the given name 

        /// could be found. Standard names are defined for the standardised 

        /// services, while custom services use custom names.

        /// The existence of custom services is not guaranteed, so models 

        /// should expect to get a null reference.

        /// @param   name Service name.

        /// @return  Service with the given name, or null if no service with 

        ///          the given name could be found.

        virtual Smp::IService* GetService(Smp::String8 name) const = 0;

        /// Return interface to logger service.

        /// @remarks This is a type-safe convenience method, to avoid having to

        ///          use the generic GetService() method. For the standardised 

        ///          services, it is recommended to use the convenience 

        ///          methods, which are guaranteed to return a valid reference.

        /// @return  Interface to mandatory logger service.

        virtual Smp::Services::ILogger* GetLogger() const = 0;

        /// Return interface to time keeper service.

        /// @remarks This is a type-safe convenience method, to avoid having to

        ///          use the generic GetService() method. For the standardised 

        ///          services, it is recommended to use the convenience 

        ///          methods, which are guaranteed to return a valid reference.

        /// @return  Interface to mandatory time keeper service.

        virtual Smp::Services::ITimeKeeper* GetTimeKeeper() const = 0;

        /// Return interface to scheduler service.

        /// @remarks This is a type-safe convenience method, to avoid having to

        ///          use the generic GetService() method. For the standardised 

        ///          services, it is recommended to use the convenience 

        ///          methods, which are guaranteed to return a valid reference.

        /// @return  Interface to mandatory scheduler service.

        virtual Smp::Services::IScheduler* GetScheduler() const = 0;

        /// Return interface to event manager service.

        /// @remarks This is a type-safe convenience method, to avoid having to

        ///          use the generic GetService() method. For the standardised 

        ///          services, it is recommended to use the convenience 

        ///          methods, which are guaranteed to return a valid reference.

        /// @return  Interface to mandatory event manager service.

        virtual Smp::Services::IEventManager* GetEventManager() const = 0;

        /// Return interface to resolver service.

        /// @remarks This is a type-safe convenience method, to avoid having to

        ///          use the generic GetService() method. For the standardised 

        ///          services, it is recommended to use the convenience 

        ///          methods, which are guaranteed to return a valid reference.

        /// @return  Interface to mandatory resolver service.

        virtual Smp::Services::IResolver* GetResolver() const = 0;

        /// Return interface to link registry service.

        /// @remarks This is a type-safe convenience method, to avoid having to

        ///          use the generic GetService() method. For the standardised 

        ///          services, it is recommended to use the convenience 

        ///          methods, which are guaranteed to return a valid reference.

        /// @return  Interface to mandatory link registry service.

        virtual Smp::Services::ILinkRegistry* GetLinkRegistry() const = 0;

    };


Base Interfaces

Smp::IComposite
Constants

	Name
	Type
	Description
	Value

	SMP_SimulatorModels 
	String8
	Name of the model container.
	Models

	SMP_SimulatorServices 
	String8
	Name of the service container.
	Services


Operations

	Name
	Description

	Initialise
	This method asks the simulation environment to call all initialisation entry points again.

	Publish
	This method asks the simulation environment to call the Publish() method of all model instances in the model hierarchy which are still in Created state.

	Configure
	This method asks the simulation environment to call the Configure() method of all model instances which are still in Publishing state.

	Connect
	This method informs the simulation environment that the hierarchy of model instances has been configured, and can now be connected to the simulator. Thus, the simulation environment calls the Connect() method of all model instances.

	Run
	This method changes from Standby to Executing state.

	Hold
	This method changes from Executing to Standby state.

	Store
	This method is used to store a state vector to file.

	Restore
	This method is used to restore a state vector from file.

	Reconnect
	This method asks the simulation environment to reconnect the component hierarchy starting at the given root component.

	Exit
	This method is used for a normal termination of a simulation.

	Abort
	This method is used for an abnormal termination of a simulation.

	GetState
	Return the current simulator state.

	AddInitEntryPoint
	This method can be used to add entry points that shall be executed in the Initialising state.

	AddModel
	This method adds a model to the models collection of the simulator, i.e. to the "Models" container.

	AddService
	This method adds a user-defined service to the services collection, i.e. to the "Services" container.

	GetService
	Query for a service component by its name.

	GetLogger
	Return interface to logger service.

	GetTimeKeeper
	Return interface to time keeper service.

	GetScheduler
	Return interface to scheduler service.

	GetEventManager
	Return interface to event manager service.

	GetResolver
	Return interface to resolver service.

	GetLinkRegistry
	Return interface to link registry service.


3.6.1.2.1 Initialise

This method asks the simulation environment to call all initialisation entry points again.
This method can only be called when in Standby state, and enters Initialising state. After completion, the simulator automatically returns to Standby state.
The entry points will be executed in the order they have been added to the simulator using the AddInitEntryPoint() method.
Parameters

None

Exceptions

None

3.6.1.2.2 Publish

This method asks the simulation environment to call the Publish() method of all model instances in the model hierarchy which are still in Created state.
This method must only be called when in Building state.
Remark: This method is typically called by an external component after creating new model instances, typically from information in an SMDL Assembly.
Parameters

None

Exceptions

None

3.6.1.2.3 Configure

This method asks the simulation environment to call the Configure() method of all model instances which are still in Publishing state.
This method must only be called when in Building state.
Remark: This method is typically called by an external component after setting field values of new model instances, typically using the information in an SMDL Assembly or SMDL Configuration.
Parameters

None

Exceptions

None

3.6.1.2.4 Connect

This method informs the simulation environment that the hierarchy of model instances has been configured, and can now be connected to the simulator. Thus, the simulation environment calls the Connect() method of all model instances.
In this method, the simulation environment first enters Connecting state and calls the Connect() method of every model in the model hierarchy, then enters Initialising state and calls the initialisation entry points, and finally enters Standby state.
This method must only be called when in Building state.
Remark: This method is typically called by an external component after configuring all model instances.
Parameters

None

Exceptions

None

3.6.1.2.5 Run

This method changes from Standby to Executing state.
This method must only be called when in Standby state, and enters Executing state.
Parameters

None

Exceptions

None

3.6.1.2.6 Hold

This method changes from Executing to Standby state.
This method must only be called when in Executing state, and enters Standby state.
Parameters

None

Exceptions

None

3.6.1.2.7 Store

This method is used to store a state vector to file.
This method must only be called when in Standby state, and enters Storing state. On completion, it automatically returns to Standby state.
Parameters

	Name
	Dir.
	Type
	Description

	filename
	in
	String8
	Name to use for simulation state vector file. 


Exceptions

None

3.6.1.2.8 Restore

This method is used to restore a state vector from file.
This method must only be called when in Standby state, and enters Restoring state. On completion, it automatically returns to Standby state.
Parameters

	Name
	Dir.
	Type
	Description

	filename
	in
	String8
	Name of simulation state vector file. 


Exceptions

None

3.6.1.2.9 Reconnect

This method asks the simulation environment to reconnect the component hierarchy starting at the given root component.
This method must only be called when in Standby state.
The simulation environment has to ensure that all models under the given root (but not the root itself) are published, configured and connected, so that all child models are finally in Connected state.
Remark: This method is typically called after creating additional model instances and adding them to the existing model hierarchy.
Parameters

	Name
	Dir.
	Type
	Description

	root
	in
	IComponent
	Root component to start reconnecting from. This can be the parent component of a newly added model, or e.g. the simulator itself. 


Exceptions

None

3.6.1.2.10 Exit

This method is used for a normal termination of a simulation.
This method must only be called when in Standby state, and enters Exiting state.
Parameters

None

Exceptions

None

3.6.1.2.11 Abort

This method is used for an abnormal termination of a simulation.
This method can be called from any other state, and enters Aborting state.
Parameters

None

Exceptions

None

3.6.1.2.12 Get State

Return the current simulator state.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	SimulatorStateKind
	Current simulator state. 


Exceptions

None

3.6.1.2.13 Add Init Entry Point

This method can be used to add entry points that shall be executed in the Initialising state.
The entry points will be executed in the order they have been added to the simulator.
Remark: The ITask interface (which is derived from IEntryPoint) can be used to add several entry points in a well-defined order.
Parameters

	Name
	Dir.
	Type
	Description

	entryPoint
	in
	IEntryPoint
	Entry point to execute in Initialising state. 


Exceptions

None

3.6.1.2.14 Add Model

This method adds a model to the models collection of the simulator, i.e. to the "Models" container.
This method raises an exception of type DuplicateName if the name of the new model conflicts with the name of an existing component (model or service).
The container for the models has no upper limit and thus the ContainerFull exception will never be thrown.
The method will never throw the InvalidObjectType exception either, as it gets a component implementing the IModel interface.
Parameters

	Name
	Dir.
	Type
	Description

	model
	in
	IModel
	New model to add to collection of root models, i.e. to the "Models" container. 


Exceptions

Smp::DuplicateName
3.6.1.2.15 Add Service

This method adds a user-defined service to the services collection, i.e. to the "Services" container.
This method raises an exception of type DuplicateName if the name of the new service conflicts with the name of an existing component (model or service).
The container for the services has no upper limit and thus the ContainerFull exception will never be thrown.
The method will never throw the InvalidObjectType exception either, as it gets a component implementing the IService interface.
The container for the services has no upper limit and thus the ContainerFull exception will never be thrown.
The method will never throw the InvalidObjectType exception, as it expects a component implementing the IService interface.
Remark: It is recommended that custom services include a project or company acronym as prefix in their name, to avoid collision of service names.
Parameters

	Name
	Dir.
	Type
	Description

	service
	in
	IService
	Service to add to services collection. 


Exceptions

Smp::DuplicateName
3.6.1.2.16 Get Service

Query for a service component by its name.
The returned component is null if no service with the given name could be found. Standard names are defined for the standardised services, while custom services use custom names.
The existence of custom services is not guaranteed, so models should expect to get a null reference.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	IService
	Service with the given name, or null if no service with the given name could be found. 

	name
	in
	String8
	Service name. 


Exceptions

None

3.6.1.2.17 Get Logger

Return interface to logger service.
Remark: This is a type-safe convenience method, to avoid having to use the generic GetService() method. For the standardised services, it is recommended to use the convenience methods, which are guaranteed to return a valid reference.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	ILogger
	Interface to mandatory logger service. 


Exceptions

None

3.6.1.2.18 Get Time Keeper

Return interface to time keeper service.
Remark: This is a type-safe convenience method, to avoid having to use the generic GetService() method. For the standardised services, it is recommended to use the convenience methods, which are guaranteed to return a valid reference.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	ITimeKeeper
	Interface to mandatory time keeper service. 


Exceptions

None

3.6.1.2.19 Get Scheduler

Return interface to scheduler service.
Remark: This is a type-safe convenience method, to avoid having to use the generic GetService() method. For the standardised services, it is recommended to use the convenience methods, which are guaranteed to return a valid reference.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	IScheduler
	Interface to mandatory scheduler service. 


Exceptions

None

3.6.1.2.20 Get Event Manager

Return interface to event manager service.
Remark: This is a type-safe convenience method, to avoid having to use the generic GetService() method. For the standardised services, it is recommended to use the convenience methods, which are guaranteed to return a valid reference.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	IEventManager
	Interface to mandatory event manager service. 


Exceptions

None

3.6.1.2.21 Get Resolver

Return interface to resolver service.
Remark: This is a type-safe convenience method, to avoid having to use the generic GetService() method. For the standardised services, it is recommended to use the convenience methods, which are guaranteed to return a valid reference.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	IResolver
	Interface to mandatory resolver service. 


Exceptions

None

3.6.1.2.22 Get Link Registry

Return interface to link registry service.
Remark: This is a type-safe convenience method, to avoid having to use the generic GetService() method. For the standardised services, it is recommended to use the convenience methods, which are guaranteed to return a valid reference.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	ILinkRegistry
	Interface to mandatory link registry service. 


Exceptions

None

3.6.1.3 IManaged Simulator

This interface gives access to a managed simulator.
This interface extends the ISimulator interface and adds methods to create components (typically models) from component factories. It makes use of the IFactory interface for component factories.
This is an optional interface the simulation environment may implement.
File

#include "Smp/Management/IManagedSimulator.h"

Namespace

Smp::Management
Declaration of IManagedSimulator

	        /// Unique Identifier of type IManagedSimulator.

        extern const Uuid Uuid_IManagedSimulator;

        /// This interface gives access to a managed simulator.

        /// This interface extends the ISimulator interface and adds methods to

        /// create components (typically models) from component factories. It 

        /// makes use of the IFactory interface for component factories.

        /// This is an optional interface the simulation environment may 

        /// implement.

        class IManagedSimulator :

            public virtual Smp::ISimulator

        {

        public:

            /// Virtual destructor to release memory.

            virtual ~IManagedSimulator() {}    

            /// This method registers a component factory with the managed 

            /// simulator. The managed simulator can use this factory to create

            /// component instances of the component implementation in its 

            /// CreateInstance() method.

            /// This method raises an exception of type DuplicateUuid if 

            /// another factory has been registered using the same 

            /// implementation identifier already.

            /// @remarks This method is typically called early in the Building 

            ///          state to register the available component factories 

            ///          before the hierarchy of model instances is created.

            /// @param   componentFactory Factory to create instance of the 

            ///          component implementation.

            /// @throws  Smp::Management::IManagedSimulator::DuplicateUuid

            virtual void RegisterFactory(Smp::IFactory* componentFactory) throw (

                Smp::Management::IManagedSimulator::DuplicateUuid) = 0;

            /// This method creates an instance of the component with the given

            /// implementation identifier.

            /// @remarks This method is typically called during Creating state 

            ///          when building the hierarchy of models.

            /// @param   implUuid Implementation identifier of the component.

            /// @return  New instance of the component with the given 

            ///          implementation identifier or null in case no factory 

            ///          for the given implementation identifier has been 

            ///          registered.

            virtual Smp::IComponent* CreateInstance(Smp::Uuid implUuid) = 0;

            /// This method returns the factory of the component with the given

            /// implementation identifier.

            /// @param   implUuid Implementation identifier of the component.

            /// @return  Factory of the component with the given implementation

            ///          identifier or null in case no factory for the given 

            ///          implementation identifier has been registered.

            virtual Smp::IFactory* GetFactory(Smp::Uuid implUuid) const = 0;

            /// This method returns all factories of components with the given 

            /// specification identifier.

            /// The returned collection may be empty if no factories have been 

            /// registered for the given specification identifier.

            /// @param   specUuid Specification identifier of the component.

            /// @return  Collection of factories for the given specification 

            ///          identifier.

            virtual const Smp::FactoryCollection* GetFactories(Smp::Uuid specUuid) const = 0;

        };


Base Interfaces

Smp::ISimulator
Operations

	Name
	Description

	CreateInstance
	This method creates an instance of the component with the given implementation identifier.

	GetFactories
	This method returns all factories of components with the given specification identifier.

	GetFactory
	This method returns the factory of the component with the given implementation identifier.

	RegisterFactory
	This method registers a component factory with the managed simulator. The managed simulator can use this factory to create component instances of the component implementation in its CreateInstance() method.


3.6.1.3.1 Create Instance

This method creates an instance of the component with the given implementation identifier.
Remark: This method is typically called during Creating state when building the hierarchy of models.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	IComponent
	New instance of the component with the given implementation identifier or null in case no factory for the given implementation identifier has been registered. 

	implUuid
	in
	Uuid
	Implementation identifier of the component. 


Exceptions

None

3.6.1.3.2 Get Factories

This method returns all factories of components with the given specification identifier.
The returned collection may be empty if no factories have been registered for the given specification identifier.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	FactoryCollection
	Collection of factories for the given specification identifier. 

	specUuid
	in
	Uuid
	Specification identifier of the component. 


Exceptions

None

3.6.1.3.3 Get Factory

This method returns the factory of the component with the given implementation identifier.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	IFactory
	Factory of the component with the given implementation identifier or null in case no factory for the given implementation identifier has been registered. 

	implUuid
	in
	Uuid
	Implementation identifier of the component. 


Exceptions

None

3.6.1.3.4 Register Factory

This method registers a component factory with the managed simulator. The managed simulator can use this factory to create component instances of the component implementation in its CreateInstance() method.
This method raises an exception of type DuplicateUuid if another factory has been registered using the same implementation identifier already.
Remark: This method is typically called early in the Building state to register the available component factories before the hierarchy of model instances is created.
Parameters

	Name
	Dir.
	Type
	Description

	componentFactory
	in
	IFactory
	Factory to create instance of the component implementation. 


Exceptions

Smp::Management::IManagedSimulator::DuplicateUuid
3.6.1.3.5 Duplicate Uuid

This exception is raised when trying to register a factory under a Uuid that has already been used to register another (or the same) factory.This would lead to duplicate implementation Uuids.
File

#include "Smp/Management/IManagedSimulator.h"

Namespace

Smp::Management::IManagedSimulator
Declaration of DuplicateUuid

	            /// This exception is raised when trying to register a factory 

            /// under a Uuid that has already been used to register another (or

            /// the same) factory.This would lead to duplicate implementation 

            /// Uuids.

            class DuplicateUuid : public Smp::Exception    

            {

            public:

                /// Constructor for new exception.

                /// @param   newName Name of factory that tried to register 

                ///          under this Uuid.

                /// @param   oldName Name of factory already registered under 

                ///          this Uuid.

                DuplicateUuid(

                    Smp::String8 newName,

                    Smp::String8 oldName) throw();        

                /// Copy constructor.

                DuplicateUuid(

                    DuplicateUuid& ex) throw();

                /// Virtual destructor to release memory.

                virtual ~DuplicateUuid();    

                /// Name of factory that tried to register under this Uuid.

                Smp::String8 newName;

                /// Name of factory already registered under this Uuid.

                Smp::String8 oldName;

            };


Fields

	Name
	Type
	Description

	newName
	String8
	Name of factory that tried to register under this Uuid.

	oldName
	String8
	Name of factory already registered under this Uuid.


3.6.1.4 IFactory

Interface for a component factory.
File

#include "Smp/IFactory.h"

Namespace

Smp
Declaration of IFactory

	    /// Unique Identifier of type IFactory.

    extern const Uuid Uuid_IFactory;

    /// Interface for a component factory.

    class IFactory :

        public virtual Smp::IObject

    {

    public:

        /// Virtual destructor to release memory.

        virtual ~IFactory() {}    

        /// Get specification identifier of factory.

        /// @return  Universally unique identifier of component specification.

        virtual Smp::Uuid GetSpecification() const = 0;

        /// Get implementation identifier of factory.

        /// @return  Universally unique identifier of component implementation.

        virtual Smp::Uuid GetImplementation() const = 0;

        /// Create a new instance.

        /// @return  New component instance.

        virtual Smp::IComponent* CreateInstance() = 0;

        /// Delete an existing instance.

        /// @param   instance Instance to delete.

        virtual void DeleteInstance(Smp::IComponent* instance) = 0;

    };


Base Interfaces

Smp::IObject
Operations

	Name
	Description

	CreateInstance
	Create a new instance.

	DeleteInstance
	Delete an existing instance.

	GetImplementation
	Get implementation identifier of factory.

	GetSpecification
	Get specification identifier of factory.


3.6.1.4.1 Create Instance

Create a new instance.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	IComponent
	New component instance. 


Exceptions

None

3.6.1.4.2 Delete Instance

Delete an existing instance.
Parameters

	Name
	Dir.
	Type
	Description

	instance
	in
	IComponent
	Instance to delete. 


Exceptions

None

3.6.1.4.3 Get Implementation

Get implementation identifier of factory.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	Uuid
	Universally unique identifier of component implementation. 


Exceptions

None

3.6.1.4.4 Get Specification

Get specification identifier of factory.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	Uuid
	Universally unique identifier of component specification. 


Exceptions

None

3.6.1.5 Factory Collection

A factory collection is an ordered collection of factories, which allows iterating all members.
This type is platform specific. For details see the SMP Platform Mappings.
File

#include "Smp/IFactory.h"

Namespace

Smp
Declaration of FactoryCollection

	    /// Unique Identifier of type FactoryCollection.

    extern const Uuid Uuid_FactoryCollection;

    /// A factory collection is an ordered collection of factories, which 

    /// allows iterating all members.

    /// 

    /// This type is platform specific. For details see the SMP Platform 

    /// Mappings.

    typedef std::vector<IFactory*> FactoryCollection;


3.6.2 Publication

As part of the initialisation, every model needs to be given access to a publication receiver to publish its fields and operations. While the simulation environment does not have to implement the IPublication interface itself, it has to provide a publication receiver to each model during the Publishing state.

As the publication mechanism for C++ is complex, it has been moved to a dedicated section 5 (Publication).

3.6.3 Service Acquisition

Simulation services are closely related to models: Models need a mechanism to acquire simulation services, and most services interact with models. Further, simulation services are themselves components of the SMP Component Model. Therefore, this document puts simulation services into context with models and the simulation environment. 

When the simulation environment connects a model, it calls the Connect() method of the IModel interface, passing it a global reference of ISimulator. A model can either immediately use this reference to query services, or store the reference to query services on demand. 

Before a Model can call an operation of a Service, the following steps are needed: 

1. The Simulator calls the Connect() operation of the Model, passing it a reference to itself. 

2. The Model calls the GetService() operation of the Simulator, passing it the name of the required service. 

3. The Simulator returns the required Service to the Model. 

4. The Model calls the desired operation of the Service. 

5. The Service returns the desired value to the Model. 

6. The Model returns control to the Simulator. 

If the model keeps a reference to the service, it can call the service again at any other time. 

7. The Model calls the desired operation of the Service. 

8. The Service returns the desired value to the Model. 

These steps are shown in a sequence diagram in Figure 4.

[image: image4.emf] : ISimulator  : ISimulator  : IService  : IModel retrun 3:  Connect() 1:  return 5:  return 8:  GetService(name=name) 2:  Invoke any service operation 4:  return 6:  Invoke any service operation 7: 


Figure 4 - Sequence of calls for service acquisition

4 
Simulation Services

In order to facilitate the inter-operability between SMP compliant simulation environments (i.e. run-time simulation kernels), several Simulation Services are defined in the SMP specification. All services are mandatory.

Any SMP compliant simulation environment shall support the following standard services.

4.1 Logger

The Logger service provides a method to send a log message to the simulation log.

4.1.1 ILogger

This interface gives access to the Logger Service.

All objects in a simulation can log messages using this service. Objects can either use pre-defined log message kinds, or define their own message kinds.

File

#include "Smp/Services/ILogger.h"

Namespace

Smp::Services
Declaration of ILogger

	        /// Unique Identifier of type ILogger.

        extern const Uuid Uuid_ILogger;

        /// This interface gives access to the Logger Service.

        /// All objects in a simulation can log messages using this service. 

        /// Objects can either use pre-defined log message kinds, or define 

        /// their own message kinds.

        class ILogger :

            public virtual Smp::IService

        {

        public:

            /// Virtual destructor to release memory.

            virtual ~ILogger() {}    

            /// Return identifier of log message kind by name.

            /// 

            /// @remarks This method can be used for predefined log message 

            ///          kinds, but is especially useful for user-defined log 

            ///          message kinds.

            ///          It is guaranteed that this method always returns the 

            ///          same id for the same messageKindName string.

            /// @param   messageKindName Name of log message kind.

            /// @return  Identifier of log message kind.

            virtual Smp::Services::LogMessageKind QueryLogMessageKind(Smp::String8 messageKindName) = 0;

            /// This function logs a message to the simulation log.

            /// @param   sender Object that sends the message.

            /// @param   message The message to log.

            /// @param   kind Kind of message.

            virtual void Log(

                const Smp::IObject* sender,

                Smp::String8 message,

                Smp::Services::LogMessageKind kind = 0) = 0;

        };


Base Interfaces

Smp::IService
Constants

	Name
	Type
	Description
	Value

	LMK_Debug 
	LogMessageKind
	The message contains debug information.
	4

	LMK_DebugName 
	String8
	The message contains debug information.
	Debug

	LMK_Error 
	LogMessageKind
	The message has been raised because of an error.
	3

	LMK_ErrorName 
	String8
	The message has been raised because of an error.
	Error

	LMK_Event 
	LogMessageKind
	The message has been sent from an event, typically from a state transition.
	1

	LMK_EventName 
	String8
	The message has been sent from an event, typically from a state transition.
	Event

	LMK_Information 
	LogMessageKind
	The message contains general information.
	0

	LMK_InformationName 
	String8
	The message contains general information.
	Information

	LMK_Warning 
	LogMessageKind
	The message contains a warning.
	2

	LMK_WarningName 
	String8
	The message contains a warning.
	Warning

	SMP_Logger 
	String8
	Name of the logger service.
	Logger


Operations

	Name
	Description

	Log
	This function logs a message to the simulation log.

	QueryLogMessageKind
	Return identifier of log message kind by name.


4.1.1.1 Log

This function logs a message to the simulation log.
Parameters

	Name
	Dir.
	Type
	Description

	sender
	in
	IObject
	Object that sends the message. 

	message
	in
	String8
	The message to log. 

	kind
	in
	LogMessageKind
	Kind of message. 


Exceptions

None

4.1.1.2 Query Log Message Kind

Return identifier of log message kind by name.
It is guaranteed that this method always returns the same id for the same messageKindName string.
Remark: This method can be used for predefined log message kinds, but is especially useful for user-defined log message kinds.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	LogMessageKind
	Identifier of log message kind. 

	messageKindName
	in
	String8
	Name of log message kind. 


Exceptions

None

4.1.2 Log Message Kind

This type is used as identifier of a log message kind.

File

#include "Smp/Services/ILogger.h"

Namespace

Smp::Services
Declaration of LogMessageKind

	        /// Unique Identifier of type LogMessageKind.

        extern const Uuid Uuid_LogMessageKind;

        /// This type is used as identifier of a log message kind.

        typedef Smp::Int32 LogMessageKind;

        /// The message contains general information.

        const Smp::Services::LogMessageKind LMK_Information = 0;

        /// The message has been sent from an event, typically from a state 

        /// transition.

        const Smp::Services::LogMessageKind LMK_Event = 1;

        /// The message contains a warning.

        const Smp::Services::LogMessageKind LMK_Warning = 2;

        /// The message has been raised because of an error.

        const Smp::Services::LogMessageKind LMK_Error = 3;

        /// The message contains debug information.

        const Smp::Services::LogMessageKind LMK_Debug = 4;

        /// The message contains general information.

        const Smp::String8 LMK_InformationName = "Information";

        /// The message contains debug information.

        const Smp::String8 LMK_DebugName = "Debug";

        /// The message has been raised because of an error.

        const Smp::String8 LMK_ErrorName = "Error";

        /// The message contains a warning.

        const Smp::String8 LMK_WarningName = "Warning";

        /// The message has been sent from an event, typically from a state 

        /// transition.

        const Smp::String8 LMK_EventName = "Event";


Table 6 - Specification of LogMessageKind

	Minimum
	Maximum
	Primitive Type

	0
	2147483647
	Int32


4.1.3 Predefined Log Message Kinds

When logging a message with the logger service, an additional kind parameter is passed to the Log() method to identify the kind of message. The application can use any valid number, for example to allow filtering messages by message kind. However, the standard pre-defines a few message kinds that are assumed to be used in most simulations.

	Message Kind
	Id
	Description

	Information
	0
	The message contains general information.

	Event
	1
	The message has been sent from an event, typically from a state transition.

	Warning
	2
	The message contains a warning.

	Error
	3
	The message has been raised because of an error.

	Debug
	4
	The message contains debug information.


4.1.4 User defined Log Message Kinds

With the QueryLogMessageKind() method, it is possible to add a user-defined log message kind to the logger service. The first call of this method with a user-defined message kind name returns a new, unique identifier that can be used as third parameter for the Log() method. Further calls of the method QueryLogMessageKind() with the same user-defined message kind name are guaranteed to return the same identifier again. 

This mechanism allows using a user-defined log message kind within several different models, without the need to store the log message kind identifier into a global variable. Further, it assigns a user-readable name to each log message kind, so that e.g. a log message viewer can show log message kinds by name rather than by identifier.

4.2 Time Keeper

SMP supports four different kinds of time. The time managed by the Time Keeper simulation service is called Simulation Time. The service keeps track of simulation time and puts it into relation with epoch time and mission time. Further, the service provides Zulu time based on the clock of the computer.

4.2.1 ITime Keeper

This interface gives access to the Time Keeper Service.

Components can query for the time (using the four available time kinds), and can change the epoch or mission time.

File

#include "Smp/Services/ITimeKeeper.h"

Namespace

Smp::Services
Declaration of ITimeKeeper

	        /// Unique Identifier of type ITimeKeeper.

        extern const Uuid Uuid_ITimeKeeper;

        /// This interface gives access to the Time Keeper Service.

        /// Components can query for the time (using the four available time 

        /// kinds), and can change the epoch or mission time.

        class ITimeKeeper :

            public virtual Smp::IService

        {

        public:

            /// Virtual destructor to release memory.

            virtual ~ITimeKeeper() {}    

            /// Return Simulation time.

            /// Simulation time is a relative time that starts at 0.

            /// @return  Current simulation time.

            virtual Smp::Duration GetSimulationTime() const = 0;

            /// Return Epoch time.

            ///  Epoch time is an absolute time with a fixed offset to 

            /// simulation time. Epoch time typically progresses with 

            /// simulation time, but can be changed with SetEpochTime.

            /// @return  Current epoch time.

            virtual Smp::DateTime GetEpochTime() const = 0;

            /// Return Mission time.

            /// Mission time is a relative time with a fixed offset to 

            /// simulation time. Mission time typically progresses with 

            /// simulation time, but can be changed with the two methods 

            /// SetMissionTime and SetMissionStart. Further, mission time is 

            /// updated when changing epoch time with SetEpochTime.

            /// @return  Current mission time.

            virtual Smp::Duration GetMissionTime() const = 0;

            /// Return Zulu time.

            /// Zulu time is a system dependent time and not related to 

            /// simulation time. Zulu time is typically related to the system 

            /// clock of the computer.

            /// @return  Current Zulu time.

            virtual Smp::DateTime GetZuluTime() const = 0;

            /// Set Epoch time.

            /// 

            ///  Changes the offset between simulation time and epoch time.

            /// Calling this method shall raise a global EpochTimeChanged event

            /// in the Event Manager.

            /// @param   epochTime New epoch time.

            virtual void SetEpochTime(Smp::DateTime epochTime) = 0;

            /// Set Mission time by defining the mission start time.

            /// Changes the offset between simulation time and mission time. 

            /// The mission time itself will be calculated as the offset 

            /// between the current epoch time and the given mission start:

            /// MissionTime = EpochTime - MissionStart

            /// 

            /// Calling this method shall raise a global MissionTimeChanged 

            /// event in the Event Manager.

            /// @param   missionStart New mission start date and time.

            virtual void SetMissionStart(Smp::DateTime missionStart) = 0;

            /// Set Mission time.

            /// Changes the offset between simulation time and mission time.

            /// Calling this method shall raise a global MissionTimeChanged 

            /// event in the Event Manager.

            /// @param   missionTime New mission time.

            virtual void SetMissionTime(Smp::Duration missionTime) = 0;

        };


Base Interfaces

Smp::IService
Constants

	Name
	Type
	Description
	Value

	SMP_TimeKeeper 
	String8
	Name of the TimeKeeper service.
	TimeKeeper


Operations

	Name
	Description

	GetEpochTime
	Return Epoch time.

	GetMissionTime
	Return Mission time.

	GetSimulationTime
	Return Simulation time.

	GetZuluTime
	Return Zulu time.

	SetEpochTime
	Set Epoch time.

	SetMissionStart
	Set Mission time by defining the mission start time.

	SetMissionTime
	Set Mission time.


4.2.1.1 Get Epoch Time

Return Epoch time.
Epoch time is an absolute time with a fixed offset to simulation time. Epoch time typically progresses with simulation time, but can be changed with SetEpochTime.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	DateTime
	Current epoch time. 


Exceptions

None

4.2.1.2 Get Mission Time

Return Mission time.
Mission time is a relative time with a fixed offset to simulation time. Mission time typically progresses with simulation time, but can be changed with the two methods SetMissionTime and SetMissionStart. Further, mission time is updated when changing epoch time with SetEpochTime.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	Duration
	Current mission time. 


Exceptions

None

4.2.1.3 Get Simulation Time

Return Simulation time.
Simulation time is a relative time that starts at 0.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	Duration
	Current simulation time. 


Exceptions

None

4.2.1.4 Get Zulu Time

Return Zulu time.
Zulu time is a system dependent time and not related to simulation time. Zulu time is typically related to the system clock of the computer.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	DateTime
	Current Zulu time. 


Exceptions

None

4.2.1.5 Set Epoch Time

Set Epoch time.
Changes the offset between simulation time and epoch time.
Calling this method shall raise a global EpochTimeChanged event in the Event Manager.
Parameters

	Name
	Dir.
	Type
	Description

	epochTime
	in
	DateTime
	New epoch time. 


Exceptions

None

4.2.1.6 Set Mission Start

Set Mission time by defining the mission start time.
Changes the offset between simulation time and mission time. The mission time itself will be calculated as the offset between the current epoch time and the given mission start: 
MissionTime = EpochTime - MissionStart
Calling this method shall raise a global MissionTimeChanged event in the Event Manager.
Parameters

	Name
	Dir.
	Type
	Description

	missionStart
	in
	DateTime
	New mission start date and time. 


Exceptions

None

4.2.1.7 Set Mission Time

Set Mission time.
Changes the offset between simulation time and mission time.
Calling this method shall raise a global MissionTimeChanged event in the Event Manager.
Parameters

	Name
	Dir.
	Type
	Description

	missionTime
	in
	Duration
	New mission time. 


Exceptions

None

4.2.2 Time Kind

Enumeration of supported time kinds.

File

#include "Smp/Services/IScheduler.h"

Namespace

Smp::Services
Declaration of TimeKind

	        /// Unique Identifier of type TimeKind.

        extern const Uuid Uuid_TimeKind;

        /// Enumeration of supported time kinds.

        enum TimeKind

        {

            /// Simulation time.

            TK_SimulationTime,

            /// Mission time.

            TK_MissionTime,

            /// Epoch time.

            TK_EpochTime,

            /// Zulu time.

            TK_ZuluTime

        };


Table 7 - Enumeration Literals of TimeKind

	Name
	Description

	TK_SimulationTime
	Simulation time.

Simulation time is a relative time. It does only exist within the time keeper service. The following holds for simulation time: 

· Simulation time is a non-negative value measured in nanoseconds, which is the lowest level of granularity supported for time in SMP.

· Simulation time is stored in a signed 64-bit integer value. This allows specifying time values of more than 290 years.

· Simulation time can be queried using the GetSimulationTime() method of the time keeper (via the ITimeKeeper interface).
· Simulation time is initialised to 0 at the beginning of the initialisation phase. That is, during initialisation the time keeper service will return a simulation time of 0.

· Simulation time is only progressed when the simulation environment is in Executing state.

· When storing a state vector, simulation time is stored as well.

· When restoring a state vector, simulation time is restored as well.

The standard does not define how quickly simulation time is progressed when the simulator is in Executing state. Typical examples are: 

· Real-Time: The simulation time progresses with real-time, where real-time is typically defined by the computer clock. Note that two types of real-time simulations exist: hard real-time and soft real-time simulations. In a hard real-time simulation, strict requirements on timing have to be met, while in a soft real-time simulation, the requirements are less demanding such that latencies in a certain range are allowed, which is called real-time slip.

· Accelerated: The simulation time progresses relative to real-time using a constant acceleration factor. This factor may be larger than 1.0, which relates to "faster than real-time", smaller than 1.0, which means "slower than real-time", or 1.0, which coincides with real-time.

· Free Running: The simulation time progresses as fast as possible, and is not related to real-time. Typically, the speed is coordinated with the timed events of the scheduler, which underlines the close relationship between these two services (Time Keeper and Scheduler).

· Debugging: The simulation is executed in a step-by-step manner using break points in order to inspect data or trace calls within the simulation.

SMP does not mandate which of these modes a simulation environment has to support.

	TK_MissionTime
	Mission time.

Mission time is a relative time, i.e. it measures elapsed time from a definite point in time (called the mission start). Mission time is stored as a number relative to the mission start date. Mission time is maintained using a fixed offset to epoch time, and hence progresses together with simulation and epoch time, except for the case when the offset is changed. The following holds for mission time: 

· Mission time is a value measured in nanoseconds, which is the lowest level of granularity supported for time in SMP.

· Mission time is returned as a signed 64-bit integer value, relative to a mission start date and time (which itself is not stored).

· Mission time can be queried using the GetMissionTime() method of the time keeper (via the ITimeKeeperinterface).

· Mission time is initialised to 0 at the beginning of the initialisation phase, but can be changed already before entering the execution phase. As epoch time is initialised to 01.01.2000, 12:00, the default mission start is as well 01.01.2000, 12:00.

· Mission time is progressed linearly with epoch and simulation time (i.e. with a fixed offset to epoch time). Using either the SetMissionTime() method or the SetMissionStart() method of the time keeper (via the ITimeKeeper interface), the offset between simulation time and mission time can be changed.

· When storing a state vector, mission time is stored as well.

· When restoring a state vector, mission time is restored as well.



	TK_EpochTime
	Epoch time.

Epoch time is an absolute time, i.e. it defines a definite point in time. It is not only used as a way to express date and time, but as well to determine all time-dependent variables at that time, such as barycentric positions of all solar system bodies. Epoch time is stored as a number relative to a reference date, which has been defined as the 1st of January 2000 mid-day (01.01.2000, 12:00). Epoch time is maintained using a fixed offset to simulation time, and hence progresses together with simulation time, except for the case when the offset is changed. The following holds for epoch time:

· Epoch time is a value measured in nanoseconds, which is the lowest level of granularity supported for time in SMP.

· Epoch time is returned as a signed 64-bit integer value, relative to the epoch reference time (01.01.2000, 12:00, Modified Julian Date 2000+0.5). This allows specifying time values roughly between 1710 and 2290.

· Epoch time can be queried using the GetEpochTime() method of the time keeper (via the ITimeKeeperinterface).

· Epoch time is initialised to 0 (i.e. 01.01.2000, 12:00) at the beginning of the initialisation phase, but can be changed already before entering the execution phase.

· Epoch time is progressed linearly with simulation time (i.e. with a fixed offset to simulation time). Using the SetEpochTime() method of the time keeper (via the ITimeKeeper interface), the offset between simulation time and epoch time can be changed.

· When storing a state vector, epoch time (i.e. its offset to simulation time) is stored as well.

· When restoring a state vector, epoch time (i.e. its offset to simulation time) is restored as well.



	TK_ZuluTime
	Zulu time.

From the Mobile Aeronautics Education Laboratory (MAEL) of the NASA, the following definition of Zulu Time is cited (http://www.grc.nasa.gov/WWW/MAEL/ag/zulu.htm): 

"The world is divided into 24 time zones. For easy reference in communications, a letter of the alphabet has been assigned to each time zone. The "clock" at Greenwich, England is used as the standard clock for international reference of time in communications, military, maritime and other activities that cross time zones. The letter designator for this clock is Z. 

Times are usually written in military time or 24 hour format such as 1830Z (6:30 pm). To pronounce this, the phonetic alphabet is used for the letter Z, or Zulu. This time is sometimes referred to as Zulu Time because of its assigned letter. Its official name is Coordinated Universal Time or UTC. Previously it had been known as Greenwich Mean Time or GMT but this has been replaced with UTC." 

In SMP, Zulu time is not related to simulation time, but typically to the computer clock (or to some external clock). The following holds for Zulu time: 

· Zulu time is measured in nanoseconds.

· Zulu time is returned as a signed 64-bit integer value, relative to the epoch reference time.

· Zulu time represents the current time at Greenwich, England, called as well UTC or GMT.

As Zulu time is not managed by the time keeper service, but provided based on an external clock (typically the computer clock), it is not related to simulation time, and progresses independently of the state of the simulation environment. When a simulator interfaces to an external system, for example a ground station or some Hardware-In-The-Loop (HITL), Zulu time is often used as a time stamp.


4.3 Scheduler

The scheduler service calls entry points of models based on events triggered by one of the four time kinds.

4.3.1 IScheduler

This interface gives access to the Scheduler Service.

Components can register (Add) and unregister (Remove) entry points for scheduling. Further, they can set (Set) individual attributes of events on the scheduler.

File

#include "Smp/Services/IScheduler.h"

Namespace

Smp::Services
Declaration of IScheduler

	        /// Unique Identifier of type IScheduler.

        extern const Uuid Uuid_IScheduler;

        /// This interface gives access to the Scheduler Service.

        /// Components can register (Add) and unregister (Remove) entry points 

        /// for scheduling. Further, they can set (Set) individual attributes 

        /// of events on the scheduler.

        class IScheduler :

            public virtual Smp::IService

        {

        public:

            /// Virtual destructor to release memory.

            virtual ~IScheduler() {}    

            /// Add an immediate event to the scheduler.

            /// An immediate event is an event that will be added as a 

            /// simulation time event (with simulation delta time of 0) at the 

            /// front of the event queue. As such, it will be executed when the

            /// scheduler processes its simulation time events again, but not 

            /// immediately in the call to AddImmediateEvent().

            /// When the simulator is in Standby state, simulation time does 

            /// not progress, and simulation time events (including immediate 

            /// events) are not processed.

            /// @remarks To execute an entry point immediately without going 

            ///          through the scheduler, its Execute() method can be 

            ///          called.

            /// @param   entryPoint Entry point to call from event.

            /// @return  Event identifier that can be used to change or remove 

            ///          event.

            virtual Smp::Services::EventId AddImmediateEvent(const Smp::IEntryPoint* entryPoint) = 0;

            /// Add event to scheduler that is called based on simulation time.

            /// An event with repeat=0 is not cyclic. It will be removed 

            /// automatically after is has been triggered.

            /// An event with repeat>0 is cyclic, and will be repeated repeat 

            /// times. Therefore, it will be called repeat+1 times, and then it

            /// will be removed automatically.

            /// An event with repeat=-1 is cyclic as well, but it will be 

            /// triggered forever, unless it is removed from the scheduler 

            /// using the RemoveEvent() method.

            /// For a cyclic event, the cycleTime needs to be positive. For 

            /// non-cyclic events, it is ignored.

            /// The simulationTime must not be negative. Otherwise, the event 

            /// will never be executed, but immediately removed.

            /// @param   entryPoint Entry point to call from event.

            /// @param   simulationTime Duration from now when to trigger the 

            ///          event for the first time.

            /// @param   cycleTime Duration between two triggers of the event.

            /// @param   repeat Number of times the event shall be repeated, or

            ///          0 for a single event, or -1 for no limit.

            /// @return  Event identifier that can be used to change or remove 

            ///          event.

            /// @throws  Smp::Services::IScheduler::InvalidCycleTime

            /// @throws  Smp::Services::IScheduler::InvalidEventTime

            virtual Smp::Services::EventId AddSimulationTimeEvent(

                const IEntryPoint* entryPoint,

                Smp::Duration simulationTime,

                Smp::Duration cycleTime = 0,

                Smp::Int64 repeat = 0) throw (

                Smp::Services::IScheduler::InvalidCycleTime,

                Smp::Services::IScheduler::InvalidEventTime) = 0;

            /// Add event to scheduler that is called based on mission time.

            /// An event with repeat=0 is not cyclic. It will be removed 

            /// automatically after is has been triggered.

            /// An event with repeat>0 is cyclic, and will be repeated repeat 

            /// times. Therefore, it will be called repeat+1 times, and then it

            /// will be removed automatically.

            /// An event with repeat=-1 is cyclic as well, but it will be 

            /// triggered forever, unless it is removed from the scheduler 

            /// using the RemoveEvent() method.

            /// For a cyclic event, the cycleTime needs to be positive. For 

            /// non-cyclic events, it is ignored.

            /// The missionTime must not be before the current mission time of 

            /// the ITimeKeeper service. Otherwise, the event will never be 

            /// executed, but immediately removed.

            /// @param   entryPoint Entry point to call from event.

            /// @param   missionTime Absolute mission time when to trigger the 

            ///          event for the first time.

            /// @param   cycleTime Duration between two triggers of the event.

            /// @param   repeat Number of times the event shall be repeated, or

            ///          0 for a single event, or -1 for no limit.

            /// @return  Event identifier that can be used to change or remove 

            ///          event.

            /// @throws  Smp::Services::IScheduler::InvalidCycleTime

            /// @throws  Smp::Services::IScheduler::InvalidEventTime

            virtual Smp::Services::EventId AddMissionTimeEvent(

                const IEntryPoint* entryPoint,

                Smp::Duration missionTime,

                Smp::Duration cycleTime = 0,

                Smp::Int64 repeat = 0) throw (

                Smp::Services::IScheduler::InvalidCycleTime,

                Smp::Services::IScheduler::InvalidEventTime) = 0;

            /// Add event to scheduler that is called based on epoch time.

            /// An event with repeat=0 is not cyclic. It will be removed 

            /// automatically after is has been triggered.

            /// An event with repeat>0 is cyclic, and will be repeated repeat 

            /// times. Therefore, it will be called repeat+1 times, and then it

            /// will be removed automatically.

            /// An event with repeat=-1 is cyclic as well, but it will be 

            /// triggered forever, unless it is removed from the scheduler 

            /// using the RemoveEvent() method.

            /// For a cyclic event, the cycleTime needs to be positive. For 

            /// non-cyclic events, it is ignored.

            /// The epochTime must not be before the current epoch time of the 

            /// ITimeKeeper service. Otherwise, the event will never be 

            /// executed, but immediately removed.

            /// @param   entryPoint Entry point to call from event.

            /// @param   epochTime Epoch time when to trigger the event for the

            ///          first time.

            /// @param   cycleTime Duration between two triggers of the event.

            /// @param   repeat Number of times the event shall be repeated, or

            ///          0 for a single event, or -1 for no limit.

            /// @return  Event identifier that can be used to change or remove 

            ///          event.

            /// @throws  Smp::Services::IScheduler::InvalidCycleTime

            /// @throws  Smp::Services::IScheduler::InvalidEventTime

            virtual Smp::Services::EventId AddEpochTimeEvent(

                const IEntryPoint* entryPoint,

                Smp::DateTime epochTime,

                Smp::Duration cycleTime = 0,

                Smp::Int64 repeat = 0) throw (

                Smp::Services::IScheduler::InvalidCycleTime,

                Smp::Services::IScheduler::InvalidEventTime) = 0;

            /// Add event to scheduler that is called based on Zulu time.

            /// An event with repeat=0 is not cyclic. It will be removed 

            /// automatically after is has been triggered.

            /// An event with repeat>0 is cyclic, and will be repeated repeat 

            /// times. Therefore, it will be called repeat+1 times, and then it

            /// will be removed automatically.

            /// An event with repeat=-1 is cyclic as well, but it will be 

            /// triggered forever, unless it is removed from the scheduler 

            /// using the RemoveEvent() method.

            /// For a cyclic event, the cycleTime needs to be positive. For 

            /// non-cyclic events, it is ignored.

            /// The zuluTime must not be before the current Zulu time of the 

            /// ITimeKeeper service. Otherwise, the event will never be 

            /// executed, but immediately removed.

            /// @param   entryPoint Entry point to call from event.

            /// @param   simulationTime Absolute (Zulu) time when to trigger 

            ///          the event for the first time.

            /// @param   cycleTime Duration between two triggers of the event.

            /// @param   repeat Number of times the event shall be repeated, or

            ///          0 for a single event, or -1 for no limit.

            /// @return  Event identifier that can be used to change or remove 

            ///          event.

            /// @throws  Smp::Services::IScheduler::InvalidCycleTime

            /// @throws  Smp::Services::IScheduler::InvalidEventTime

            virtual Smp::Services::EventId AddZuluTimeEvent(

                const IEntryPoint* entryPoint,

                Smp::DateTime simulationTime,

                Smp::Duration cycleTime = 0,

                Smp::Int64 repeat = 0) throw (

                Smp::Services::IScheduler::InvalidCycleTime,

                Smp::Services::IScheduler::InvalidEventTime) = 0;

            /// Update when an existing simulation time event on the scheduler 

            /// shall be triggered.

            /// When the given event Id is not a valid identifier of a 

            /// scheduler event, the method throws an exception of type 

            /// InvalidEventId. In case an event is registered under the given 

            /// event Id but it is not an simulation time event, the method 

            /// throws an exception of type InvalidEventId as well.

            /// 

            /// The simulationTime must not be negative. Otherwise, the event 

            /// will never be executed, but immediately removed.

            /// @param   event Identifier of event to modify.

            /// @param   simulationTime Duration from now when to trigger event.

            /// @throws  Smp::Services::InvalidEventId

            virtual void SetEventSimulationTime(Smp::Services::EventId event, Smp::Duration simulationTime) throw (

                Smp::Services::InvalidEventId) = 0;

            /// Update when an existing mission time event on the scheduler 

            /// shall be triggered.

            /// When the given event Id is not a valid identifier of a 

            /// scheduler event, the method throws an exception of type 

            /// InvalidEventId. In case an event is registered under the given 

            /// event Id but it is not an mission time event, the method throws

            /// an exception of type InvalidEventId as well.

            /// 

            /// The missionTime must not be before the current mission time of 

            /// the ITimeKeeper service. Otherwise, the event will never be 

            /// executed, but immediately removed.

            /// @param   event Identifier of event to modify.

            /// @param   missionTime Absolute mission time when to trigger event.

            /// @throws  Smp::Services::InvalidEventId

            virtual void SetEventMissionTime(Smp::Services::EventId event, Smp::Duration missionTime) throw (

                Smp::Services::InvalidEventId) = 0;

            /// Update when an existing epoch time event on the scheduler (an 

            /// event that has been registered using AddEpochTimeEvent()) shall

            /// be triggered.

            /// When the given event Id  is not a valid identifier of a 

            /// scheduler event, the method throws an exception of type 

            /// InvalidEventId. In case an event is registered under the given 

            /// event Id but it is not an epoch time event, the method throws 

            /// an exception of type InvalidEventId as well.

            /// 

            /// The epochTime must not be before the current epoch time of the 

            /// ITimeKeeper service. Otherwise, the event will never be 

            /// executed, but immediately removed.

            /// @param   event Identifier of event to modify.

            /// @param   epochTime Epoch time when to trigger event.

            /// @throws  Smp::Services::InvalidEventId

            virtual void SetEventEpochTime(Smp::Services::EventId event, Smp::DateTime epochTime) throw (

                Smp::Services::InvalidEventId) = 0;

            /// Update when an existing zulu time event on the scheduler shall 

            /// be triggered.

            /// When the given event Id is not a valid identifier of a 

            /// scheduler event, the method throws an exception of type 

            /// InvalidEventId. In case an event is registered under the given 

            /// event Id but it is not an zulu time event, the method throws an

            /// exception of type InvalidEventId as well.

            /// The zuluTime must not be before the current Zulu time of the 

            /// ITimeKeeper service. Otherwise, the event will never be 

            /// executed, but immediately removed.

            /// @param   event Identifier of event to modify.

            /// @param   zuluTime Absolute (Zulu) time when to trigger event.

            /// @throws  Smp::Services::InvalidEventId

            virtual void SetEventZuluTime(Smp::Services::EventId event, Smp::DateTime zuluTime) throw (

                Smp::Services::InvalidEventId) = 0;

            /// Update cycle time of an existing event on the scheduler.

            /// When the given event is not a valid identifier of a scheduler 

            /// event, the method throws an exception of type InvalidEventId.

            /// For a cyclic event, the cycleTime needs to be positive. For 

            /// non-cyclic events, it is ignored.

            /// @param   event Identifier of event to modify.

            /// @param   cycleTime Duration between two triggers of the event.

            /// @throws  Smp::Services::InvalidEventId

            virtual void SetEventCycleTime(Smp::Services::EventId event, Smp::Duration cycleTime) throw (

                Smp::Services::InvalidEventId) = 0;

            /// Update the count of an existing event on the scheduler.

            /// When the given event is not a valid identifier of a scheduler 

            /// event, the method throws an exception of type InvalidEventId.

            /// An event with count=0 is not cyclic. It will be removed 

            /// automatically after is has been triggered.

            /// An event with count>0 is cyclic, and will be repeated count 

            /// times. Therefore, it will be called count+1times, and then it 

            /// will be removed automatically.

            /// An event with count=-1 is cyclic as well, but it will be 

            /// triggered forever, unless it is removed from the scheduler 

            /// using the RemoveEvent() method.

            /// For a cyclic event, the cycleTime needs to be positive. For 

            /// non-cyclic events, it is ignored.

            /// @param   event Identifier of event to modify.

            /// @param   count Number of times the event shall be repeated, or 

            ///          0 for a single event, or -1 for no limit.

            /// @throws  Smp::Services::InvalidEventId

            virtual void SetEventCount(Smp::Services::EventId event, Smp::Int64 count) throw (

                Smp::Services::InvalidEventId) = 0;

            /// Remove an event from the scheduler.

            /// When the given event is not a valid identifier of a scheduler 

            /// event, the method throws an exception of type InvalidEventId.

            /// An event with count=0 is removed automatically after it has 

            /// been triggered.

            /// @param   event Event identifier of the event to remove.

            /// @throws  Smp::Services::InvalidEventId

            virtual void RemoveEvent(Smp::Services::EventId event) throw (

                Smp::Services::InvalidEventId) = 0;

        };


Base Interfaces

Smp::IService
Constants

	Name
	Type
	Description
	Value

	SMP_Scheduler 
	String8
	Name of the Scheduler service.
	Scheduler


Operations

	Name
	Description

	AddEpochTimeEvent
	Add event to scheduler that is called based on epoch time.

	AddImmediateEvent
	Add an immediate event to the scheduler.

	AddMissionTimeEvent
	Add event to scheduler that is called based on mission time.

	AddSimulationTimeEvent
	Add event to scheduler that is called based on simulation time.

	AddZuluTimeEvent
	Add event to scheduler that is called based on Zulu time.

	RemoveEvent
	Remove an event from the scheduler.

	SetEventCount
	Update the count of an existing event on the scheduler.

	SetEventCycleTime
	Update cycle time of an existing event on the scheduler.

	SetEventEpochTime
	Update when an existing epoch time event on the scheduler (an event that has been registered using AddEpochTimeEvent()) shall be triggered.

	SetEventMissionTime
	Update when an existing mission time event on the scheduler shall be triggered.

	SetEventSimulationTime
	Update when an existing simulation time event on the scheduler shall be triggered.

	SetEventZuluTime
	Update when an existing zulu time event on the scheduler shall be triggered.


4.3.1.1 Add Epoch Time Event

Add event to scheduler that is called based on epoch time.
An event with repeat=0 is not cyclic. It will be removed automatically after is has been triggered. 
An event with repeat>0 is cyclic, and will be repeated repeat times. Therefore, it will be called repeat+1 times, and then it will be removed automatically. 
An event with repeat=-1 is cyclic as well, but it will be triggered forever, unless it is removed from the scheduler using the RemoveEvent() method. 
For a cyclic event, the cycleTime needs to be positive. For non-cyclic events, it is ignored. 
The epochTime must not be before the current epoch time of the ITimeKeeper service. Otherwise, the event will never be executed, but immediately removed.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	EventId
	Event identifier that can be used to change or remove event. 

	entryPoint
	in
	IEntryPoint
	Entry point to call from event. 

	epochTime
	in
	DateTime
	Epoch time when to trigger the event for the first time. 

	cycleTime
	in
	Duration
	Duration between two triggers of the event. 

	repeat
	in
	Int64
	Number of times the event shall be repeated, or 0 for a single event, or -1 for no limit. 


Exceptions

Smp::Services::IScheduler::InvalidCycleTime, Smp::Services::IScheduler::InvalidEventTime
4.3.1.2 Add Immediate Event

Add an immediate event to the scheduler.
An immediate event is an event that will be added as a simulation time event (with simulation delta time of 0) at the front of the event queue. As such, it will be executed when the scheduler processes its simulation time events again, but not immediately in the call to AddImmediateEvent().
When the simulator is in Standby state, simulation time does not progress, and simulation time events (including immediate events) are not processed.
Remark: To execute an entry point immediately without going through the scheduler, its Execute() method can be called.
Parameters

	Name
	Dir.
	Type
	Description

	entryPoint
	in
	IEntryPoint
	Entry point to call from event. 

	
	return
	EventId
	Event identifier that can be used to change or remove event. 


Exceptions

None

4.3.1.3 Add Mission Time Event

Add event to scheduler that is called based on mission time.
An event with repeat=0 is not cyclic. It will be removed automatically after is has been triggered. 
An event with repeat>0 is cyclic, and will be repeated repeat times. Therefore, it will be called repeat+1 times, and then it will be removed automatically. 
An event with repeat=-1 is cyclic as well, but it will be triggered forever, unless it is removed from the scheduler using the RemoveEvent() method. 
For a cyclic event, the cycleTime needs to be positive. For non-cyclic events, it is ignored. 
The missionTime must not be before the current mission time of the ITimeKeeper service. Otherwise, the event will never be executed, but immediately removed.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	EventId
	Event identifier that can be used to change or remove event. 

	entryPoint
	in
	IEntryPoint
	Entry point to call from event. 

	missionTime
	in
	Duration
	Absolute mission time when to trigger the event for the first time. 

	cycleTime
	in
	Duration
	Duration between two triggers of the event. 

	repeat
	in
	Int64
	Number of times the event shall be repeated, or 0 for a single event, or -1 for no limit. 


Exceptions

Smp::Services::IScheduler::InvalidCycleTime, Smp::Services::IScheduler::InvalidEventTime
4.3.1.4 Add Simulation Time Event

Add event to scheduler that is called based on simulation time.
An event with repeat=0 is not cyclic. It will be removed automatically after is has been triggered. 
An event with repeat>0 is cyclic, and will be repeated repeat times. Therefore, it will be called repeat+1 times, and then it will be removed automatically. 
An event with repeat=-1 is cyclic as well, but it will be triggered forever, unless it is removed from the scheduler using the RemoveEvent() method. 
For a cyclic event, the cycleTime needs to be positive. For non-cyclic events, it is ignored. 
The simulationTime must not be negative. Otherwise, the event will never be executed, but immediately removed.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	EventId
	Event identifier that can be used to change or remove event. 

	entryPoint
	in
	IEntryPoint
	Entry point to call from event. 

	simulationTime
	in
	Duration
	Duration from now when to trigger the event for the first time. 

	cycleTime
	in
	Duration
	Duration between two triggers of the event. 

	repeat
	in
	Int64
	Number of times the event shall be repeated, or 0 for a single event, or -1 for no limit. 


Exceptions

Smp::Services::IScheduler::InvalidCycleTime, Smp::Services::IScheduler::InvalidEventTime
4.3.1.5 Add Zulu Time Event

Add event to scheduler that is called based on Zulu time.
An event with repeat=0 is not cyclic. It will be removed automatically after is has been triggered. 
An event with repeat>0 is cyclic, and will be repeated repeat times. Therefore, it will be called repeat+1 times, and then it will be removed automatically. 
An event with repeat=-1 is cyclic as well, but it will be triggered forever, unless it is removed from the scheduler using the RemoveEvent() method. 
For a cyclic event, the cycleTime needs to be positive. For non-cyclic events, it is ignored. 
The zuluTime must not be before the current Zulu time of the ITimeKeeper service. Otherwise, the event will never be executed, but immediately removed.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	EventId
	Event identifier that can be used to change or remove event. 

	entryPoint
	in
	IEntryPoint
	Entry point to call from event. 

	simulationTime
	in
	DateTime
	Absolute (Zulu) time when to trigger the event for the first time. 

	cycleTime
	in
	Duration
	Duration between two triggers of the event. 

	repeat
	in
	Int64
	Number of times the event shall be repeated, or 0 for a single event, or -1 for no limit. 


Exceptions

Smp::Services::IScheduler::InvalidCycleTime, Smp::Services::IScheduler::InvalidEventTime
4.3.1.6 Remove Event

Remove an event from the scheduler.
When the given event is not a valid identifier of a scheduler event, the method throws an exception of type InvalidEventId.
An event with count=0 is removed automatically after it has been triggered.
Parameters

	Name
	Dir.
	Type
	Description

	event
	in
	EventId
	Event identifier of the event to remove. 


Exceptions

Smp::Services::InvalidEventId
4.3.1.7 Set Event Count

Update the count of an existing event on the scheduler.
When the given event is not a valid identifier of a scheduler event, the method throws an exception of type InvalidEventId.
An event with count=0 is not cyclic. It will be removed automatically after is has been triggered.
An event with count>0 is cyclic, and will be repeated count times. Therefore, it will be called count+1times, and then it will be removed automatically. 
An event with count=-1 is cyclic as well, but it will be triggered forever, unless it is removed from the scheduler using the RemoveEvent() method. 
For a cyclic event, the cycleTime needs to be positive. For non-cyclic events, it is ignored.
Parameters

	Name
	Dir.
	Type
	Description

	event
	in
	EventId
	Identifier of event to modify. 

	count
	in
	Int64
	Number of times the event shall be repeated, or 0 for a single event, or -1 for no limit. 


Exceptions

Smp::Services::InvalidEventId
4.3.1.8 Set Event Cycle Time

Update cycle time of an existing event on the scheduler.
When the given event is not a valid identifier of a scheduler event, the method throws an exception of type InvalidEventId.
For a cyclic event, the cycleTime needs to be positive. For non-cyclic events, it is ignored.
Parameters

	Name
	Dir.
	Type
	Description

	event
	in
	EventId
	Identifier of event to modify. 

	cycleTime
	in
	Duration
	Duration between two triggers of the event. 


Exceptions

Smp::Services::InvalidEventId
4.3.1.9 Set Event Epoch Time

Update when an existing epoch time event on the scheduler (an event that has been registered using AddEpochTimeEvent()) shall be triggered.
When the given event Id  is not a valid identifier of a scheduler event, the method throws an exception of type InvalidEventId. In case an event is registered under the given event Id but it is not an epoch time event, the method throws an exception of type InvalidEventId as well.
The epochTime must not be before the current epoch time of the ITimeKeeper service. Otherwise, the event will never be executed, but immediately removed.
Parameters

	Name
	Dir.
	Type
	Description

	event
	in
	EventId
	Identifier of event to modify. 

	epochTime
	in
	DateTime
	Epoch time when to trigger event. 


Exceptions

Smp::Services::InvalidEventId
4.3.1.10 Set Event Mission Time

Update when an existing mission time event on the scheduler shall be triggered.
When the given event Id is not a valid identifier of a scheduler event, the method throws an exception of type InvalidEventId. In case an event is registered under the given event Id but it is not an mission time event, the method throws an exception of type InvalidEventId as well.
The missionTime must not be before the current mission time of the ITimeKeeper service. Otherwise, the event will never be executed, but immediately removed.
Parameters

	Name
	Dir.
	Type
	Description

	event
	in
	EventId
	Identifier of event to modify. 

	missionTime
	in
	Duration
	Absolute mission time when to trigger event. 


Exceptions

Smp::Services::InvalidEventId
4.3.1.11 Set Event Simulation Time

Update when an existing simulation time event on the scheduler shall be triggered.
When the given event Id is not a valid identifier of a scheduler event, the method throws an exception of type InvalidEventId. In case an event is registered under the given event Id but it is not an simulation time event, the method throws an exception of type InvalidEventId as well.
The simulationTime must not be negative. Otherwise, the event will never be executed, but immediately removed.
Parameters

	Name
	Dir.
	Type
	Description

	event
	in
	EventId
	Identifier of event to modify. 

	simulationTime
	in
	Duration
	Duration from now when to trigger event. 


Exceptions

Smp::Services::InvalidEventId
4.3.1.12 Set Event Zulu Time

Update when an existing zulu time event on the scheduler shall be triggered.
When the given event Id is not a valid identifier of a scheduler event, the method throws an exception of type InvalidEventId. In case an event is registered under the given event Id but it is not an zulu time event, the method throws an exception of type InvalidEventId as well.
The zuluTime must not be before the current Zulu time of the ITimeKeeper service. Otherwise, the event will never be executed, but immediately removed.
Parameters

	Name
	Dir.
	Type
	Description

	event
	in
	EventId
	Identifier of event to modify. 

	zuluTime
	in
	DateTime
	Absolute (Zulu) time when to trigger event. 


Exceptions

Smp::Services::InvalidEventId
4.3.1.13 Invalid Cycle Time

This exception is thrown by one of the AddEvent() methods of the scheduler when the event is a cyclic event (i.e. repeat is not 0), but the cycle time specified is not a positive duration.
File

#include "Smp/Services/IScheduler.h"

Namespace

Smp::Services::IScheduler
Declaration of InvalidCycleTime

	            /// This exception is thrown by one of the AddEvent() methods of 

            /// the scheduler when the event is a cyclic event (i.e. repeat is 

            /// not 0), but the cycle time specified is not a positive 

            /// duration.

            class InvalidCycleTime : public Smp::Exception    

            {

            public:

                /// Constructor for new exception.

                InvalidCycleTime() throw();        

                /// Copy constructor.

                InvalidCycleTime(

                    InvalidCycleTime& ex) throw();

                /// Virtual destructor to release memory.

                virtual ~InvalidCycleTime();    

            };


Fields

None

4.3.1.14 Invalid Event Time

This exception is thrown by one of the AddEvent() methods of the scheduler when the time specified for the first execution of the event is in the past.
File

#include "Smp/Services/IScheduler.h"

Namespace

Smp::Services::IScheduler
Declaration of InvalidEventTime

	            /// This exception is thrown by one of the AddEvent() methods of 

            /// the scheduler when the time specified for the first execution 

            /// of the event is in the past.

            class InvalidEventTime : public Smp::Exception    

            {

            public:

                /// Constructor for new exception.

                InvalidEventTime() throw();        

                /// Copy constructor.

                InvalidEventTime(

                    InvalidEventTime& ex) throw();

                /// Virtual destructor to release memory.

                virtual ~InvalidEventTime();    

            };


Fields

None

4.4 Event Manager

The event manager service provides a global notification mechanism. Components can register entry points with a global event. Several pre-defined event types exist, but applications can define their own, specific global events as well. 

Although it is possible that any component triggers one of the pre-defined events by calling the Emit() method, models shall not emit pre-defined events, but only user-defined events. 

To prevent accidentally emitting pre-defined events, these have been put into a “namespace”, i.e. a prefix string “Smp_” has been added. It is recommended that user events include a “namespace” as well, for example “MyApp_MyEvent1”.

4.4.1 IEvent Manager

This interface gives access to the Event Manager Service.

Components can register entry points with events, and they can define and emit events.

File

#include "Smp/Services/IEventManager.h"

Namespace

Smp::Services
Declaration of IEventManager

	        /// Unique Identifier of type IEventManager.

        extern const Uuid Uuid_IEventManager;

        /// This interface gives access to the Event Manager Service.

        /// Components can register entry points with events, and they can 

        /// define and emit events.

        class IEventManager :

            public virtual Smp::IService

        {

        public:

            /// Virtual destructor to release memory.

            virtual ~IEventManager() {}    

            /// Get unique event identifier for an event name.

            /// It is guaranteed that this method will always return the same 

            /// value when called with the same event name. This holds for 

            /// pre-defined event names as well as for user-defined events.

            /// @param   eventName Name of the global event.

            /// @return  Event identifier for global event with given name.

            virtual Smp::Services::EventId QueryEventId(Smp::String8 eventName) = 0;

            /// Subscribe entry point to a global event.

            /// This method raises an exception of type InvalidEventId when 

            /// called with an invalid event identifier. When the entry point 

            /// is already subscribed to the same event, an exception of type 

            /// AlreadySubscribed is raised.

            /// 

            /// An entry point can only be subscribed once to an event.

            /// @param   event Event identifier of global event to subscribe to.

            /// @param   entryPoint Entry point to subscribe to global event.

            /// @throws  Smp::Services::IEventManager::AlreadySubscribed

            /// @throws  Smp::Services::InvalidEventId

            virtual void Subscribe(Smp::Services::EventId event, const Smp::IEntryPoint* entryPoint) throw (

                Smp::Services::IEventManager::AlreadySubscribed,

                Smp::Services::InvalidEventId) = 0;

            /// Unsubscribe entry point from a global event.

            /// This method raises an exception of type InvalidEventId when 

            /// called with an invalid event identifier. When the entry point 

            /// is not subscribed to the event, an exception of type 

            /// NotSubscribed is raised.

            /// An entry point can only be unsubscribed from an event when it 

            /// has been subscribed earlier using Subscribe().

            /// @param   event Event identifier of global event to unsubscribe 

            ///          from.

            /// @param   entryPoint Entry point to unsubscribe from global event.

            /// @throws  Smp::Services::InvalidEventId

            /// @throws  Smp::Services::IEventManager::NotSubscribed

            virtual void Unsubscribe(Smp::Services::EventId event, const Smp::IEntryPoint* entryPoint) throw (

                Smp::Services::InvalidEventId,

                Smp::Services::IEventManager::NotSubscribed) = 0;

            /// Emit a global event.

            /// This will call all entry points that are subscribed to the 

            /// global event with the given identifier at the time Emit() is 

            /// called. Entry point subscription/unsubscription during the 

            /// execution of Emit() is taken into account the next time Emit() 

            /// is called. Entry points will be called in the order they have 

            /// been subscribed to the global event.

            /// @param   event Event identifier of global event to emit.

            /// @param   synchronous Flag whether to emit the given event 

            ///          synchronously (the default) or asynchronously.

            virtual void Emit(Smp::Services::EventId event, Smp::Bool synchronous = true) = 0;

        };


Base Interfaces

Smp::IService
Constants

	Name
	Type
	Description
	Value

	SMP_EnterAborting 
	String8
	Enter Aborting state.
	SMP_EnterAborting

	SMP_EnterAbortingId 
	EventId
	This event is raised when entering the Aborting state with the Abort() state transition command from any other state.
	13

	SMP_EnterExecuting 
	String8
	Enter Executing state.
	SMP_EnterExecuting

	SMP_EnterExecutingId 
	EventId
	This event is raised when entering the Executing state with the Run() state transition command from Standby state.
	6

	SMP_EnterExiting 
	String8
	Enter Exiting state.
	SMP_EnterExiting

	SMP_EnterExitingId 
	EventId
	This event is raised when entering the Exiting state with the Exit() state transition command from Standby state.
	12

	SMP_EnterInitialising 
	String8
	Enter Initialising state.
	SMP_EnterInitialising

	SMP_EnterInitialisingId 
	EventId
	This event is raised when entering the Initialising state with an automatic state transition from Connecting state, or with the Initialise() state transition.
	2

	SMP_EnterReconnecting 
	String8
	Enter Reconnecting state.
	SMP_EnterReconnecting

	SMP_EnterReconnectingId 
	EventId
	This event is raised when entering the Reconnecting state with the Reconnect() state transition from Standby state.
	16

	SMP_EnterRestoring 
	String8
	Enter Restoring state.
	SMP_EnterRestoring

	SMP_EnterRestoringId 
	EventId
	This event is raised when entering the Restoring state with the Restore() state transition command from Standby state.
	10

	SMP_EnterStandby 
	String8
	Enter Standby state.
	SMP_EnterStandby

	SMP_EnterStandbyId 
	EventId
	This event is raised when entering the Standby state with an automatic state transition from Initialising, Storing or Restoring state, or with the Hold() state transition command from Executing state.
	4

	SMP_EnterStoring 
	String8
	Enter Storing state.
	SMP_EnterStoring

	SMP_EnterStoringId 
	EventId
	This event is raised when entering the Storing state with the Store() state transition command from Standby state.
	8

	SMP_EpochTimeChanged 
	String8
	Epoch Time has changed.
	SMP_EpochTimeChanged

	SMP_EpochTimeChangedId 
	EventId
	This event is raised when changing the epoch time with the SetEpochTime() method of the time keeper service.
	14

	SMP_EventManager 
	String8
	Name of the EventManager service.
	EventManager

	SMP_LeaveConnecting 
	String8
	Leave Connecting state.
	SMP_LeaveConnecting

	SMP_LeaveConnectingId 
	EventId
	This event is raised when leaving the Connecting state with an automatic state transition to Initializing state.
	1

	SMP_LeaveExecuting 
	String8
	Leave Executing state.
	SMP_LeaveExecuting

	SMP_LeaveExecutingId 
	EventId
	This event is raised when leaving the Executing state with the Hold() state transition command to Standby state.
	7

	SMP_LeaveInitialising 
	String8
	Leave Initialising state.
	SMP_LeaveInitialising

	SMP_LeaveInitialisingId 
	EventId
	This event is raised when leaving the Initialising state with an automatic state transition to Standby state.
	3

	SMP_LeaveReconnecting 
	String8
	Leave Reconnecting state.
	SMP_LeaveReconnecting

	SMP_LeaveReconnectingId 
	EventId
	This event is raised when leaving the Reconnecting state with an automatic state transition to Standby state.
	17

	SMP_LeaveRestoring 
	String8
	Leave Restoring state.
	SMP_LeaveRestoring

	SMP_LeaveRestoringId 
	EventId
	This event is raised when leaving the Restoring state with an automatic state transition to Standby state.
	11

	SMP_LeaveStandby 
	String8
	Leave Standby state.
	SMP_LeaveStandby

	SMP_LeaveStandbyId 
	EventId
	This event is raised when leaving the Standby state with the Run() state transition command to Executing state, with the Store() state transition command to Storing state, with the Restore() state transition command to Restoring state, or with the Initialise() state transition command to Initialising state.
	5

	SMP_LeaveStoring 
	String8
	Leave Storing state.
	SMP_LeaveStoring

	SMP_LeaveStoringId 
	EventId
	This event is raised when leaving the Storing state with an automatic state transition to Standby state.
	9

	SMP_MissionTimeChanged 
	String8
	Mission time has changed.
	SMP_MissionTimeChanged

	SMP_MissionTimeChangedId 
	EventId
	This event is raised when changing the mission time with one of the SetMissionTime() and SetMissionStart() methods of the time keeper service.
	15


Operations

	Name
	Description

	Emit
	Emit a global event.

	QueryEventId
	Get unique event identifier for an event name.

	Subscribe
	Subscribe entry point to a global event.

	Unsubscribe
	Unsubscribe entry point from a global event.


4.4.1.1 Emit

Emit a global event.
This will call all entry points that are subscribed to the global event with the given identifier at the time Emit() is called. Entry point subscription/unsubscription during the execution of Emit() is taken into account the next time Emit() is called. Entry points will be called in the order they have been subscribed to the global event.
Parameters

	Name
	Dir.
	Type
	Description

	event
	in
	EventId
	Event identifier of global event to emit. 

	synchronous
	in
	Bool
	Flag whether to emit the given event synchronously (the default) or asynchronously. 


Exceptions

None

4.4.1.2 Query Event Id

Get unique event identifier for an event name.
It is guaranteed that this method will always return the same value when called with the same event name. This holds for pre-defined event names as well as for user-defined events.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	EventId
	Event identifier for global event with given name. 

	eventName
	in
	String8
	Name of the global event. 


Exceptions

None

4.4.1.3 Subscribe

Subscribe entry point to a global event.
This method raises an exception of type InvalidEventId when called with an invalid event identifier. When the entry point is already subscribed to the same event, an exception of type AlreadySubscribed is raised.
An entry point can only be subscribed once to an event.
Parameters

	Name
	Dir.
	Type
	Description

	event
	in
	EventId
	Event identifier of global event to subscribe to. 

	entryPoint
	in
	IEntryPoint
	Entry point to subscribe to global event. 


Exceptions

Smp::Services::InvalidEventId, Smp::Services::IEventManager::AlreadySubscribed
4.4.1.4 Unsubscribe

Unsubscribe entry point from a global event.
This method raises an exception of type InvalidEventId when called with an invalid event identifier. When the entry point is not subscribed to the event, an exception of type NotSubscribed is raised.
An entry point can only be unsubscribed from an event when it has been subscribed earlier using Subscribe().
Parameters

	Name
	Dir.
	Type
	Description

	event
	in
	EventId
	Event identifier of global event to unsubscribe from. 

	entryPoint
	in
	IEntryPoint
	Entry point to unsubscribe from global event. 


Exceptions

Smp::Services::InvalidEventId, Smp::Services::IEventManager::NotSubscribed
4.4.1.5 Already Subscribed

This exception is raised when trying to subscribe an entry point to an event that is already subscribed.
File

#include "Smp/Services/IEventManager.h"

Namespace

Smp::Services::IEventManager
Declaration of AlreadySubscribed

	            /// This exception is raised when trying to subscribe an entry 

            /// point to an event that is already subscribed.

            class AlreadySubscribed : public Smp::Exception    

            {

            public:

                /// Constructor for new exception.

                /// @param   eventName Name of event the entry point is already

                ///          subscribed to.

                /// @param   entryPoint Entry point that is already subscribed.

                AlreadySubscribed(

                    Smp::String8 eventName,

                    const IEntryPoint* _entryPoint) throw() ;

                /// Copy constructor.

                AlreadySubscribed(

                    AlreadySubscribed& ex) throw();

                /// Virtual destructor to release memory.

                virtual ~AlreadySubscribed();    

                /// Name of event the entry point is already subscribed to.

                Smp::String8 eventName;

                /// Entry point that is already subscribed.

                Smp::IEntryPoint* entryPoint;

            };


Fields

	Name
	Type
	Description

	entryPoint
	IEntryPoint
	Entry point that is already subscribed.

	eventName
	String8
	Name of event the entry point is already subscribed to.


4.4.1.6 Not Subscribed

This exception is raised when trying to unsubscribe an entry point from an event that is not subscribed to it.
File

#include "Smp/Services/IEventManager.h"

Namespace

Smp::Services::IEventManager
Declaration of NotSubscribed

	            /// This exception is raised when trying to unsubscribe an entry 

            /// point from an event that is not subscribed to it.

            class NotSubscribed : public Smp::Exception    

            {

            public:

                /// Constructor for new exception.

                /// @param   eventName Name of event the entry point is not 

                ///          subscribed to.

                /// @param   entryPoint Entry point that is not subscribed.

                NotSubscribed(

                    Smp::String8 eventName,

                    Smp::IEntryPoint* entryPoint) throw();        

                /// Copy constructor.

                NotSubscribed(

                    NotSubscribed& ex) throw();

                /// Virtual destructor to release memory.

                virtual ~NotSubscribed();    

                /// Name of event the entry point is not subscribed to.

                Smp::String8 eventName;

                /// Entry point that is not subscribed.

                const Smp::IEntryPoint* entryPoint;

            };


Fields

	Name
	Type
	Description

	entryPoint
	IEntryPoint
	Entry point that is not subscribed.

	eventName
	String8
	Name of event the entry point is not subscribed to.


4.4.2 Predefined Event Types

[image: image5.emf]<<constant>>+SMP_LeaveConnectingId : EventId = 1 <<constant>>+SMP_LeaveConnecting : String8 = SMP_LeaveConnecting <<constant>>+SMP_EnterInitialisingId : EventId = 2 <<constant>>+SMP_EnterInitialising : String8 = SMP_EnterInitialising <<constant>>+SMP_LeaveInitialisingId : EventId = 3 <<constant>>+SMP_LeaveInitialising : String8 = SMP_LeaveInitialising <<constant>>+SMP_EnterStandbyId : EventId = 4 <<constant>>+SMP_EnterStandby : String8 = SMP_EnterStandby <<constant>>+SMP_LeaveStandbyId : EventId = 5 <<constant>>+SMP_LeaveStandby : String8 = SMP_LeaveStandby <<constant>>+SMP_EnterExecutingId : EventId = 6 <<constant>>+SMP_EnterExecuting : String8 = SMP_EnterExecuting <<constant>>+SMP_LeaveExecutingId : EventId = 7 <<constant>>+SMP_LeaveExecuting : String8 = SMP_LeaveExecuting <<constant>>+SMP_EnterStoringId : EventId = 8 <<constant>>+SMP_EnterStoring : String8 = SMP_EnterStoring <<constant>>+SMP_LeaveStoringId : EventId = 9 <<constant>>+SMP_LeaveStoring : String8 = SMP_LeaveStoring <<constant>>+SMP_EnterRestoringId : EventId = 10 <<constant>>+SMP_EnterRestoring : String8 = SMP_EnterRestoring <<constant>>+SMP_LeaveRestoringId : EventId = 11 <<constant>>+SMP_LeaveRestoring : String8 = SMP_LeaveRestoring <<constant>>+SMP_EnterExitingId : EventId = 12 <<constant>>+SMP_EnterExiting : String8 = SMP_EnterExiting <<constant>>+SMP_EnterAbortingId : EventId = 13 <<constant>>+SMP_EnterAborting : String8 = SMP_EnterAborting <<constant>>+SMP_EpochTimeChangedId : EventId = 14 <<constant>>+SMP_EpochTimeChanged : String8 = SMP_EpochTimeChanged <<constant>>+SMP_MissionTimeChangedId : EventId = 15 <<constant>>+SMP_MissionTimeChanged : String8 = SMP_MissionTimeChanged <<constant>>+SMP_EnterReconnectingId : EventId = 16 <<constant>>+SMP_EnterReconnecting : String8 = SMP_EnterReconnecting <<constant>>+SMP_LeaveReconnectingId : EventId = 17 <<constant>>+SMP_LeaveReconnecting : String8 = SMP_LeaveReconnecting ... IEventManager


Figure 5 - Predefined Event Types

The Event Manager supports some global event names and ids defined for state changes of the simulation environment, or for a modified epoch or mission time. The state transition events clearly indicate in their names whether they are emitted when entering the corresponding state, or when leaving it. 

The events indicating changes in either mission or epoch time are raised after the corresponding time has been changed, so that an immediate call to the time keeper service will return the new epoch or mission time, respectively. 

The names and ids of the predefined event kinds are as listed in the table below. As most of these events relate to state changes, the state diagram of the simulation environment is shown in Figure 2 - Simulation Environment State Diagram with State Transition Methods on page 112.

	Event Name
	Id
	Description

	LeaveConnecting
	1
	This event is raised when leaving the Connecting state with an automatic state transition to Initializing state.

	EnterInitialising
	2
	This event is raised when entering the Initialising state with an automatic state transition from Connecting state, or with the Initialise() state transition.

	LeaveInitialising
	3
	This event is raised when leaving the Initialising state with an automatic state transition to Standby state.

	EnterStandby
	4
	This event is raised when entering the Standby state with an automatic state transition from Initialising, Storing or Restoring state, or with the Hold() state transition command from Executing state.

	LeaveStandby
	5
	This event is raised when leaving the Standby state with the Run()state transition command to Executing state, with the Store()state transition command to Storing state, with the Restore()state transition command to Restoring state, or with the Initialise() state transition command to Initialising state.

	EnterExecuting
	6
	This event is raised when entering the Executing state with the Run() state transition command from Standby state.

	LeaveExecuting
	7
	This event is raised when leaving the Executing state with the Hold() state transition command to Standby state.

	EnterStoring
	8
	This event is raised when entering the Storing state with the Store() state transition command from Standby state.

	LeaveStoring
	9
	This event is raised when leaving the Storing state with an automatic state transition to Standby state.

	EnterRestoring
	10
	This event is raised when entering the Restoring state with the Restore() state transition command from Standby state.

	LeaveRestoring
	11
	This event is raised when leaving the Restoring state with an automatic state transition to Standby state.

	EnterExiting
	12
	This event is raised when entering the Exiting state with the Exit() state transition command from Standby state.

	EnterAborting
	13
	This event is raised when entering the Aborting state with the Abort() state transition command from any other state.

	EpochTimeChanged
	14
	This event is raised when changing the epoch time with the SetEpochTime() method of the time keeper service.

	MissionTimeChanged
	15
	This event is raised when changing the mission time with one of the SetMissionTime() and SetMissionStart() methods of the time keeper service.

	EnterReconnecting
	16
	This event is raised when entering the Reconnecting state with the Reconnect() state transition from Standby state.

	LeaveReconnecting
	17
	This event is raised when leaving the Reconnecting state with an automatic state transition to Standby state.


User-defined event ids can be generated using the QueryEventId() method, which will return the same identifier every time it is called with the identical event name.

4.5 Resolver

Components can use the Resolver to resolve references to other components by name. References can either be specified using a fully qualified path, or using a path relative to some other component.

4.5.1 IResolver

This interface gives access to the Resolver Service.

File

#include "Smp/Services/IResolver.h"

Namespace

Smp::Services
Declaration of IResolver

	        /// Unique Identifier of type IResolver.

        extern const Uuid Uuid_IResolver;

        /// This interface gives access to the Resolver Service.

        class IResolver :

            public virtual Smp::IService

        {

        public:

            /// Virtual destructor to release memory.

            virtual ~IResolver() {}    

            /// Resolve reference to component via absolute path.

            /// 

            /// An absolute path contains the name of either the Models or the 

            /// Services container, but not the name of the simulator, although

            /// the simulator itself is the top-level component. This allows 

            /// keeping names as short as possible, and avoids a dependency on 

            /// the name of the simulator itself.

            /// @param   absolutePath Absolute path to component in simulation.

            /// @return  Component identified by path, or null if no component 

            ///          with the given path could be found.

            virtual Smp::IComponent* ResolveAbsolute(Smp::String8 absolutePath) = 0;

            /// Resolve reference to component via relative path.

            /// @param   relativePath Relative path to component in simulation.

            /// @param   sender Component that asks for resolving the reference.

            /// @return  Component identified by path, or null if no component 

            ///          with the given path could be found.

            virtual Smp::IComponent* ResolveRelative(Smp::String8 relativePath, Smp::IComponent* sender) = 0;

        };


Base Interfaces

Smp::IService
Constants

	Name
	Type
	Description
	Value

	SMP_Resolver 
	String8
	Name of the Resolver service.
	Resolver


Operations

	Name
	Description

	ResolveAbsolute
	Resolve reference to component via absolute path.

	ResolveRelative
	Resolve reference to component via relative path.


4.5.1.1 Resolve Absolute

Resolve reference to component via absolute path.
An absolute path contains the name of either the Models or the Services container, but not the name of the simulator, although the simulator itself is the top-level component. This allows keeping names as short as possible, and avoids a dependency on the name of the simulator itself.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	IComponent
	Component identified by path, or null if no component with the given path could be found. 

	absolutePath
	in
	String8
	Absolute path to component in simulation. 


Exceptions

None

4.5.1.2 Resolve Relative

Resolve reference to component via relative path.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	IComponent
	Component identified by path, or null if no component with the given path could be found. 

	relativePath
	in
	String8
	Relative path to component in simulation. 

	sender
	in
	IComponent
	Component that asks for resolving the reference. 


Exceptions

None

4.5.2 Component Paths

The Resolver can be used to resolve component references by name, either by a full path or by a relative path with respect to a given component. Therefore, it needs to be specified how path names have to be built. As all components in the tree of a simulation have a name, all that needs to be specified is how these names compose a path name, and how the parent component is identified. 

Rule 1: Component names are assembled with one of the following characters: "\", "/", "!" 

Rule 2: The parent component is specified by the following string: ".." 

Examples: 

Models/Satellite/Receivers/Receiver1 

Services!Logger 

..\..\Transmitters\Transmitter4

4.6 Link Registry

The Link Registry service maintains a list of all links between components, and can be used to find out whether a component can be safely removed from the simulation.

4.6.1 ILink Registry

This interface is implemented by the Link Registry Service.

The link registry maintains a global collection of links between components. Links can be added and removed, and can be queried for. Further, the link registry supports fetching and removing all links to a given target.

File

#include "Smp/Services/ILinkRegistry.h"

Namespace

Smp::Services
Declaration of ILinkRegistry

	        /// Unique Identifier of type ILinkRegistry.

        extern const Uuid Uuid_ILinkRegistry;

        /// This interface is implemented by the Link Registry Service.

        /// The link registry maintains a global collection of links between 

        /// components. Links can be added and removed, and can be queried for.

        /// Further, the link registry supports fetching and removing all links 

        /// to a given target.

        class ILinkRegistry :

            public virtual Smp::IService

        {

        public:

            /// Virtual destructor to release memory.

            virtual ~ILinkRegistry() {}    

            /// Add a link from source component to target component.

            /// This method informs the link registry that a link between two 

            /// components has been created. The link registry does not create 

            /// this link, it only gets told about its existence.

            /// This method can be called several times with the same 

            /// arguments, when a source component has several links to the 

            /// same target component.

            /// @param   source Source component of link (i.e. the component 

            ///          that links to another component).

            /// @param   target Target component of link (i.e. the component 

            ///          that is being linked to by another component).

            virtual void AddLink(Smp::IComponent* source, Smp::IComponent* target) = 0;

            /// Returns true if a link between source and target exists, false 

            /// otherwise.

            /// @param   source Source component of link  (i.e. the component 

            ///          that links to another component).

            /// @param   target Target component of link  (i.e. the component 

            ///          that is being linked to by another component).

            /// @return  True if such a link has been added before (and not 

            ///          been removed), false otherwise.

            virtual Smp::Bool HasLink(Smp::IComponent* source, Smp::IComponent* target) = 0;

            /// Remove a link between source and target that has been added to 

            /// the service using AddLink() before.

            /// This method informs the link registry that a link between two 

            /// components has been deleted. The link registry does not delete 

            /// this link, it only gets told about the fact that the link no 

            /// longer exists.

            /// This method can be called several times with the same 

            /// arguments, when a source component had several links to the 

            /// same target component.

            /// @param   source Source component of link (i.e. the component 

            ///          that links to another component).

            /// @param   target Target component of link (i.e. the component 

            ///          that is being linked to by another component).

            virtual void RemoveLink(Smp::IComponent* source, Smp::IComponent* target) = 0;

            /// Returns a collection of all sources that have a link to the 

            /// given target.

            /// This method returns the collection of source components for 

            /// which a link to the given target component has been added to 

            /// the link registry.

            /// @param   target Target component to returns links for.

            /// @return  Collection of source components which link to the 

            ///          given target.

            virtual const Smp::ComponentCollection* GetLinks(Smp::IComponent* target) const = 0;

            /// Returns true if all sources linking to the given target can be 

            /// asked to remove their link(s), false otherwise.

            /// This method checks whether all sources that have a link to the 

            /// given target implement the optional interface 

            /// ILinkingComponent. If so, they can be asked to remove their 

            /// links. The method returns false if at least one source exists 

            /// that does not implement the ILinkingComponent interface.

            /// @param   target Target component to check for links.

            /// @return  True if all links to the given target can be removed, 

            ///          false otherwise.

            virtual Smp::Bool CanRemove(Smp::IComponent* target) = 0;

            /// Removes all links to the given target.

            /// This method calls the RemoveLinks() method of all source 

            /// components that implement the optional ILinkingComponent 

            /// interface, so it asks all link sources to remove their links to

            /// the given target.

            /// @param   target Target component of link (i.e. the component 

            ///          that is being linked to by other components).

            virtual void RemoveLinks(Smp::IComponent* target) = 0;

        };


Base Interfaces

Smp::IService
Constants

	Name
	Type
	Description
	Value

	SMP_LinkRegistry 
	String8
	Name of the LinkRegistry service.
	LinkRegistry


Operations

	Name
	Description

	AddLink
	Add a link from source component to target component.

	CanRemove
	Returns true if all sources linking to the given target can be asked to remove their link(s), false otherwise.

	GetLinks
	Returns a collection of all sources that have a link to the given target.

	HasLink
	Returns true if a link between source and target exists, false otherwise.

	RemoveLink
	Remove a link between source and target that has been added to the service using AddLink() before.

	RemoveLinks
	Removes all links to the given target.


4.6.1.1 Add Link

Add a link from source component to target component.
This method informs the link registry that a link between two components has been created. The link registry does not create this link, it only gets told about its existence.
This method can be called several times with the same arguments, when a source component has several links to the same target component.
Parameters

	Name
	Dir.
	Type
	Description

	source
	in
	IComponent
	Source component of link (i.e. the component that links to another component). 

	target
	in
	IComponent
	Target component of link (i.e. the component that is being linked to by another component). 


Exceptions

None

4.6.1.2 Can Remove

Returns true if all sources linking to the given target can be asked to remove their link(s), false otherwise.
This method checks whether all sources that have a link to the given target implement the optional interface ILinkingComponent. If so, they can be asked to remove their links. The method returns false if at least one source exists that does not implement the ILinkingComponent interface.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	Bool
	True if all links to the given target can be removed, false otherwise. 

	target
	in
	IComponent
	Target component to check for links. 


Exceptions

None

4.6.1.3 Get Links

Returns a collection of all sources that have a link to the given target.
This method returns the collection of source components for which a link to the given target component has been added to the link registry.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	ComponentCollection
	Collection of source components which link to the given target. 

	target
	in
	IComponent
	Target component to returns links for. 


Exceptions

None

4.6.1.4 Has Link

Returns true if a link between source and target exists, false otherwise.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	Bool
	True if such a link has been added before (and not been removed), false otherwise. 

	source
	in
	IComponent
	Source component of link  (i.e. the component that links to another component). 

	target
	in
	IComponent
	Target component of link  (i.e. the component that is being linked to by another component). 


Exceptions

None

4.6.1.5 Remove Link

Remove a link between source and target that has been added to the service using AddLink() before.
This method informs the link registry that a link between two components has been deleted. The link registry does not delete this link, it only gets told about the fact that the link no longer exists.
This method can be called several times with the same arguments, when a source component had several links to the same target component.
Parameters

	Name
	Dir.
	Type
	Description

	source
	in
	IComponent
	Source component of link (i.e. the component that links to another component). 

	target
	in
	IComponent
	Target component of link (i.e. the component that is being linked to by another component). 


Exceptions

None

4.6.1.6 Remove Links

Removes all links to the given target.
This method calls the RemoveLinks() method of all source components that implement the optional ILinkingComponent interface, so it asks all link sources to remove their links to the given target.
Parameters

	Name
	Dir.
	Type
	Description

	target
	in
	IComponent
	Target component of link (i.e. the component that is being linked to by other components). 


Exceptions

None

5 
Publication

SMP Models can publish their fields, operations and properties to a publication receiver by calling the operations declared in the IPublication interface that is provided by the simulation environment when calling the model’s Publish() method. For every field, operation, property or parameter, a type needs to be specified during publication. As C++ does not have a type reflection mechanism, the C++ implementation of publication provides a type registry.

Therefore, the C++ implementation of publication is split into two major parts:

1. It allows registering user-defined types using their unique type identification (UUID).

2. It allows publishing fields, operations and properties of models.

Fields are published to allow store and restore of their values (state), to show them at run-time (view), and to support dataflow based simulation (input/output). Operations and properties are published to show them at run-time (view), and to support their use in script files. As this is limited to value types, only these are published into the type registry. Consequently, only properties of value types, and operations that only use value types for their parameters and return values can be published using the IPublication interface.

5.1 Type Registry

The Simulation Environment has to provide a single Type Registry that provides the following operations:

· A set of Add...() operations to register user-defined types.

· The GetType() operation to query for already registered types.

Registration of types is defined as part of the Package (see Smdl Package in section 6.6), but can be done by other mechanisms as well. However, it is mandatory that a type has been registered before it can be used by a feature. Further, a type most only be registered once. Trying to register the same type a second time (under the same UUID) results in an exception.

A type is basically registered by its name, description and UUID. For complex types, additional information (e.g. enumeration literals, or fields of a structure) is added. As the UUID of a type must be unique, there can be only one type registered under a given UUID.

The type registry provides the following operations to add types to it:

AddFloatType 

Registers a user-defined Float taking the minimum, maximum, the inclusive flags and the unit name as additional publication attributes.

AddIntegerType 
Registers a user-defined Integer taking the minimum and maximum values as additional publication attributes.

AddEnumerationType
Registers a user-defined Enumeration, taking the size of the memory enumeration as additional publication attribute. The enumeration literals have to be added in subsequent calls to the returned IEnumerationType interface.

AddArrayType 

Registers a user-defined Array, taking the item type, item size and the array size as additional publication attributes.

AddStringType 

Registers a user-defined String, taking the string size as additional publication attribute.

AddStructureType 
Registers a user-defined Structure. The fields of the structure have to be added in subsequent calls to the returned IStructureType interface.

AddClassType 

Registers a user-defined Class, taking the type of a potential base class as additional publication attribute. The fields of the class have to be published in subsequent calls of the returned IClassType interface.

Each of these operations returns an instance of IType, or a derived interface.

5.1.1 IType Registry

This interface defines a registration mechanism for user types.

File

#include "Smp/Publication/ITypeRegistry.h"

Namespace

Smp::Publication
Declaration of ITypeRegistry

	        /// Unique Identifier of type ITypeRegistry.

        extern const Uuid Uuid_ITypeRegistry;

        /// This interface defines a registration mechanism for user types.

        class ITypeRegistry

        {

        public:

            /// Virtual destructor to release memory.

            virtual ~ITypeRegistry() {}    

            /// Returns a type by its simple type kind.

            /// @remarks This method can be used to map primitive types to the 

            ///          IType interface, to treat all types identically.

            /// @param   type Primitive type the type is requested for.

            /// @return  Interface to the requested type.

            virtual Smp::Publication::IType* GetType(Smp::PrimitiveTypeKind type) const = 0;

            /// Returns a type by universally unique identifier.

            /// @remarks This method can be used to find out whether a specific

            ///          type has been registered before.

            /// @param   typeUuid Universally unique identifier for the 

            ///          requested type.

            /// @return  Interface of the requested type, or null if no type 

            ///          with the registered Uuid could be found.

            virtual Smp::Publication::IType* GetType(Smp::Uuid typeUuid) const = 0;

            /// Add a float type to the registry.

            /// IManagedModel and IDynamicInvocation support fields, parameters

            /// and operations of Float types via the ST_Float32 and ST_Float64

            /// primitive type, as a Float is mapped either to Float32 or 

            /// Float64.

            /// @param   name Name of the registered type.

            /// @param   description Description of the registered type.

            /// @param   typeUuid Universally unique identifier of the 

            ///          registered type.

            /// @param   minimum Minimum value for float.

            /// @param   maximum Maximum value for float.

            /// @param   minInclusive Flag whether the minimum value for float 

            ///          is valid or not.

            /// @param   maxInclusive Flag whether the maximum value for float 

            ///          is valid or not.

            /// @param   unit Unit of the type.

            /// @param   type Primitive type to use for Float type.

            /// @return  Interface to new type.

            /// @throws  Smp::Publication::ITypeRegistry::AlreadyRegistered

            virtual Smp::Publication::IType* AddFloatType(

                Smp::String8 name,

                Smp::String8 description,

                Smp::Uuid typeUuid,

                Smp::Float64 minimum,

                Smp::Float64 maximum,

                Smp::Bool minInclusive,

                Smp::Bool maxInclusive,

                Smp::String8 unit,

                Smp::PrimitiveTypeKind type = PTK_Float64) throw (

                Smp::Publication::ITypeRegistry::AlreadyRegistered) = 0;

            /// Add an integer type to the registry.

            /// IManagedModel and IDynamicInvocation support fields, parameters

            /// and operations of Integer types via the ST_Int primitive types,

            /// as an Integer is mapped to one of Int8 / Int16 / Int32 / Int64 

            /// / UInt8 / UInt16 / UInt32.

            /// @param   name Name of the registered type.

            /// @param   description Description of the registered type.

            /// @param   typeUuid Universally unique identifier of the 

            ///          registered type.

            /// @param   minimum Minimum value for integer.

            /// @param   maximum Maximum value for integer.

            /// @param   unit Unit of the type.

            /// @param   type Primitive type to use for Integer type.

            /// @return  Interface to new type.

            /// @throws  Smp::Publication::ITypeRegistry::AlreadyRegistered

            virtual Smp::Publication::IType* AddIntegerType(

                Smp::String8 name,

                Smp::String8 description,

                Smp::Uuid typeUuid,

                Smp::Int64 minimum,

                Smp::Int64 maximum,

                Smp::String8 unit,

                Smp::PrimitiveTypeKind type = PTK_Int32) throw (

                Smp::Publication::ITypeRegistry::AlreadyRegistered) = 0;

            /// Add an enumeration type to the registry.

            /// @param   name Name of the registered type.

            /// @param   description Description of the registered type.

            /// @param   typeUuid Universally unique identifier of the 

            ///          registered type.

            /// @param   memorySize Size of an instance of this enumeration in 

            ///          bytes. Valid values are 1, 2, 4, 8

            /// @return  Interface to new type.

            /// @throws  Smp::Publication::ITypeRegistry::AlreadyRegistered

            virtual Smp::Publication::IType* AddEnumerationType(

                Smp::String8 name,

                Smp::String8 description,

                Smp::Uuid typeUuid,

                Smp::Int16 memorySize) throw (

                Smp::Publication::ITypeRegistry::AlreadyRegistered) = 0;

            /// Add an array type to the registry.

            /// @param   name Name of the registered type.

            /// @param   description Description of the registered type.

            /// @param   typeUuid Universally unique identifier of the 

            ///          registered type.

            /// @param   itemTypeUuid Universally unique identifier of the Type

            ///          of the array items.

            /// @param   itemSize Size of an array item in bytes.

            /// @param   arrayCount Number of elements in the array.

            /// @return  Interface to new type.

            /// @throws  Smp::Publication::ITypeRegistry::AlreadyRegistered

            virtual Smp::Publication::IType* AddArrayType(

                Smp::String8 name,

                Smp::String8 description,

                Smp::Uuid typeUuid,

                Smp::Uuid itemTypeUuid,

                Smp::Int64 itemSize,

                Smp::Int64 arrayCount) throw (

                Smp::Publication::ITypeRegistry::AlreadyRegistered) = 0;

            /// Add a string type to the registry.

            /// @param   name Name of the registered type.

            /// @param   description Description of the registered type.

            /// @param   typeUuid Universally unique identifier of the 

            ///          registered type.

            /// @param   length Maximum length of the string.

            /// @return  Interface to new type.

            /// @throws  Smp::Publication::ITypeRegistry::AlreadyRegistered

            virtual Smp::Publication::IType* AddStringType(

                Smp::String8 name,

                Smp::String8 description,

                Smp::Uuid typeUuid,

                Smp::Int64 length) throw (

                Smp::Publication::ITypeRegistry::AlreadyRegistered) = 0;

            /// Add a structure type to the registry.

            /// @param   name Name of the registered type.

            /// @param   description Description of the registered type.

            /// @param   typeUuid Universally unique identifier of the 

            ///          registered type.

            /// @return  Interface to new type that allows adding fields.

            /// @throws  Smp::Publication::ITypeRegistry::AlreadyRegistered

            virtual Smp::Publication::IStructureType* AddStructureType(

                Smp::String8 name,

                Smp::String8 description,

                Smp::Uuid typeUuid) throw (

                Smp::Publication::ITypeRegistry::AlreadyRegistered) = 0;

            /// Add a class type to the registry.

            /// @param   name Name of the registered type.

            /// @param   description Description of the registered type.

            /// @param   typeUuid Universally unique identifier of the 

            ///          registered type.

            /// @param   bassClassUuid baseClassUuid  Universally unique 

            ///          identifier of the base class.

            /// @return  Interface to new type that allows adding fields.

            /// @throws  Smp::Publication::ITypeRegistry::AlreadyRegistered

            virtual Smp::Publication::IClassType* AddClassType(

                Smp::String8 name,

                Smp::String8 description,

                Smp::Uuid typeUuid,

                Smp::Uuid bassClassUuid) throw (

                Smp::Publication::ITypeRegistry::AlreadyRegistered) = 0;

        };


Base Interfaces

None

Operations

	Name
	Description

	AddArrayType
	Add an array type to the registry.

	AddClassType
	Add a class type to the registry.

	AddEnumerationType
	Add an enumeration type to the registry.

	AddFloatType
	Add a float type to the registry.

	AddIntegerType
	Add an integer type to the registry.

	AddStringType
	Add a string type to the registry.

	AddStructureType
	Add a structure type to the registry.

	GetType
	Returns a type by its simple type kind.

	GetType
	Returns a type by universally unique identifier.


5.1.1.1 Add Array Type

Add an array type to the registry.
Parameters

	Name
	Dir.
	Type
	Description

	name
	in
	String8
	Name of the registered type. 

	description
	in
	String8
	Description of the registered type. 

	typeUuid
	in
	Uuid
	Universally unique identifier of the registered type. 

	itemTypeUuid
	in
	Uuid
	Universally unique identifier of the Type of the array items. 

	itemSize
	in
	Int64
	Size of an array item in bytes. 

	arrayCount
	in
	Int64
	Number of elements in the array. 

	
	return
	IType
	Interface to new type. 


Exceptions

Smp::Publication::ITypeRegistry::AlreadyRegistered
5.1.1.2 Add Class Type

Add a class type to the registry.
Parameters

	Name
	Dir.
	Type
	Description

	name
	in
	String8
	Name of the registered type. 

	description
	in
	String8
	Description of the registered type. 

	typeUuid
	in
	Uuid
	Universally unique identifier of the registered type. 

	bassClassUuid
	in
	Uuid
	baseClassUuid  Universally unique identifier of the base class. 

	
	return
	IClassType
	Interface to new type that allows adding fields. 


Exceptions

Smp::Publication::ITypeRegistry::AlreadyRegistered
5.1.1.3 Add Enumeration Type

Add an enumeration type to the registry.
Parameters

	Name
	Dir.
	Type
	Description

	name
	in
	String8
	Name of the registered type. 

	description
	in
	String8
	Description of the registered type. 

	typeUuid
	in
	Uuid
	Universally unique identifier of the registered type. 

	memorySize
	in
	Int16
	Size of an instance of this enumeration in bytes. Valid values are 1, 2, 4, 8 

	
	return
	IType
	Interface to new type. 


Exceptions

Smp::Publication::ITypeRegistry::AlreadyRegistered
5.1.1.4 Add Float Type

Add a float type to the registry.
IManagedModel and IDynamicInvocation support fields, parameters and operations of Float types via the ST_Float32 and ST_Float64 primitive type, as a Float is mapped either to Float32 or Float64.
Parameters

	Name
	Dir.
	Type
	Description

	name
	in
	String8
	Name of the registered type. 

	description
	in
	String8
	Description of the registered type. 

	typeUuid
	in
	Uuid
	Universally unique identifier of the registered type. 

	minimum
	in
	Float64
	Minimum value for float. 

	maximum
	in
	Float64
	Maximum value for float. 

	minInclusive
	in
	Bool
	Flag whether the minimum value for float is valid or not. 

	maxInclusive
	in
	Bool
	Flag whether the maximum value for float is valid or not. 

	unit
	in
	String8
	Unit of the type. 

	type
	in
	PrimitiveTypeKind
	Primitive type to use for Float type. 

	
	return
	IType
	Interface to new type. 


Exceptions

Smp::Publication::ITypeRegistry::AlreadyRegistered
5.1.1.5 Add Integer Type

Add an integer type to the registry.
IManagedModel and IDynamicInvocation support fields, parameters and operations of Integer types via the ST_Int primitive types, as an Integer is mapped to one of Int8 / Int16 / Int32 / Int64 / UInt8 / UInt16 / UInt32.
Parameters

	Name
	Dir.
	Type
	Description

	name
	in
	String8
	Name of the registered type. 

	description
	in
	String8
	Description of the registered type. 

	typeUuid
	in
	Uuid
	Universally unique identifier of the registered type. 

	minimum
	in
	Int64
	Minimum value for integer. 

	maximum
	in
	Int64
	Maximum value for integer. 

	unit
	in
	String8
	Unit of the type. 

	type
	in
	PrimitiveTypeKind
	Primitive type to use for Integer type. 

	
	return
	IType
	Interface to new type. 


Exceptions

Smp::Publication::ITypeRegistry::AlreadyRegistered
5.1.1.6 Add String Type

Add a string type to the registry.
Parameters

	Name
	Dir.
	Type
	Description

	name
	in
	String8
	Name of the registered type. 

	description
	in
	String8
	Description of the registered type. 

	typeUuid
	in
	Uuid
	Universally unique identifier of the registered type. 

	length
	in
	Int64
	Maximum length of the string. 

	
	return
	IType
	Interface to new type. 


Exceptions

Smp::Publication::ITypeRegistry::AlreadyRegistered
5.1.1.7 Add Structure Type

Add a structure type to the registry.
Parameters

	Name
	Dir.
	Type
	Description

	name
	in
	String8
	Name of the registered type. 

	description
	in
	String8
	Description of the registered type. 

	typeUuid
	in
	Uuid
	Universally unique identifier of the registered type. 

	
	return
	IStructureType
	Interface to new type that allows adding fields. 


Exceptions

Smp::Publication::ITypeRegistry::AlreadyRegistered
5.1.1.8 Get Type

Returns a type by its simple type kind.
Remark: This method can be used to map primitive types to the IType interface, to treat all types identically.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	IType
	Interface to the requested type. 

	type
	in
	PrimitiveTypeKind
	Primitive type the type is requested for. 


Exceptions

None

5.1.1.9 Get Type

Returns a type by universally unique identifier.
Remark: This method can be used to find out whether a specific type has been registered before.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	IType
	Interface of the requested type, or null if no type with the registered Uuid could be found. 

	typeUuid
	in
	Uuid
	Universally unique identifier for the requested type. 


Exceptions

None

5.1.1.10 Already Registered

This exception is raised when trying to register a type with a Uuid that has already been registered.
File

#include "Smp/Publication/ITypeRegistry.h"

Namespace

Smp::Publication::ITypeRegistry
Declaration of AlreadyRegistered

	            /// This exception is raised when trying to register a type with a 

            /// Uuid that has already been registered.

            class AlreadyRegistered : public Smp::Exception    

            {

            public:

                /// Constructor for new exception.

                /// @param   name Name of new type that cannot be registered.

                /// @param   type Type that uses the same Uuid already

                AlreadyRegistered(

                    Smp::String8 name,

                    Smp::Publication::IType* type) throw();        

                /// Copy constructor.

                AlreadyRegistered(

                    AlreadyRegistered& ex) throw();

                /// Virtual destructor to release memory.

                virtual ~AlreadyRegistered();    

                /// Name of new type that cannot be registered.

                Smp::String8 name;

                /// Type that uses the same Uuid already

                Smp::Publication::IType* type;

            };


Fields

	Name
	Type
	Description

	name
	String8
	Name of new type that cannot be registered.

	type
	IType
	Type that uses the same Uuid already


5.1.2 IType

This base interface defines a type in the type registry.

File

#include "Smp/Publication/IType.h"

Namespace

Smp::Publication
Declaration of IType

	        /// Unique Identifier of type IType.

        extern const Uuid Uuid_IType;

        /// This base interface defines a type in the type registry.

        class IType :

            public virtual Smp::IObject

        {

        public:

            /// Virtual destructor to release memory.

            virtual ~IType() {}    

            /// Get primitive type that this type maps to, or PTK_None when the

            /// type cannot be mapped to a primitive type.

            /// @return  Primitive type kind that this type can be mapped to.

            virtual Smp::PrimitiveTypeKind GetPrimitiveType() const = 0;

            /// Get Universally Unique Identifier of type.

            /// @return  Universally Unique Identifier of type.

            virtual Smp::Uuid GetUuid() const = 0;

            /// Publish an instance of the type against a receiver.

            /// @param   receiver Receiver to publish against.

            /// @param   name Name of instance.

            /// @param   description Description of instance.

            /// @param   address Address of instance.

            /// @param   view View kind of instance.

            /// @param   state State flag of instance.

            /// @param   input Input flag of instance.

            /// @param   output Output flag of instance.

            virtual void Publish(

                Smp::IPublication* receiver,

                Smp::String8 name,

                Smp::String8 description,

                void* address,

                Smp::ViewKind view = VK_None,

                Smp::Bool state = true,

                Smp::Bool input = false,

                Smp::Bool output = false) = 0;

        };


Base Interfaces

Smp::IObject
Operations

	Name
	Description

	GetPrimitiveType
	Get primitive type that this type maps to, or PTK_None when the type cannot be mapped to a primitive type.

	GetUuid
	Get Universally Unique Identifier of type.

	Publish
	Publish an instance of the type against a receiver.


5.1.2.1 Get Primitive Type

Get primitive type that this type maps to, or PTK_None when the type cannot be mapped to a primitive type.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	PrimitiveTypeKind
	Primitive type kind that this type can be mapped to. 


Exceptions

None

5.1.2.2 Get Uuid

Get Universally Unique Identifier of type.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	Uuid
	Universally Unique Identifier of type. 


Exceptions

None

5.1.2.3 Publish

Publish an instance of the type against a receiver.
Parameters

	Name
	Dir.
	Type
	Description

	receiver
	in
	IPublication
	Receiver to publish against. 

	name
	in
	String8
	Name of instance. 

	description
	in
	String8
	Description of instance. 

	address
	in
	void*
	Address of instance. 

	view
	in
	ViewKind
	View kind of instance. 

	state
	in
	Bool
	State flag of instance. 

	input
	in
	Bool
	Input flag of instance. 

	output
	in
	Bool
	Output flag of instance. 


Exceptions

None

5.1.3 IEnumeration Type

This interface defines a user defined enumeration.

File

#include "Smp/Publication/IEnumerationType.h"

Namespace

Smp::Publication
Declaration of IEnumerationType

	        /// Unique Identifier of type IEnumerationType.

        extern const Uuid Uuid_IEnumerationType;

        /// This interface defines a user defined enumeration.

        class IEnumerationType :

            public virtual Smp::Publication::IType

        {

        public:

            /// Virtual destructor to release memory.

            virtual ~IEnumerationType() {}    

            /// Add a literal to the Enumeration.

            /// @param   name Name of the literal.

            /// @param   description Description of the literal.

            /// @param   value Value of the literal

            virtual void AddLiteral(

                Smp::String8 name,

                Smp::String8 description,

                Smp::Int32 value) = 0;

        };


Base Interfaces

Smp::Publication::IType
Operations

	Name
	Description

	AddLiteral
	Add a literal to the Enumeration.


5.1.3.1 Add Literal

Add a literal to the Enumeration.
Parameters

	Name
	Dir.
	Type
	Description

	name
	in
	String8
	Name of the literal. 

	description
	in
	String8
	Description of the literal. 

	value
	in
	Int32
	Value of the literal 


Exceptions

None

5.1.4 IStructure Type

This interface defines a user defined structure.

File

#include "Smp/Publication/IStructureType.h"

Namespace

Smp::Publication
Declaration of IStructureType

	        /// Unique Identifier of type IStructureType.

        extern const Uuid Uuid_IStructureType;

        /// This interface defines a user defined structure.

        class IStructureType :

            public virtual Smp::Publication::IType

        {

        public:

            /// Virtual destructor to release memory.

            virtual ~IStructureType() {}    

            /// Add a field to the Structure.

            /// @param   name Name of field.

            /// @param   description Description of field.

            /// @param   uuid Uuid of field Type, which must be a value type, 

            ///          but not String8.

            /// @param   offset Memory offset of field relative to Structure.

            /// @param   view View kind of field.

            /// @param   state State flag of field.

            /// @param   input Input flag of field.

            /// @param   output Output flag of field.

            virtual void AddField(

                Smp::String8 name,

                Smp::String8 description,

                Smp::Uuid uuid,

                Smp::Int64 offset,

                Smp::ViewKind view = VK_All,

                Smp::Bool state = true,

                Smp::Bool input = false,

                Smp::Bool output = false) = 0;

        };


Base Interfaces

Smp::Publication::IType
Operations

	Name
	Description

	AddField
	Add a field to the Structure.


5.1.4.1 Add Field

Add a field to the Structure.
Parameters

	Name
	Dir.
	Type
	Description

	name
	in
	String8
	Name of field. 

	description
	in
	String8
	Description of field. 

	uuid
	in
	Uuid
	Uuid of field Type, which must be a value type, but not String8. 

	offset
	in
	Int64
	Memory offset of field relative to Structure. 

	view
	in
	ViewKind
	View kind of field. 

	state
	in
	Bool
	State flag of field. 

	input
	in
	Bool
	Input flag of field. 

	output
	in
	Bool
	Output flag of field. 


Exceptions

None

5.1.5 IClass Type

This interface defines a user defined class.

File

#include "Smp/Publication/IClassType.h"

Namespace

Smp::Publication
Declaration of IClassType

	        /// Unique Identifier of type IClassType.

        extern const Uuid Uuid_IClassType;

        /// This interface defines a user defined class.

        class IClassType :

            public virtual Smp::Publication::IStructureType

        {

        };


Base Interfaces

Smp::Publication::IStructureType
Operations

None

5.1.6 Not Registered

This exception is raised when trying to publish a feature with a type Uuid that has not been registered.

File

#include "Smp/Publication/ITypeRegistry.h"

Namespace

Smp::Publication
Declaration of NotRegistered

	        /// This exception is raised when trying to publish a feature with a 

        /// type Uuid that has not been registered.

        class NotRegistered : public Smp::Exception    

        {

        public:

            /// Constructor for new exception.

            /// @param   uuid Uuid that does not correspond to a registered type.

            NotRegistered(

                Smp::Uuid uuid) throw();        

            /// Copy constructor.

            NotRegistered(

                NotRegistered& ex) throw();

            /// Virtual destructor to release memory.

            virtual ~NotRegistered();    

            /// Uuid that does not correspond to a registered type.

            Smp::Uuid uuid;

        };


Base Exceptions

Smp::Exception
Fields

	Name
	Type
	Description

	uuid
	Uuid
	Uuid that does not correspond to a registered type.


5.2 Publication of Fields, Operations and Properties

5.2.1 IPublish Operation

This interface provides functionality to publish operation parameters.

File

#include "Smp/Publication/IPublishOperation.h"

Namespace

Smp::Publication
Declaration of IPublishOperation

	        /// Unique Identifier of type IPublishOperation.

        extern const Uuid Uuid_IPublishOperation;

        /// This interface provides functionality to publish operation 

        /// parameters.

        class IPublishOperation

        {

        public:

            /// Virtual destructor to release memory.

            virtual ~IPublishOperation() {}    

            /// Publish a parameter of an operation.

            /// This method works for all types.

            /// @remarks Fields, parameters and operations of Enumeration types

            ///          are supported by IManagedModel and IDynamicInvocation 

            ///          via one of the ST_Int8, ST_Int16, ST_Int32 or ST_Int64

            ///          primitive types, depending on their memory size.

            /// @param   name Parameter name.

            /// @param   description Parameter description.

            /// @param   typeUuid Uuid of parameter type.

            /// @param   direction Direction kind of parameter.

            /// @throws  Smp::Publication::NotRegistered

            virtual void PublishParameter(

                Smp::String8 name,

                Smp::String8 description,

                Smp::Uuid typeUuid,

                Smp::Publication::ParameterDirectionKind direction) throw (

                Smp::Publication::NotRegistered) = 0;

        };


Base Interfaces

None

Operations

	Name
	Description

	PublishParameter
	Publish a parameter of an operation.


5.2.1.1 Publish Parameter

Publish a parameter of an operation.
This method works for all types.
Remark: Fields, parameters and operations of Enumeration types are supported by IManagedModel and IDynamicInvocation via one of the ST_Int8, ST_Int16, ST_Int32 or ST_Int64 primitive types, depending on their memory size.
Parameters

	Name
	Dir.
	Type
	Description

	name
	in
	String8
	Parameter name. 

	description
	in
	String8
	Parameter description. 

	typeUuid
	in
	Uuid
	Uuid of parameter type. 

	direction
	in
	ParameterDirectionKind
	Direction kind of parameter. 


Exceptions

Smp::Publication::NotRegistered
5.2.2 IPublication

Interface that provides functionality to allow publishing members, including fields, properties and operations.

This interface is platform specific. For details see the SMP Platform Mappings.

File

#include "Smp/IPublication.h"

Namespace

Smp
Declaration of IPublication

	    /// Unique Identifier of type IPublication.

    extern const Uuid Uuid_IPublication;

    /// Interface that provides functionality to allow publishing members, 

    /// including fields, properties and operations.

    /// This interface is platform specific. For details see the SMP Platform 

    /// Mappings.

    class IPublication

    {

    public:

        /// Virtual destructor to release memory.

        virtual ~IPublication() {}    

        /// Give access to the global type registry.

        /// The type registry is typically a singleton, and must not be null, 

        /// to allow use of existing types, and registration of new types.

        /// @return  Reference to global type registry.

        virtual Smp::Publication::ITypeRegistry* GetTypeRegistry() const = 0;

        /// Publish a Char8 field.

        /// @param   name Field name.

        /// @param   description Field description.

        /// @param   address Field memory address.

        /// @param   view Show field in model tree.

        /// @param   state Include field in store/restore of simulation state.

        /// @param   input True if field is an input field, false otherwise.

        /// @param   output True if field is an output field, false otherwise.

        virtual void PublishField(

            Smp::String8 name,

            Smp::String8 description,

            Smp::Char8* address,

            Smp::ViewKind view = VK_None,

            Smp::Bool state = true,

            Smp::Bool input = false,

            Smp::Bool output = false) = 0;

        /// Publish a Bool field.

        /// @param   name Field name.

        /// @param   description Field description.

        /// @param   address Field memory address.

        /// @param   view Show field in model tree.

        /// @param   state Include field in store/restore of simulation state.

        /// @param   input True if field is an input field, false otherwise.

        /// @param   output True if field is an output field, false otherwise.

        virtual void PublishField(

            Smp::String8 name,

            Smp::String8 description,

            Smp::Bool* address,

            Smp::ViewKind view = VK_None,

            Smp::Bool state = true,

            Smp::Bool input = false,

            Smp::Bool output = false) = 0;

        /// Publish a Int8 field.

        /// @param   name Field name.

        /// @param   description Field description.

        /// @param   address Field memory address.

        /// @param   view Show field in model tree.

        /// @param   state Include field in store/restore of simulation state.

        /// @param   input True if field is an input field, false otherwise.

        /// @param   output True if field is an output field, false otherwise.

        virtual void PublishField(

            Smp::String8 name,

            Smp::String8 description,

            Smp::Int8* address,

            Smp::ViewKind view = VK_None,

            Smp::Bool state = true,

            Smp::Bool input = false,

            Smp::Bool output = false) = 0;

        /// Publish a Int16 field.

        /// @param   name Field name.

        /// @param   description Field description.

        /// @param   address Field memory address.

        /// @param   view Show field in model tree.

        /// @param   state Include field in store/restore of simulation state.

        /// @param   input True if field is an input field, false otherwise.

        /// @param   output True if field is an output field, false otherwise.

        virtual void PublishField(

            Smp::String8 name,

            Smp::String8 description,

            Smp::Int16* address,

            Smp::ViewKind view = VK_None,

            Smp::Bool state = true,

            Smp::Bool input = false,

            Smp::Bool output = false) = 0;

        /// Publish a Int32 field.

        /// @param   name Field name.

        /// @param   description Field description.

        /// @param   address Field memory address.

        /// @param   view Show field in model tree.

        /// @param   state Include field in store/restore of simulation state.

        /// @param   input True if field is an input field, false otherwise.

        /// @param   output True if field is an output field, false otherwise.

        virtual void PublishField(

            Smp::String8 name,

            Smp::String8 description,

            Smp::Int32* address,

            Smp::ViewKind view = VK_None,

            Smp::Bool state = true,

            Smp::Bool input = false,

            Smp::Bool output = false) = 0;

        /// Publish a UInt8 field.

        /// @param   name Field name.

        /// @param   description Field description.

        /// @param   address Field memory address.

        /// @param   view Show field in model tree.

        /// @param   state Include field in store/restore of simulation state.

        /// @param   input True if field is an input field, false otherwise.

        /// @param   output True if field is an output field, false otherwise.

        virtual void PublishField(

            Smp::String8 name,

            Smp::String8 description,

            Smp::UInt8* address,

            Smp::ViewKind view = VK_None,

            Smp::Bool state = true,

            Smp::Bool input = false,

            Smp::Bool output = false) = 0;

        /// Publish a UInt16 field.

        /// @param   name Field name.

        /// @param   description Field description.

        /// @param   address Field memory address.

        /// @param   view Show field in model tree.

        /// @param   state Include field in store/restore of simulation state.

        /// @param   input True if field is an input field, false otherwise.

        /// @param   output True if field is an output field, false otherwise.

        virtual void PublishField(

            Smp::String8 name,

            Smp::String8 description,

            Smp::UInt16* address,

            Smp::ViewKind view = VK_None,

            Smp::Bool state = true,

            Smp::Bool input = false,

            Smp::Bool output = false) = 0;

        /// Publish a UInt32 field.

        /// @param   name Field name.

        /// @param   description Field description.

        /// @param   address Field memory address.

        /// @param   view Show field in model tree.

        /// @param   state Include field in store/restore of simulation state.

        /// @param   input True if field is an input field, false otherwise.

        /// @param   output True if field is an output field, false otherwise.

        virtual void PublishField(

            Smp::String8 name,

            Smp::String8 description,

            Smp::UInt32* address,

            Smp::ViewKind view = VK_None,

            Smp::Bool state = true,

            Smp::Bool input = false,

            Smp::Bool output = false) = 0;

        /// Publish a UInt64 field.

        /// @param   name Field name.

        /// @param   description Field description.

        /// @param   address Field memory address.

        /// @param   view Show field in model tree.

        /// @param   state Include field in store/restore of simulation state.

        /// @param   input True if field is an input field, false otherwise.

        /// @param   output True if field is an output field, false otherwise.

        virtual void PublishField(

            Smp::String8 name,

            Smp::String8 description,

            Smp::UInt64* address,

            Smp::ViewKind view = VK_None,

            Smp::Bool state = true,

            Smp::Bool input = false,

            Smp::Bool output = false) = 0;

        /// Publish a Float32 field.

        /// @param   name Field name.

        /// @param   description Field description.

        /// @param   address Field memory address.

        /// @param   view Show field in model tree.

        /// @param   state Include field in store/restore of simulation state.

        /// @param   input True if field is an input field, false otherwise.

        /// @param   output True if field is an output field, false otherwise.

        virtual void PublishField(

            Smp::String8 name,

            Smp::String8 description,

            Smp::Float32* address,

            Smp::ViewKind view = VK_None,

            Smp::Bool state = true,

            Smp::Bool input = false,

            Smp::Bool output = false) = 0;

        /// Publish a Float64 field.

        /// @param   name Field name.

        /// @param   description Field description.

        /// @param   address Field memory address.

        /// @param   view Show field in model tree.

        /// @param   state Include field in store/restore of simulation state.

        /// @param   input True if field is an input field, false otherwise.

        /// @param   output True if field is an output field, false otherwise.

        virtual void PublishField(

            Smp::String8 name,

            Smp::String8 description,

            Smp::Float64* address,

            Smp::ViewKind view = VK_None,

            Smp::Bool state = true,

            Smp::Bool input = false,

            Smp::Bool output = false) = 0;

        /// Publish a field of any type via Uuid.

        /// @param   name Field name.

        /// @param   description Field description.

        /// @param   address Field memory address.

        /// @param   typeUuid Uuid of field type (determines the size).

        /// @param   view Show field in model tree.

        /// @param   state Include field in store/restore of simulation state.

        /// @param   input True if field is an input field, false otherwise.

        /// @param   output True if field is an output field, false otherwise.

        /// @throws  Smp::IPublication::InvalidFieldType

        /// @throws  Smp::Publication::NotRegistered

        virtual void PublishField(

            Smp::String8 name,

            Smp::String8 description,

            void* address,

            Smp::Uuid typeUuid,

            Smp::ViewKind view = VK_None,

            Smp::Bool state = true,

            Smp::Bool input = false,

            Smp::Bool output = false) throw (

            Smp::IPublication::InvalidFieldType,

            Smp::Publication::NotRegistered) = 0;

        /// Publish array of simple type.

        /// @param   name Field name.

        /// @param   description Field description.

        /// @param   count Size of array.

        /// @param   address Field memory address.

        /// @param   type Array item type.

        /// @param   view Show field in model tree.

        /// @param   state Include field in store/restore of simulation state.

        /// @param   input True if field is an input field, false otherwise.

        /// @param   output True if field is an output field, false otherwise.

        /// @throws  Smp::IPublication::InvalidFieldType

        virtual void PublishArray(

            Smp::String8 name,

            Smp::String8 description,

            Smp::Int64 count,

            void* address,

            Smp::PrimitiveTypeKind type,

            Smp::ViewKind view = VK_None,

            Smp::Bool state = true,

            Smp::Bool input = false,

            Smp::Bool output = false) throw (

            Smp::IPublication::InvalidFieldType) = 0;

        /// Publish a Int64 field.

        /// @param   name Field name.

        /// @param   description Field description.

        /// @param   address Field memory address.

        /// @param   view Show field in model tree.

        /// @param   state Include field in store/restore of simulation state.

        /// @param   input True if field is an input field, false otherwise.

        /// @param   output True if field is an output field, false otherwise.

        virtual void PublishField(

            Smp::String8 name,

            Smp::String8 description,

            Smp::Int64* address,

            Smp::ViewKind view = VK_None,

            Smp::Bool state = true,

            Smp::Bool input = false,

            Smp::Bool output = false) = 0;

        /// Publish array of any type.

        /// @param   name Array name.

        /// @param   description Array description.

        /// @return  Interface to publish item type against.

        virtual Smp::IPublication* PublishArray(Smp::String8 name, Smp::String8 description) = 0;

        /// Publish structure.

        /// @param   name Structure name.

        /// @param   description Structure description.

        /// @return  Reference to publish structure fields against.

        virtual Smp::IPublication* PublishStructure(Smp::String8 name, Smp::String8 description) = 0;

        /// Publish an operation with complex return type.

        /// The operation parameters (including an optional return parameter) 

        /// may be published against the returned IPublishOperation interface 

        /// after calling PublishOperation().

        /// @param   name Operation name.

        /// @param   description Operation description.

        /// @param   view Show field in model tree.

        /// @return  Reference to publish parameters against.

        /// @throws  Smp::Publication::NotRegistered

        virtual Smp::Publication::IPublishOperation* PublishOperation(

            Smp::String8 name,

            Smp::String8 description,

            Smp::ViewKind view = true) throw (

            Smp::Publication::NotRegistered) = 0;

        /// Publish a property.

        /// @param   name Property name.

        /// @param   description Property description.

        /// @param   typeUuid Uuid of type of property.

        /// @param   accessKind Access kind of Property.

        /// @param   view Show field in model tree.

        /// @throws  Smp::Publication::NotRegistered

        virtual void PublishProperty(

            Smp::String8 name,

            Smp::String8 description,

            Smp::Uuid typeUuid,

            Smp::AccessKind accessKind,

            Smp::ViewKind view = true) throw (

            Smp::Publication::NotRegistered) = 0;

        /// Get the field of given name that is an array of a simple type.

        /// This method raises an exception of type InvalidFieldName if called 

        /// with a field name for which no corresponding field exists or for 

        /// which the corresponding field is not an array of simple type.

        /// 

        /// This method can only be used to get array fields with items of 

        /// simple type.

        /// @param   fullName Fully qualified array field name (relative to the

        ///          model)

        /// @return  Array field.

        /// @throws  Smp::Management::IManagedModel::InvalidFieldName

        virtual Smp::IArrayField* GetArrayField(Smp::String8 fullName) const throw (

            Smp::Management::IManagedModel::InvalidFieldName) = 0;

        /// Get the field of given name that is typed by a simple type.

        /// 

        /// This method raises an exception of type InvalidFieldName if called 

        /// with a field name for which no corresponding field exists or for 

        /// which the corresponding field is not of simple type.

        /// For getting access to fields of structured or array types, this 

        /// method may be called multiply, for example by specifying a field 

        /// name "MyField.Position[2]" in order to access an array item of a 

        /// structure.

        /// This method can only be used to get fields of simple type.

        /// @param   fullName Fully qualified field name (relative to the model).

        /// @return  Simple field.

        /// @throws  Smp::Management::IManagedModel::InvalidFieldName

        virtual Smp::ISimpleField* GetSimpleField(Smp::String8 fullName) const throw (

            Smp::Management::IManagedModel::InvalidFieldName) = 0;

        /// Create request object.

        /// Returns a request object for the given operation that describes the

        /// parameters and the return value.

        /// Request object may be undefined if no operation with given name 

        /// could be found.

        /// @param   operationName Name of operation.

        /// @return  Request object for operation.

        virtual Smp::IRequest* CreateRequest(Smp::String8 operationName) = 0;

        /// Delete request object.

        /// Destroys a request object that has been created with the 

        /// CreateRequest() method before.

        /// The request object must not be used anymore after DeleteRequest has

        /// been called for it.

        /// @param   request Request object to delete.

        virtual void DeleteRequest(Smp::IRequest* request) = 0;

    };


Base Interfaces

None

Operations

	Name
	Description

	CreateRequest
	Create request object.

	DeleteRequest
	Delete request object.

	GetArrayField
	Get the field of given name that is an array of a simple type.

	GetSimpleField
	Get the field of given name that is typed by a simple type.

	GetTypeRegistry
	Give access to the global type registry.

	PublishArray
	Publish array of simple type.

	PublishArray
	Publish array of any type.

	PublishField
	Publish a Char8 field.

	PublishField
	Publish a Bool field.

	PublishField
	Publish a Int8 field.

	PublishField
	Publish a Int16 field.

	PublishField
	Publish a Int32 field.

	PublishField
	Publish a UInt8 field.

	PublishField
	Publish a UInt16 field.

	PublishField
	Publish a UInt32 field.

	PublishField
	Publish a UInt64 field.

	PublishField
	Publish a Float32 field.

	PublishField
	Publish a Float64 field.

	PublishField
	Publish a field of any type via Uuid.

	PublishField
	Publish a Int64 field.

	PublishOperation
	Publish an operation with complex return type.

	PublishProperty
	Publish a property

	PublishStructure
	Publish structure.


5.2.2.1 Create Request

Create request object.
Returns a request object for the given operation that describes the parameters and the return value.
Request object may be undefined if no operation with given name could be found.
Parameters

	Name
	Dir.
	Type
	Description

	operationName
	in
	String8
	Name of operation. 

	
	return
	IRequest
	Request object for operation. 


Exceptions

None

5.2.2.2 Delete Request

Delete request object.
Destroys a request object that has been created with the CreateRequest() method before.
The request object must not be used anymore after DeleteRequest has been called for it.
Parameters

	Name
	Dir.
	Type
	Description

	request
	in
	IRequest
	Request object to delete. 


Exceptions

None

5.2.2.3 Get Array Field

Get the field of given name that is an array of a simple type.
This method raises an exception of type InvalidFieldName if called with a field name for which no corresponding field exists or for which the corresponding field is not an array of simple type.
This method can only be used to get array fields with items of simple type.
Parameters

	Name
	Dir.
	Type
	Description

	fullName
	in
	String8
	Fully qualified array field name (relative to the model) 

	
	return
	IArrayField
	Array field. 


Exceptions

Smp::Management::IManagedModel::InvalidFieldName
5.2.2.4 Get Simple Field

Get the field of given name that is typed by a simple type.
This method raises an exception of type InvalidFieldName if called with a field name for which no corresponding field exists or for which the corresponding field is not of simple type.
For getting access to fields of structured or array types, this method may be called multiply, for example by specifying a field name "MyField.Position[2]" in order to access an array item of a structure.
This method can only be used to get fields of simple type.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	ISimpleField
	Simple field. 

	fullName
	in
	String8
	Fully qualified field name (relative to the model). 


Exceptions

Smp::Management::IManagedModel::InvalidFieldName
5.2.2.5 Get Type Registry

Give access to the global type registry.
The type registry is typically a singleton, and must not be null, to allow use of existing types, and registration of new types.
Parameters

	Name
	Dir.
	Type
	Description

	
	return
	ITypeRegistry
	Reference to global type registry. 


Exceptions

None

5.2.2.6 Publish Array

Publish array of simple type.

This method can only be used for arrays of simple type, as each simple type can be mapped to a primitive type. The memory layout of the array has to be without any padding, i.e. the array element with index i (0-based) is assumed to be stored at address + i*sizeof(primitiveType).
Parameters

	Name
	Dir.
	Type
	Description

	name
	in
	String8
	Field name. 

	description
	in
	String8
	Field description. 

	count
	in
	Int64
	Size of array. 

	address
	inout
	void
	Field memory address. 

	type
	in
	PrimitiveTypeKind
	Array item type. 

	view
	in
	ViewKind
	Show field in model tree. 

	state
	in
	Bool
	Include field in store/restore of simulation state. 

	input
	in
	Bool
	True if field is an input field, false otherwise. 

	output
	in
	Bool
	True if field is an output field, false otherwise. 


Exceptions

Smp::IPublication::InvalidFieldType
5.2.2.7 Publish Array

Publish array of any type.

This method can be used for arrays of any type. Individual array elements have to be added manually to the returned IPublication interface, where each array element can (and has to) be published with its own memory address.
Parameters

	Name
	Dir.
	Type
	Description

	name
	in
	String8
	Array name. 

	description
	in
	String8
	Array description. 

	
	return
	IPublication
	Interface to publish item type against. 


Exceptions

None

5.2.2.8 Publish Field

Publish a Char8 field.
Parameters

	Name
	Dir.
	Type
	Description

	name
	in
	String8
	Field name. 

	description
	in
	String8
	Field description. 

	address
	inout
	Char8
	Field memory address. 

	view
	in
	ViewKind
	Show field in model tree. 

	state
	in
	Bool
	Include field in store/restore of simulation state. 

	input
	in
	Bool
	True if field is an input field, false otherwise. 

	output
	in
	Bool
	True if field is an output field, false otherwise. 


Exceptions

None

5.2.2.9 Publish Field

Publish a Bool field.
Parameters

	Name
	Dir.
	Type
	Description

	name
	in
	String8
	Field name. 

	description
	in
	String8
	Field description. 

	address
	inout
	Bool
	Field memory address. 

	view
	in
	ViewKind
	Show field in model tree. 

	state
	in
	Bool
	Include field in store/restore of simulation state. 

	input
	in
	Bool
	True if field is an input field, false otherwise. 

	output
	in
	Bool
	True if field is an output field, false otherwise. 


Exceptions

None

5.2.2.10 Publish Field

Publish a Int8 field.
Parameters

	Name
	Dir.
	Type
	Description

	name
	in
	String8
	Field name. 

	description
	in
	String8
	Field description. 

	address
	inout
	Int8
	Field memory address. 

	view
	in
	ViewKind
	Show field in model tree. 

	state
	in
	Bool
	Include field in store/restore of simulation state. 

	input
	in
	Bool
	True if field is an input field, false otherwise. 

	output
	in
	Bool
	True if field is an output field, false otherwise. 


Exceptions

None

5.2.2.11 Publish Field

Publish a Int16 field.
Parameters

	Name
	Dir.
	Type
	Description

	name
	in
	String8
	Field name. 

	description
	in
	String8
	Field description. 

	address
	inout
	Int16
	Field memory address. 

	view
	in
	ViewKind
	Show field in model tree. 

	state
	in
	Bool
	Include field in store/restore of simulation state. 

	input
	in
	Bool
	True if field is an input field, false otherwise. 

	output
	in
	Bool
	True if field is an output field, false otherwise. 


Exceptions

None

5.2.2.12 Publish Field

Publish a Int32 field.
Parameters

	Name
	Dir.
	Type
	Description

	name
	in
	String8
	Field name. 

	description
	in
	String8
	Field description. 

	address
	inout
	Int32
	Field memory address. 

	view
	in
	ViewKind
	Show field in model tree. 

	state
	in
	Bool
	Include field in store/restore of simulation state. 

	input
	in
	Bool
	True if field is an input field, false otherwise. 

	output
	in
	Bool
	True if field is an output field, false otherwise. 


Exceptions

None

5.2.2.13 Publish Field

Publish a UInt8 field.
Parameters

	Name
	Dir.
	Type
	Description

	name
	in
	String8
	Field name. 

	description
	in
	String8
	Field description. 

	address
	inout
	UInt8
	Field memory address. 

	view
	in
	ViewKind
	Show field in model tree. 

	state
	in
	Bool
	Include field in store/restore of simulation state. 

	input
	in
	Bool
	True if field is an input field, false otherwise. 

	output
	in
	Bool
	True if field is an output field, false otherwise. 


Exceptions

None

5.2.2.14 Publish Field

Publish a UInt16 field.
Parameters

	Name
	Dir.
	Type
	Description

	name
	in
	String8
	Field name. 

	description
	in
	String8
	Field description. 

	address
	inout
	UInt16
	Field memory address. 

	view
	in
	ViewKind
	Show field in model tree. 

	state
	in
	Bool
	Include field in store/restore of simulation state. 

	input
	in
	Bool
	True if field is an input field, false otherwise. 

	output
	in
	Bool
	True if field is an output field, false otherwise. 


Exceptions

None

5.2.2.15 Publish Field

Publish a UInt32 field.
Parameters

	Name
	Dir.
	Type
	Description

	name
	in
	String8
	Field name. 

	description
	in
	String8
	Field description. 

	address
	inout
	UInt32
	Field memory address. 

	view
	in
	ViewKind
	Show field in model tree. 

	state
	in
	Bool
	Include field in store/restore of simulation state. 

	input
	in
	Bool
	True if field is an input field, false otherwise. 

	output
	in
	Bool
	True if field is an output field, false otherwise. 


Exceptions

None

5.2.2.16 Publish Field

Publish a UInt64 field.
Parameters

	Name
	Dir.
	Type
	Description

	name
	in
	String8
	Field name. 

	description
	in
	String8
	Field description. 

	address
	inout
	UInt64
	Field memory address. 

	view
	in
	ViewKind
	Show field in model tree. 

	state
	in
	Bool
	Include field in store/restore of simulation state. 

	input
	in
	Bool
	True if field is an input field, false otherwise. 

	output
	in
	Bool
	True if field is an output field, false otherwise. 


Exceptions

None

5.2.2.17 Publish Field

Publish a Float32 field.
Parameters

	Name
	Dir.
	Type
	Description

	name
	in
	String8
	Field name. 

	description
	in
	String8
	Field description. 

	address
	inout
	Float32
	Field memory address. 

	view
	in
	ViewKind
	Show field in model tree. 

	state
	in
	Bool
	Include field in store/restore of simulation state. 

	input
	in
	Bool
	True if field is an input field, false otherwise. 

	output
	in
	Bool
	True if field is an output field, false otherwise. 


Exceptions

None

5.2.2.18 Publish Field

Publish a Float64 field.
Parameters

	Name
	Dir.
	Type
	Description

	name
	in
	String8
	Field name. 

	description
	in
	String8
	Field description. 

	address
	inout
	Float64
	Field memory address. 

	view
	in
	ViewKind
	Show field in model tree. 

	state
	in
	Bool
	Include field in store/restore of simulation state. 

	input
	in
	Bool
	True if field is an input field, false otherwise. 

	output
	in
	Bool
	True if field is an output field, false otherwise. 


Exceptions

None

5.2.2.19 Publish Field

Publish a field of any type via Uuid.
Parameters

	Name
	Dir.
	Type
	Description

	name
	in
	String8
	Field name. 

	description
	in
	String8
	Field description. 

	address
	inout
	void
	Field memory address. 

	typeUuid
	in
	Uuid
	Uuid of field type (determines the size). 

	view
	in
	ViewKind
	Show field in model tree. 

	state
	in
	Bool
	Include field in store/restore of simulation state. 

	input
	in
	Bool
	True if field is an input field, false otherwise. 

	output
	in
	Bool
	True if field is an output field, false otherwise. 


Exceptions

Smp::IPublication::InvalidFieldType, Smp::Publication::NotRegistered
5.2.2.20 Publish Field

Publish a Int64 field.
Parameters

	Name
	Dir.
	Type
	Description

	name
	in
	String8
	Field name. 

	description
	in
	String8
	Field description. 

	address
	inout
	Int64
	Field memory address. 

	view
	in
	ViewKind
	Show field in model tree. 

	state
	in
	Bool
	Include field in store/restore of simulation state. 

	input
	in
	Bool
	True if field is an input field, false otherwise. 

	output
	in
	Bool
	True if field is an output field, false otherwise. 


Exceptions

None

5.2.2.21 Publish Operation

Publish an operation with complex return type.
The operation parameters (including an optional return parameter) may be published against the returned IPublishOperation interface after calling PublishOperation().
Parameters

	Name
	Dir.
	Type
	Description

	name
	in
	String8
	Operation name. 

	description
	in
	String8
	Operation description. 

	view
	in
	ViewKind
	Show field in model tree. 

	
	return
	IPublishOperation
	Reference to publish parameters against. 


Exceptions

Smp::Publication::NotRegistered
5.2.2.22 Publish Property

Publish a property.
Parameters

	Name
	Dir.
	Type
	Description

	name
	in
	String8
	Property name. 

	description
	in
	String8
	Property description. 

	typeUuid
	in
	Uuid
	Uuid of type of property. 

	accessKind
	in
	AccessKind
	Access kind of Property. 

	view
	in
	ViewKind
	Show field in model tree. 


Exceptions

Smp::Publication::NotRegistered
5.2.2.23 Publish Structure

Publish structure.
Parameters

	Name
	Dir.
	Type
	Description

	name
	in
	String8
	Structure name. 

	description
	in
	String8
	Structure description. 

	
	return
	IPublication
	Reference to publish structure fields against. 


Exceptions

None

5.2.2.24 Invalid Field Type

Invalid field type.
This exception is raised when trying to publish a field with invalid type.
File

#include "Smp/IPublication.h"

Namespace

Smp::IPublication
Declaration of InvalidFieldType

	        /// Invalid field type.

        /// This exception is raised when trying to publish a field with 

        /// invalid type.

        /// @remarks This can happen, for example, when trying to publish a 

        ///          field of the variable-length simple type String8.

        class InvalidFieldType : public Smp::Exception    

        {

        public:

            /// Constructor for new exception.

            InvalidFieldType() throw();        

            /// Copy constructor.

            InvalidFieldType(

                InvalidFieldType& ex) throw();

            /// Virtual destructor to release memory.

            virtual ~InvalidFieldType();    

        };


Remark: This can happen, for example, when trying to publish a field of the variable-length simple type String8.

Fields

None

5.2.3 Access Kind

The Access Kind of a property defines whether it has getter and setter.

File

#include "Smp/IPublication.h"

Namespace

Smp
Declaration of AccessKind

	    /// Unique Identifier of type AccessKind.

    extern const Uuid Uuid_AccessKind;

    /// The Access Kind of a property defines whether it has getter and setter.

    enum AccessKind

    {

        /// Read/Write access, i.e. getter and setter.

        AK_ReadWrite,

        /// Read only access, i.e. only getter method.

        AK_ReadOnly,

        /// Write only access, i.e. only setter method.

        AK_WriteOnly

    };


Table 8 - Enumeration Literals of AccessKind

	Name
	Description

	AK_ReadWrite
	Read/Write access, i.e. getter and setter.

	AK_ReadOnly
	Read only access, i.e. only getter method.

	AK_WriteOnly
	Write only access, i.e. only setter method.


5.2.4 Parameter Direction Kind

The Parameter Direction Kind enumeration defines the possible parameter directions.

File

#include "Smp/Publication/IPublishOperation.h"

Namespace

Smp::Publication
Declaration of ParameterDirectionKind

	        /// Unique Identifier of type ParameterDirectionKind.

        extern const Uuid Uuid_ParameterDirectionKind;

        /// The Parameter Direction Kind enumeration defines the possible 

        /// parameter directions.

        enum ParameterDirectionKind

        {

            /// The parameter is read-only to the operation, i.e. its value 

            /// must be specified on call, and cannot be changed inside the 

            /// operation.

            PDK_In,

            /// The parameter is write-only to the operation, i.e. its value is

            /// unspecified on call, and must be set by the operation.

            PDK_Out,

            /// The parameter must be specified on call, and may be changed by 

            /// the operation.

            PDK_InOut,

            /// The parameter represents the operation's return value.

            PDK_Return

        };


Table 9 - Enumeration Literals of ParameterDirectionKind

	Name
	Description

	PDK_In
	The parameter is read-only to the operation, i.e. its value must be specified on call, and cannot be changed inside the operation.

	PDK_Out
	The parameter is write-only to the operation, i.e. its value is unspecified on call, and must be set by the operation.

	PDK_InOut
	The parameter must be specified on call, and may be changed by the operation.

	PDK_Return
	The parameter represents the operation's return value.


6 
Metamodel

This section describes the mapping of all relevant SMP Metamodel elements into ISO/ANSI C++. The exact definition of this mapping is essential in order to allow transforming modelling information stored in an SMDL Catalogue or Package into ISO/ANSI C++ code in a unique way.

6.1 Overview

The C++ mapping of the SMP Metamodel produces code fragments, complete files or directories depending on the kind of Element mapped. The following description of the SMP Metamodel mapping uses a template like notation to describe the code fragments or files in a generic way.

6.1.1 Placeholders

Non-general information coming out of the SMDL file, like names or types, is mapped using placeholders. Placeholders are encased with the ‘$’ symbol. 

Example:

$Component.Name$
This placeholder shall be replaced by the actual name of the component.

6.1.2 Coloring and Font Schema

The coloring schema of the mapping description uses blue for C++ keywords, black for the rest of the source code and green for a comment. The font of the mapped code is Courier.

Example:

// An Smp.Int32 is a 32 bit signed Integer type:

typedef signed int Int32;

6.1.3 Generation of Type Identification

The expression TypeName() delivers the fully qualified name of a type. When used in a header file, the fully qualified name shall be the type name plus preceding nesting namespaces.

Example:

TypeName($Parameter.Type$) 

with a parameter of type MyType defined in a nested namespace of a namespace may be replaced in a header file by:

::Namespace1::NestedNamespace2::MyType 

Remark: With the using keyword, it is possible to write more readable source code, but at the risk of introducing ambiguities due to naming conflicts, as it is possible and valid to use the same type name within different namespaces. The namespace is indicated by the using command prefixed with all namespaces the namespace is nested in (if there are any). For the example above, this would look as follows:

// The used namespace chain the type is nested in is defined.

using namespace ::Namespace1::NestedNamespace2;

After that, MyType can be referenced without a namespace prefix.

6.1.4 Alternative Code

Alternative code fragments are separated by the ‘|’ separator, where exactly one of the alternatives must be present.

Example:

// Set Visibility of Type

public:|protected:|private:

This means that one of three possible visibility keywords must be set.

6.1.5 Optional Code

Optional code is encased in brackets (‘[’ and ‘]’).

Example:

// If embedded in a Class or Component set Visibility of Type

[public:|protected:|private:]

This means that a visibility keyword may be set (and then one of the three possibilities can be chosen).

6.2 C++ Specific Attributes
The C++ platform mapping of the Metamodel is supported by a number of C++ specific attributes. These have been defined to support C++ specific features, such as constructors and operators, which are not included in the Metamodel (as they may not map to other target platforms). However, to be able to use a model driven development process, where source code is auto-generated from a design captured in an SMDL Catalogue, it is essential to support these C++ specific features. By adding these attributes to the normative C++ Mapping, it can be ensured that all supporting tools (especially C++ Code Generators) will support these mechanisms in a consistent way.

6.2.1 C++ Attributes

This section summarises pre-defined SMDL attributes that can be attached to elements in a Catalogue.

6.2.1.1 Abstract

The Abstract attribute specifies that an operation or property is abstract, i.e. that it must be overridden in a derived type. The default value for this attribute is false.
[image: image6.emf]Abstract : AttributeType Usage = "Operation" , "Property" AllowMultiple = false Description = "Operation  or Property is abstract (must be  overridden in derived type)" Default = "false" Id = "Smp.Attributes.Abstract" Uuid = "8596d697-fb84-41ce-a685-6912006ed6c1" Type = Bool


Figure 6 - Abstract

6.2.1.2 Base Class

The BaseClass attribute specifies a name of a C++ class that shall be used as base class (implementation inheritance) for the Class or Model implementation. This can be used to inherit the implementation from a non-SMP C++ class into an SMP Class or Model implementation, for example to wrap an existing C++ implementation as SMP Class or Model. The default value for this attribute is the empty string, which corresponds to no base class.
[image: image7.emf]BaseClass : AttributeType Usage = "Class" , "Exception", "Model", "Service" AllowMultiple = false Description = "Specified  C++ class shall be used as base  class for the implementation" Default = "" Id = "Smp.Attributes.BaseClass" Uuid = "8596d697-fb84-41ce-a685-6912006ed6c2" Type = String8


Figure 7 - Base Class

6.2.1.3 By Reference

The ByReference attribute specifies that a parameter is passed by reference, i.e. as pointer in C++. The default value for this attribute is false.
[image: image8.emf]ByReference : AttributeType Usage = "Parameter" AllowMultiple = false Description = "Parameter  is passed by reference" Default = "false" Id = "Smp.Attributes.ByReference" Uuid = "8596d697-fb84-41ce-a685-6912006ed6c3" Type = Bool


Figure 8 - By Reference

6.2.1.4 Const

The Const attribute specifies that a feature is "constant" in the following sense:
· Association: The value of the referenced element is constant, i.e. it cannot be changed during runtime.

· Operation: The state of the containing type (e.g. Model) is constant, i.e. the operation must not change any field values during execution.

· Property: The state of the containing type (e.g. Model) is constant, i.e. the property getter must not change any field values during execution.

· Parameter: The value of the parameter is constant, i.e. the operation must not change it during execution. When applied to reference parameters (pointers in C++), the referenced element must not be changed.

The default value for this attribute is false.
[image: image9.emf]Const : AttributeType Usage = "Association" , "Property", "Operation", "Parameter" AllowMultiple = false Description = "Association:  Value of referenced element is  constant (unchangeable); Operation: State of containing type must not be changed by  the operation; Property: State of containing type must not be changed by  the property getter; Parameter: Value of parameter must not be changed within  the Operation (in case of a reference parameter this applies  to the referenced element)" Default = "false" Id = "Smp.Attributes.Const" Uuid = "8596d697-fb84-41ce-a685-6912006ed6c4" Type = Bool


Figure 9 - Const

Remark: This attribute cannot be applied to Fields since there is a first-level concept (Constant) for the purpose of specifying constant values.

6.2.1.5 Constructor

The Constructor attribute specifies that the operation is mapped to a C++ constructor. The default value for this attribute is false, which corresponds to not mapping to a constructor.
A constructor must not have a return parameter.
The name of the constructor is ignored as the Class or Model name is used in C++.
[image: image10.emf]Constructor : AttributeType Usage = "Operation" AllowMultiple = false Description = "Operation  shall be mapped as constructor" Default = "false" Id = "Smp.Attributes.Constructor" Uuid = "8596d697-fb84-41ce-a685-6912006ed6c5" Type = Bool


Figure 10 - Constructor

6.2.1.6 Operator

The Operator attribute defines an operator kind for an operation. It can be used to specify that the operation is mapped to a C++ operator. The default value for this attribute is None, which corresponds to not mapping to an operator.
[image: image11.emf]Operator : AttributeType Usage = "Operation" AllowMultiple = false Description = "Operation  shall be mapped as operator" Default = "None" Id = "Smp.Attributes.Operator" Uuid = "8596d697-fb84-41ce-a685-6912006ed6c6" Type = OperatorKind


Figure 11 - Operator

6.2.1.7 Operator Kind

This enumeration defines possible operator kinds.
[image: image12.emf]Remainder NotGreater Difference NotEqual Negative NotLess Quotient Subtract Positive Product Greater Multiply Indexer Module Assign Divide Equal None Less Sum Add <<enumeration>> OperatorKind


Figure 12 - Operator Kind

Table 10 - Enumeration Literals of OperatorKind

	Name
	Description

	None
	Undefined

	Positive
	Positive value of instance.

C++ Example: +x

	Negative
	Negative value of instance.

C++ Example: -x

	Assign
	Assigns new value to instance.

C++ Example: x = a

	Add
	Adds value to instance.

C++ Example: x += a

	Subtract
	Subtracts value to instance.

C++ Example: x -= a

	Multiply
	Multiplies instance with value.

C++ Example: x *= a

	Divide
	Divides instance by value.

C++ Example: x /= a

	Remainder
	Remainder of instance for value.

C++ Example: x %= a

	Greater
	Compares whether instance is greater than value.

C++ Example: x > a

	Less
	Compares whether instance is less than value.

C++ Example: x < a

	Equal
	Compares whether instance is equal to value.

C++ Example: x == a

	NotGreater
	Compares whether instance is not greater than value.

C++ Example: x <= a

	NotLess
	Compares whether instance is not less than value.

C++ Example: x >= a

	NotEqual
	Compares whether instance is not equal to value.

C++ Example: x != a

	Indexer
	Returns indexed value of instance.

C++ Example: x[a]

	Sum
	Returns sum of two values.

C++ Example: a + b

	Difference
	Returns difference of two values.

C++ Example: a - b

	Product
	Returns product of two values.

C++ Example: a * b

	Quotient
	Returns quotient of two values.

C++ Example: a / b

	Module
	Returns remainder of two values.

C++ Example: a % b


6.2.1.8 Static

The Static attribute specifies that a feature is static, i.e. that it is defined on type/classifier scope. The default value for this attribute is false, which corresponds to instance scope.
[image: image13.emf]Static : AttributeType Usage = "Operation" , "Property", "Field", "Association" AllowMultiple = false Description = "Feature  is static (type/classifier scope)" Default = "false" Id = "Smp.Attributes.Static" Uuid = "8596d697-fb84-41ce-a685-6912006ed6c7" Type = Bool


Figure 13 - Static

6.2.1.9 Virtual

The Virtual attribute specifies that an operation or property is virtual, i.e. that it may be overridden in a derived type (polymorphism). The default value for this attribute is false.
[image: image14.emf]Virtual : AttributeType Usage = "Operation" , "Property" AllowMultiple = false Description = "Operation  or Property is virtual (may be  overridden in derived type to allow polymorphism)" Default = "false" Id = "Smp.Attributes.Virtual" Uuid = "8596d697-fb84-41ce-a685-6912006ed6c8" Type = Bool


Figure 14 - Virtual

6.3 Core Elements

6.3.1 Basic Types

The Core Elements schema defines some basic types which are used for attributes and elements of other types.
6.3.1.1 Identifier

The Identifier type, respectively the Id attribute of NamedElement is not mapped to C++.
6.3.1.2 Name

The Name type, respectively the Name attribute of NamedElement is used for the name of a C++ equivalent of a mapped SMDL element. As an example, C++ fields, operations, types (such as structures and classes) and namespaces are named according to the Name attribute of the corresponding SMDL element in a catalogue.
6.3.1.3 Description

The Description type, respectively the Description element of NamedElement is not mapped to C++, but may be generated as a comment in the description of a C++ equivalent of a mapped SMDL element.

6.3.1.4 UUID

The UUID type is mapped to the equivalent Uuid type of the Component Model.

6.3.2 Elements

6.3.2.1 Named Element

A NamedElement is not mapped directly into C++, because it is an abstract base type. Nevertheless types derived from NamedElement use the inherited Name attribute for the naming of their C++ equivalent (see section 6.3.1.2 on Name). The Description element is not mapped to C++, but may be generated as a comment (see section 6.3.1.3 on Description).

6.3.2.2 Document

The Document type is the abstract base type for XML files defined by SMDL. It is not mapped to C++, but the derived Package document type is (see section 6.6.1.1 on Package).

6.3.3 Metadata

Metadata is additional, named information stored with a named element. It is used to further annotate named elements, as the Description element is typically not sufficient.

6.3.3.1 Metadata

Metadata is an abstract base type and not mapped to C++.

6.3.3.2 Comment

A Comment is not mapped to C++, but may be generated as code comment.

6.3.3.3 Documentation

Documentation is not mapped to C++, but may be generated as code documentation.

6.4 Core Types

6.4.1 Types

Types are used in different contexts. The most common type is a LanguageType, which has a mapping to the C++ programming language via the types derived from it. Typing is used as well for other mechanisms, e.g. for Attributes and Events.
6.4.1.1 Visibility Element

A VisibilityElement is not directly mapped to C++, because it is an abstract base type. Types and features derived from VisibilityElement map the inherited Visibility attribute to define their C++ visibility (see Visibility Kind below).

6.4.1.2 Visibility Kind

The VisibilityKind attribute is mapped to C++ according to the following table:

	Visibility Kind
	C++ Visibility

	private
	private

	protected
	protected

	package
	public

	public
	public


The C++ visibility coincides with the Visibility attribute except for package, which is not supported by C++.

6.4.1.3 Type

Type is an abstract base type and not mapped to C++. However, the Uuid attribute of inherited types is mapped to a constant of type Uuid:

	/// Unique Identifier of type $Type.Name$.

extern const Smp::Uuid Uuid_$Type.Name$;




The implementation has to be provided in another file, typically in a source file.

The mapping may as well use a type derived from Smp::Uuid.

6.4.1.4 Language Type

LanguageType is an abstract base type and not mapped to C++. All types derived from LanguageType have a mapping to C++. See section 6.4.2 for Value Types, section 6.4.1.6 for Value Reference, section 6.4.1.7 for Native Type and Platform Mapping, and section 6.5.2 for Reference Types.
6.4.1.5 Value Type

ValueType is an abstract base type and not mapped to C++. See section 6.4.2 on Value Types for derived types.
6.4.1.6 Value Reference

A ValueReference is mapped as a typedef of a pointer to a ValueType.
· In case the ValueReference belongs to a ReferenceType (i.e. is a nested type), the Visibility is defined.

	// If embedded in a Reference Type set Visibility

[public:|protected:|private:]

// Define Value Reference as pointer to existing Value Type

typedef TypeName($ValueReference.Type$)* $ValueReference.Name$;




6.4.1.7 Native Type and Platform Mapping

A NativeType is mapped as a typedef to an existing C++ type if (and only if) it has a PlatformMapping to the C++ platform. The following holds:

· A PlatformMapping is considered to be for the C++ platform if (and only if) its Name starts with “cpp”.

· A PlatformMapping with Name equals to “cpp” is called the default C++ mapping.

· A PlatformMapping with a Name not equals to “cpp” is called a conditional C++ mapping, where the remainder of the Name is called the Condition (called $PlatformMapping.Condition$ below).

A NativeType is mapped as follows:

· A NativeType with only a default C++ mapping is mapped as an #include and a typedef, where the include statement is added at the beginning of the file:

	// Include header file if Platform Mapping has one

[#include "$PlatformMapping.Location$"]

// If embedded in a Reference Type set Visibility

[public:|protected:|private:]

// Use Namespace if Platform Mapping has one

typedef [$PlatformMapping.Namespace$::]$PlatformMapping.Type$ $NativeType.Name$;




· A NativeType with only conditional C++ mappings is mapped as a switch of conditional typedef statements, where the order of conditions is defined as the order of the PlatformMapping elements:

	// Include header file if Platform Mapping has one

#if   defined ($PlatformMapping1.Condition$)

    [#include "$PlatformMapping1.Location$"]

#elif defined ($PlatformMapping2.Condition$)

    [#include "$PlatformMapping2.Location$"]

...

#endif
// If embedded in a Reference Type set Visibility

[public:|protected:|private:]

// Define Native Type via typedef

#if   defined ($PlatformMapping1.Condition$)

    typedef [$PlatformMapping1.Namespace$::]$PlatformMapping1.Type$ $NativeType.Name$;

#elif defined ($PlatformMapping2.Condition$)

    typedef [$PlatformMapping2.Namespace$::]$PlatformMapping2.Type$ $NativeType.Name$;

...

#endif




· A NativeType with both a default and conditional C++ mappings is mapped as a switch of conditional typedef statements with a final #else statement, where the order of conditions is defined as the order of the PlatformMapping elements (except for the default mapping, which is always generated at the end):

	// Include header file if Platform Mapping has one

#if   defined ($PlatformMapping1.Condition$)

    [#include "$PlatformMapping1.Location$"]

#elif defined ($PlatformMapping2.Condition$)

    [#include "$PlatformMapping2.Location$"]

...

#else
    [#include "$PlatformMappingX.Location$"]

#endif
// If embedded in a Reference Type set Visibility

[public:|protected:|private:]

// Define Native Type via typedef

#if   defined ($PlatformMapping1.Condition$)

    typedef [$PlatformMapping1.Namespace$::]$PlatformMapping1.Type$ $NativeType.Name$;

#elif defined ($PlatformMapping2.Condition$)

    typedef [$PlatformMapping2.Namespace$::]$PlatformMapping2.Type$ $NativeType.Name$;

...

#else
    typedef [$PlatformMappingX.Namespace$::]$PlatformMappingX.Type$ $NativeType.Name$;

#endif



6.4.2 Value Types

6.4.2.1 Simple Type

SimpleType is an abstract base type and not mapped to C++.
6.4.2.2 Primitive Type

All primitive types are mapped to basic ISO/ANSI C++ types. As this mapping depends on hardware platform (e.g. 32 bit or 64 bit) and compiler, the actual mapping is provided in an include file called Platform.h.
6.4.2.3 Enumeration

An Enumeration is mapped to an ISO/ANSI C++ enum type. In addition, a function is defined that registers the enumeration and all its literals in the type registry. In case the Enumeration belongs to a ReferenceType (i.e. is a nested type), the Visibility is defined. In this case, the function becomes a static method of the reference type with the same visibility as the type.

	// If embedded in a Reference Type set Visibility

[public:|protected:|private:]

enum $Enum.Name$ 

{

    // Comma-separated mapping of Enumeration Literals

    See 6.4.2.4 (Enumeration Literal)

};

/// Register type in type registry

[static] void _Register_$Enum.Name$(Smp::Publication::ITypeRegistry* registry);




6.4.2.4 Enumeration Literal

Each EnumerationLiteral is mapped as C++ enum literal with value assignment.
	$EnumerationLiteral.Name$ = $EnumerationLiteral.Value$




6.4.2.5 Integer

An Integer type is mapped as a typedef to the primitive type it references, or to Smp::Int32 if it does not reference a type. The Maximum, Minimum and Unit attributes are not mapped, but can be shown as comments in the code. In addition, a function is defined that registers the integer type (with its limits and unit) in the type registry.

· In case the Integer belongs to a ReferenceType (i.e. is a nested type), the Visibility is defined. In this case, the function becomes a static method of the reference type with the same visibility as the type.

	// If embedded in a Reference Type set Visibility

[public:|protected:|private:]

// Define Integer as typedef to existing Integer type, with default of Int32

typedef $Integer.Type$|Smp::Int32 $Integer.Name$;

/// Register type in type registry

[static] void _Register_$Integer.Name$(Smp::Publication::ITypeRegistry* registry);




6.4.2.6 Float

A Float type is mapped as a typedef to either Smp::Float32 or Smp::Float64. The Maximum, Minimum, MaxInclusive,  MinInclusive and Unit attributes are not mapped, but can be shown as comments. In addition, a function is defined that registers the float type (with its limits and unit) in the type registry.

· In case the Float belongs to a ReferenceType (i.e. is a nested type), the Visibility is defined. In this case, the function becomes a static method of the reference type with the same visibility as the type.

	// If embedded in a Reference Type set Visibility

[public:|protected:|private:]

// Define Integer as typedef to existing Float type, with default of Float64

typedef $Float.Type$|Smp::Float64 $Float.Name$;

/// Register type in type registry

[static] void _Register_$Float.Name$(Smp::Publication::ITypeRegistry* registry);




6.4.2.7 String

A String type is mapped as an ISO/ANSI C++ struct with an internal fixed size array of type Smp::Char8. The size of the array is given by the Length attribute of the String, but extended by one to ensure the terminating null character fits into the string. In addition, a function is defined that registers the string type in the type registry.

· In case the String belongs to a ReferenceType (i.e. is a nested type), the Visibility is defined. In this case, the function becomes a static method of the reference type with the same visibility as the type.

	// If embedded in a Reference Type set Visibility

[public:|protected:|private:]

// Define String as structure with array field

struct $String.Name$

{

    Smp::Char8 internalString[$String.Length$+1];

};

/// Register type in type registry

[static] void _Register_$String.Name$(Smp::Publication::ITypeRegistry* registry);




6.4.2.8 Array

An Array type is mapped as an ISO/ANSI C++ struct (not as a typedef of an array)
. In addition, a function is defined that registers the array type in the type registry.

· In case the Array belongs to a ReferenceType (i.e. is a nested type), the Visibility is defined. In this case, the function becomes a static method of the reference type with the same visibility as the type.

	// If embedded in a Reference Type set Visibility

[public:|protected:|private:]

// Define Array as structure with array field

struct $Array.Name$

{

    TypeName($Array.ItemType$) internalArray[$Array.Size$];

};

/// Register type in type registry

[static] void _Register_$Array.Name$(Smp::Publication::ITypeRegistry* registry);




6.4.2.9 Structure

A Structure type is mapped as an ISO/ANSI C++ struct. Each field of the structure is mapped to a field in C++. In addition, a static method is defined that registers the structure type in the type registry.

· In case the Structure belongs to a ReferenceType (i.e. is a nested type), the Visibility is defined.

	// If embedded in a Reference Type set Visibility

[public:|protected:|private:]

// Define Structure as struct with static _Register method

struct $Structure.Name$
{

    // Define the Fields of the Structure here

    See 6.4.3.2 (Field)

    // Register type in type registry

    static void _Register(Smp::Publication::ITypeRegistry* registry);

};




If a forward declaration is needed, this can be generated as follows:

	// If embedded in a Reference Type set Visibility

[public:|protected:|private:]

struct $Structure.Name$;




6.4.2.10 Class

A Class is mapped as a C++ class. In addition, a static method is defined that registers the class type in the type registry.

· In case the Class belongs to a ReferenceType (i.e. is a nested type), the Visibility is defined.

· In case the Class has a Base class defined, it inherits from the specified base class.

· In case the Class has no constructor defined (i.e. no Operation with the Constructor attribute), a default constructor is generated.

· A virtual destructor is always generated.

· All features (Constant, Field, Property, Association, Operation) are generated.

The mapping can be tailored via the following attributes:

· In case the Class has a BaseClass attribute, it inherits from the specified base class (possibly in addition to the inheritance from the specified Base class, as C++ supports multiple implementation inheritance).

	// If embedded in a Reference Type set Visibility

[public:|protected:|private:]

// If the Class has a Base Class it needs to inherit from it. 

class $Class.Name$ [: public TypeName($Class.Base$)][, public $BaseClass.Name$]

{

    // Constructor and virtual Destructor are declared with Visibility of the Class

    public:|protected:|private:

    // Default constructor is generated if no other constructors are defined

    [$Class.Name$(void);]

    // Virtual destructor is always generated

    virtual ~$Class.Name$(void);

    // If the Class has Constants, these are declared:
    See 6.4.3.1 (Constant)

    // If the Class has Fields, these are declared:
    See 6.4.3.2 (Field)

    // If the Class has Properties, these are declared virtual:

    See 6.4.3.3 (Property)

    // If the Class has associations, these are declared:

    See 6.4.3.4 (Association)

    // If the Class has Operations, these are declared virtual:

    See 6.4.3.5 (Operation)

    // Register type in type registry

    static void _Register(Smp::Publication::ITypeRegistry* registry);

};




6.4.2.11 Exception

An Exception is mapped to a C++ class. In addition, a static method is defined that registers the exception type (as a class type) in the type registry.
· In case the Exception belongs to a ReferenceType (i.e. is a nested type), the Visibility is defined.

· In case the Exception has a Base class defined, it inherits from the specified base class. Otherwise, it inherits from Smp::Exception.
· In case the Exception has no constructor defined (i.e. no Operation with the Constructor attribute), a default constructor is generated.

· A copy constructor is always generated, as this is needed to be able to catch exceptions by value.

· A virtual destructor is always generated.

· All features (Constant, Field, Property, Association, Operation) are generated.

The mapping can be tailored via the following attributes:

· In case the Exception has a BaseClass attribute, it inherits from the specified base class (in addition to the inheritance from the specified Base class or Smp::Exception, as C++ supports multiple implementation inheritance).

	// If embedded in a Reference Type set Visibility

[public:|protected:|private:]

// If the Exception has a Base Exception it needs to inherit from it. 

class $Exception.Name$ : 

    public TypeName($Exception.Base$)|Smp::Exception[, public $BaseClass.Name$]
{

    // Constructors and virtual Destructor are declared with Visibility of the Exception

    public:|protected:|private:

    // Default constructor is generated if no other constructors are defined

    [$Exception.Name$(void) throw();]

    // Copy constructor is always generated, to allow catching exception by value

    $Exception.Name$($Exception.Name$& exception) throw();

    // Virtual destructor is always generated

    virtual ~$Exception.Name$(void);

    // If the Exception has Constants, these are declared:
    See 6.4.3.1 (Constant)

    // If the Exception has Fields, these are declared:
    See 6.4.3.2 (Field)

    // If the Exception has Properties, these are declared virtual:

    See 6.4.3.3 (Property)

    // If the Exception has associations, these are declared:

    See 6.4.3.4 (Association)

    // If the Exception has Operations, these are declared virtual:

    See 6.4.3.5 (Operation)

    // Register type in type registry

    static void _Register(Smp::Publication::ITypeRegistry* registry);

};


The mapping on an Exception is therefore almost identical to the mapping of a Class, but each Exception must inherit from another Exception (with the default Smp::Exception). Further, an Exception always needs a copy constructor, to allow catching exceptions by value.

6.4.3 Features

Features are either contained in a value type (Structure, Class, Exception), or in a reference type (Interface, Model, Service).

6.4.3.1 Constant

A Constant is mapped to C++ as a static const member variable of a C++ struct or a C++ class.

· The Visibility is defined.

	// Set Visibility

public:|protected:|private:
// Constant of value type.

static const TypeName($Constant.Type$) $Constant.Name$;




In addition, an implementation with the value of the Constant needs to be defined in a source file.

For the mapping of a Value, see section 6.4.4 on Values below.

Remark: In case the Constant belongs to a Structure the visibility should be public.

6.4.3.2 Field

A Field is mapped to C++ as a member variable of a C++ struct or a C++ class.

· The Visibility is defined.

The mapping can be tailored via the following attributes:

· If the Field has the Static attribute, it is declared static.

· If the Field has the Forcible attribute, an additional field for the forced value, and a Boolean field for the forcing status are generated.

The View attribute is only taken into account in the publication of the field.

	// Set Visibility

public:|protected:|private:
// Field of value type.

[static] TypeName($Field.Type$) $Field.Name$;

[// Forced value of field of value type.

[static] TypeName($Field.Type$) _forced_$Field.Name$;

// Flag whether field is forced.

[static] Smp::Bool _isForced_$Field.Name$;]




Remark: In case the Field belongs to a Structure the visibility should be public.

6.4.3.3 Property

A Property is mapped as one or two ISO/ANSI C++ methods, one for a possible setter and one for a possible getter.

· The Visibility is defined.

· If the Property is of type readWrite or readOnly, a getter method is defined.

· If the Property is of type readWrite or writeOnly, a setter method is defined.

· If the Property belongs to an Interface, it is declared as pure virtual (“= 0”).

· If the Property is of ReferenceType, it is declared as a pointer (unless it has the ByReference attribute).

The mapping can be tailored via the following attributes:

· If the Property has the Abstract attribute, it is declared pure virtual (“= 0”).

· If the Property has the Virtual attribute, it is declared virtual in order to allow overwriting it.

· If the Property has the Static attribute, it is declared static.

· If the Property has the ByReference attribute, it is declared as a reference (“&”).

· If the Property has the Const attribute, the property getter method is defined as const.

The View attribute is only taken into account in the publication of the property.

Table 11 – Property Type Modifier depending on type and attribute

	Attribute
	none
	ByReference
	
	

	ValueType
	
	&
	
	

	ValueReference
	
	&
	
	

	ReferenceType
	*
	&
	
	

	NativeType
	
	&
	
	


	// Set Visibility

public:|protected:|private:
// In case the Property is ReadOnly or ReadWrite:

[virtual] [static] TypeName($Property.Type$)[*|&] get_$Property.Name$()[ const][ = 0];

// In case the Property is WriteOnly or ReadWrite:

[virtual] [static] void set_$Property.Name$(TypeName($Property.Type$)[*|&] val)[ = 0];




Remark: A Property that is Static must neither by Virtual nor Abstract, as a static method cannot be virtual.

Remark: In case the Property belongs to an Interface the visibility should be public.

Remark: In case a Property has an attached field, a code generator may generate an implementation giving access to this field.

	// In case the Property is ReadOnly or ReadWrite:

TypeName($Property.Type$)[*|&] TypeName($Property.Owner$)::get_$Property.Name$()[ const]

{

    return $Property.AttachedField.Name$;

}

// In case the Property is WriteOnly or ReadWrite:

void TypeName($Property.Owner$)::set_$Property.Name$(TypeName($Property.Type$)[*|&] val)

{

    $Property.AttachedField.Name$ = val;

}




6.4.3.4 Association

An Association is mapped to C++ as a member variable of a C++ class.

· The Visibility is defined.

· If the Association is of a ValueType or ReferenceType, it is defined as a pointer (“*”).

The mapping can be tailored via the following attributes:

· If the Association has the Static attribute, it is declared static.

· If the Association has the ByReference attribute, it is defined as a reference (“&”).

· If the Association has the Const attribute, it is defined as const.

Table 12 – Association Type Modifier depending on type and attribute

	Type
	ValueType
	ValueReference
	ReferenceType
	NativeType

	Default
	*
	
	*
	

	ByReference
	&
	&
	&
	&


	// Set Visibility

public:|protected:|private:
// Association of type reference.

[const] [static] TypeName($Association.Type$)[*|&] $Association.Name$;




6.4.3.5 Operation

An Operation is mapped to an ISO/ANSI C++ method. 

· The Visibility is defined.

· If the Operation belongs to an Interface, it is declared as pure virtual (“= 0”).

· If the Operation has a Parameter of return direction, this parameter defines the return type of the operation (called $Operation.ReturnType$ below).

· If the Operation returns a ReferenceType, it returns a pointer (“*”), otherwise it returns a value.

The mapping can be tailored via the following attributes:

· If the Operation has the Abstract attribute, it is declared pure virtual (“= 0”).

· If the Operation has the Static attribute, it is declared static.

· If the Operation has a return Parameter with the ByReference attribute, it returns a reference (“&”).

· If the Operation has the Virtual attribute, it is declared virtual in order to allow overwriting it.

· If the Operation has the Const attribute, it is defined as const.

The View attribute is only taken into account in the publication of the operation.

	// Set Visibility

public:|protected:|private:

// Return type of Operation is defined by the return parameter, or void

[virtual] [static] void|TypeName($Operation.ReturnType$)[*|&] $Operation.Name$(

    // Comma-separated mapping of Parameters, except for return Parameter

    See 6.4.3.6 (Parameter)

)[ const][ = 0];



Remark: In case the Operation belongs to an Interface the visibility should be public.

· If the Operation has the Operator attribute, it is declared as an operator.

	// Set Visibility

public:|protected:|private:

// Return type of Operator is defined by the return parameter, or void

[virtual] [static] void|TypeName($Operation.ReturnType$)[*|&] operator $Operator.Kind$(

    // Comma-separated mapping of Parameters, except for return Parameter

    See 6.4.3.6 (Parameter)

)[ const][ = 0];




· If the Operation has the Constructor attribute, it is declared as a constructor.

	// Set Visibility

public:|protected:|private:

// Constructor must neither be const, nor virtual, nor have a return Parameter

$Operation.Owner.Name$(Parameters);




Remark: In case the Operation has the Constructor attribute, it should not have the Const, Virtual or Static attribute, or a Parameter of return direction.

6.4.3.6 Parameter

A Parameter is mapped to an argument of a C++ operation, operator or constructor, or to the return type of an operation or operator.

· An empty parameter list (i.e. at most a return parameter) is mapped to void.

· A non-empty parameter list is mapped to a comma-separated list of arguments with optional type modifier, type and name for each argument (but excluding an optional return parameter).

· Based on Type and Direction, the Parameter is passed by value, as a pointer, or as a reference, according to the following table:

Table 13 - Parameter Modifier depending on type and direction

	Direction
	in
	out
	inout
	return

	ValueType
	const
	*
	*
	

	ValueReference
	const
	
	
	

	ReferenceType
	const &
	*
	*
	*

	NativeType
	const
	*
	*
	


The mapping can be tailored via the following attributes:

· If the Parameter has the ByReference attribute, it is passed by reference (“&”).

· If the Parameter has the Const attribute, it is passed as const.
	// Parameter can be passed by value, by reference, or as a pointer

[const] TypeName($Parameter.Type$)[*|&] $Parameter.Name$




6.4.4 Values

Default values of fields, and values of constants are mapped to C++ using the appropriate mechanisms to initialise fields in a class or structure.
6.4.4.1 Value

This base class is not mapped to C++.
6.4.4.2 Simple Value

A SimpleValue maps to a corresponding value in C++. It is always used together with an owner, such as a Constant, Field, or Parameter.

6.4.4.2.1 Bool Value

	Smp::Bool $BoolValue.Owner.Name$ = false|true;


6.4.4.2.2 Char8Value

A Char8Value holds a value for an item of type Char8.

	Smp::Char8 $Char8Value.Owner.Name$ = $Char8Value.Value$;


6.4.4.2.3 Date Time Value

	Smp::DateTime $BoolValue.Owner.Name$ = $DateTimeValue.Value$;


6.4.4.2.4 Duration Value

	Smp::Duration $DurationValue.Owner.Name$ = $DurationValue.Value$;


6.4.4.2.5 Enumeration Value

	TypeName($EnumerationValue.Owner.Type) $EnumerationValue.Owner.Name$

       = $EnumerationValue.Literal$;


An EnumerationValue maps to the enumeration Literal of the EnumerationValue, not to the Value.

6.4.4.2.6 Float32Value

	Smp::Float32 $Float32Value.Owner.Name$ = $Float32Value.Value$;


6.4.4.2.7 Float64Value

	Smp::Float64 $Float64Value.Owner.Name$ = $Float64Value.Value$;


6.4.4.2.8 Int16Value

	Smp::Int16 $Int16Value.Owner.Name$ = $Int16Value.Value$;


6.4.4.2.9 Int32Value

	Smp::Int32 $Int32Value.Owner.Name$ = $Int32Value.Value$;


6.4.4.2.10 Int64Value

	Smp::Int64 $Int64Value.Owner.Name$ = $Int64Value.Value$;


6.4.4.2.11 Int8Value

	Smp::Int8 $Int8Value.Owner.Name$ = $Int8Value.Value$;


6.4.4.2.12 String8Value

	Smp::String8 $String8Value.Owner.Name$ = $String8Value.Value$;


6.4.4.2.13 UInt16Value

	Smp::UInt16 $UInt16Value.Owner.Name$ = $UInt16Value.Value$;


6.4.4.2.14 UInt32Value

	Smp::UInt32 $UInt32Value.Owner.Name$ = $UInt32Value.Value$;


6.4.4.2.15 UInt64Value

	Smp::UInt64 $UInt64Value.Owner.Name$ = $UInt64Value.Value$;


6.4.4.2.16 UInt8Value

	Smp::UInt8 $UInt8Value.Owner.Name$ = $UInt8Value.Value$;


Examples:

Smp::Int32 myInt32Field = 123;

Smp::Char8 myChar8Field = 'x';

6.4.4.3 Simple Array Value

A SimpleArrayValue maps to an array of simple values.

Example:

struct MyPosition

{

    Smp::Float64 internalArray[3];

}

MyPosition myArrayField = {{1.0, 2.0, 3.0}};

6.4.4.4 Array Value

An ArrayValue maps to an array of values.

6.4.4.5 Structure Value

A StructureValue maps to a value of a structure, which is a comma-separated list of field values enclosed in “{“ and “}”.

Example:

struct MyStruct

{

    Smp::Int64 size;

    Smp::Char8 text;

};

MyStruct myStructField = { 1, 'x' };

6.4.5 Attributes

An Attribute is not mapped to C++.

6.5 Smdl Catalogue

6.5.1 Catalogue

6.5.1.1 Catalogue

A Catalogue itself is not mapped to C++, but its name may be used as the name of a root directory for files generated for namespaces in the catalogue. 

6.5.1.2 Namespace

A Namespace is mapped to C++ namespace. As no code is generated for a namespace, every type contained within a namespace will be wrapped by a C++ namespace definition. As namespaces may contain nested namespaces, a C++ namespace may contain further namespaces.

	namespace $Namespace.Name$

{

    // Define nested namespaces and types

}




Remark: To avoid problems with circular includes of files for the definition of composed types, it may be necessary to add a forward declaration of Structure, Class, Interface and Model. Further, it is recommended to define each Structure, Class, Interface or Model in a dedicated header file, and to provide the implementation of a Structure, Class or Model in a dedicated source file.

6.5.2 Reference Types

6.5.2.1 Reference Type

ReferenceType is an abstract base type. Each type derived from ReferenceType is mapped to a C++ class. 

6.5.2.2 Component

Component is an abstract base type. Each type derived from Component is mapped to a C++ class. 

6.5.2.3 Interface

An Interface is mapped to an abstract C++ class, which means that every C++ method for any Operation or Property of the Interface is declared pure virtual (“= 0”).

· An Interface always has a virtual destructor with an empty implementation.

· If the Interface has base interfaces, virtual inheritance is used.

	// In case the Interface has Base Interfaces these will be inherited virtual and public.

class $Interface.Name$

    [: virtual public TypeName($Interface.Base1$), ...]

{

    // Virtual destructor is always generated

    virtual ~$Interface.Name$(void) {}

    // If the Interface has Properties, these are declared pure virtual:

    See 6.4.3.3 (Property)

    // If the Interface has Operations, these are declared pure virtual:

    See 6.4.3.5 (Operation)

};




6.5.2.4 Model

A Model is mapped to a C++ class. For basic SMP compliance, the model is mapped as follows:

· The Model implements the IModel interface.

· If the Model has at least one Container, it implements the IComposite interface.

· If the Model provides an Interface, it implements this interfaces via public, virtual inheritance.

· If the Model has a Base model, it inherits its implementation via public, non-virtual inheritance.

The mapping can be tailored via the following attributes:

· If the Model has a BaseClass attribute, it inherits from the specified base class.

· If the Model has a Fallible attribute, it implements the IFallibleModel interface.

	class $Model.Name$ : 

   [public $BaseClass.Name$,]
   [public TypeName($Model.Base$),]
   [virtual public TypeName($Model.Interface1$), ...]

   [virtual public Smp::IComposite,]
    virtual public Smp::IModel|Smp::IFallibleModel
{

    // In case the Model has nested types these are defined:

    See 6.4.1 (Types)

    // Constructor and virtual Destructor are declared with Visibility of the Model

    public:|protected:|private:

    // Default Constructor is always generated.

    $Model.Name$(void);

    // Virtual Destructor is always generated.

    virtual ~$Model.Name$(void);

    // If the Model has Constants, these are declared:
    See 6.4.3.1 (Constant)

    // If the Model has Fields, these are declared:
    See 6.4.3.2 (Field)

    // If the Model has Properties, these are declared virtual:

    See 6.4.3.3 (Property)

    // If the Model has associations, these are declared:

    See 6.4.3.4 (Association)

    // If the Model has Operations, these are declared virtual:

    See 6.4.3.5 (Operation)

    // If the Model has Entry Points, they will be declared:

    See 6.5.3.1.1 (Entry Point)

    // If the Model has Containers, they will be declared:

    See 6.5.3.2.1 (Container)

    // If the Model has References, they will be declared:

    See 6.5.3.2.2 (Reference)

    // If the Model has Event Sources, they will be declared:

    See 6.5.3.3.2 (Event Source)

    // If the Model has Event Sinks, they will be declared:

    See 6.5.3.3.3 (Event Sink)
};




Each of the interfaces that the Model has to implement could be implemented by inheritance from another class that implements the interface.

For full SMP compliance, the following holds in addition:

· The Model implements the IManagedModel interface.

· If the Model has at least one Reference, it implements the IAggregate interface.

· If the Model has at least one EventSource, it implements the IEventProvider Interface.

· If the Model has at least one EventSink, it implements the IEventConsumer Interface.

· If the Model has at least one EntryPoint, it implements the IEntryPointPublisher Interface.

	// If the Model has a Base Model it uses public (non-virtual) implementation inheritance. 

// If the Model provides Interfaces, it uses public, virtual inheritance. 
class $Model.Name$ : 

   [public $BaseClass.Name$,]
   [public TypeName($Model.Base$),]
   [virtual public TypeName($Model.Interface1$), ...]

   [virtual public Smp::IComposite,]
   [virtual public Smp::IAggregate,]
   [virtual public Smp::Management::IEventProvider,]
   [virtual public Smp::Management::IEventConsumer,]
   [virtual public Smp::Management::IEntryPointPublisher,]
   [virtual public Smp::IFallibleModel,]
    virtual public Smp::Management::IManagedModel

{

    ...

}




6.5.2.5 Service

A Service is mapped to a C++ class.

· The Service implements the IService interface.

· If the Service provides an Interface, it implements this interfaces.

· If the Service has a Base component, it inherits its implementation.

The mapping can be tailored via the following attributes:

· If the Service has a BaseClass attribute, it inherits from the specified base class.

	// If the Service has a Base Component it uses public (non-virtual) inheritance. 

// If the Service provides Interfaces, it uses public, virtual inheritance. 
class $Service.Name$ : 

   [public $BaseClass.Name$,]
   [public TypeName($Service.Base$),]
   [virtual public TypeName($Service.Interface1$), ...]

    virtual public Smp::IService
{

    // In case the Service has nested types these are defined:

    See 6.4.1 (Types)

    // Constructor and virtual Destructor are declared with Visibility of the Service

    public:|protected:|private:

    // Default Constructor is always generated.

    $Service.Name$(void);

    // Virtual Destructor is always generated.

    virtual ~$Service.Name$(void);

    // If the Service has Constants, these are declared:
    See 6.4.3.1 (Constant)

    // If the Service has Fields, these are declared:
    See 6.4.3.2 (Field)

    // If the Service has Properties, these are declared virtual:

    See 6.4.3.3 (Property)

    // If the Service has Associations, these are declared:

    See 6.4.3.4 (Association)

    // If the Service has Operations, these are declared virtual:

    See 6.4.3.5 (Operation)

    // If the Service has Entry Points, they will be declared:

    See 6.5.3.1.1 (Entry Point)

    // If the Service has Event Sources, they will be declared:

    See 6.5.3.3.2 (Event Source)

    // If the Service has Event Sinks, they will be declared:

    See 6.5.3.3.3 (Event Sink)
};




Remark: Each of the interfaces that the Service has to implement could be implemented by inheritance from another class that implements the interface.

6.5.3 Modelling Mechanisms

6.5.3.1 Class based Design

6.5.3.1.1 Entry Point

An EntryPoint is mapped to a reference to the IEntryPoint interface. The EntryPoint is mapped public.

	public:
    // Expose entry point as pointer to IEntryPoint interface

    Smp::IEntryPoint* $EntryPoint.Name$;




The model has to ensure that an implementation is available when other components call the handler of the entry point.

Remark: An entry point can as well be mapped to a type that implements the Smp::IEntryPoint interface.

6.5.3.2 Component based Design

6.5.3.2.1 Container

A Container is mapped to a pointer to the IContainer interface. The Container is mapped public.

	public: 
    // Expose container as pointer to IContainer interface

    Smp::IContainer* $Container.Name$;




The model has to ensure that an implementation is available when other components access the container.

Remark: A container can as well be mapped to a type that implements the Smp::IContainer interface.

6.5.3.2.2 Reference

A Reference is mapped to a pointer to the IReference interface. The Reference is mapped public.

	public: 
    // Expose reference as pointer to IReference interface

    Smp::IReference* $Reference.Name$;




The model has to ensure that an implementation is available when other components access the reference.

Remark: A reference can as well be mapped to a type that implements the Smp::IReference interface.

6.5.3.3 Event based Design

6.5.3.3.1 Event Type

An event type itself is not mapped to C++, as the event notification mechanism uses an argument of AnySimple type to pass a value with each event. 

Remark: The event type can be used to ensure that event sinks and event sources are only connected if they are of the same event type.

6.5.3.3.2 Event Source

An EventSource is mapped to a pointer to the IEventSource interface. The EventSource is mapped public.

	public:

    // Expose event source as pointer to IEventSource interface

    Smp::IEventSource* $EventSource.Name$;




The model has to ensure that an implementation is available when other components access the event source.

Remark: An event source can as well be mapped to a type that implements the Smp::IEventSource interface.

6.5.3.3.3 Event Sink

An EventSink is mapped to a pointer to the IEventSink interface. The EventSink is mapped public.

	public: 
    // Expose event sink as pointer to IEventSink interface

    Smp::IEventSink* $EventSink.Name$;




The model has to ensure that an implementation is available when other components access the event sink.

Remark: An event sink can as well be mapped to a type that implements the Smp::IEventSink interface.

6.5.4 Catalogue Attributes

6.5.4.1 View and ViewKind

The View attribute, together with the ViewKind enumeration, is used to specify the view argument for the publication call of a Field, Property or Operation. In case that a field, property or operation is published, this publication call shall use the value assigned to the View attribute, or VK_None as default.

6.6 Smdl Package

6.6.1 Package

A package describes all metamodel elements that are needed in order to define how implementations of types defined in catalogues are packaged.
6.6.1.1 Package

A Package is a Document that holds an arbitrary number of Implementation elements. Each of these implementations references a type in a catalogue that shall be implemented in the package. 

The C++ mapping of a Package is a static or dynamic library providing an implementation for each of the Implementation elements. To make these types available for later use, many of them need to be registered: For each model, a factory needs to be registered, while value types are registered in the type registry. This registration of types shall be done from a standardised Initialise() function. In a corresponding Finalise() function, memory has to be released. To avoid duplicate symbols in the linker, these functions shall contain the name of the package as well.

	extern "C"

{

    /// Initialise function for static package.

    bool Initialise$Package.Name$(

        Smp::ISimulator* simulator,

        Smp::Publication::ITypeRegistry* typeRegistry);

    /// Finalise function for static package.

    bool Finalise$Package.Name$();

}




For a dynamic library (Dynamic Link Library (DLL XE "DLL" \t " Dynamic Link Library" ) on the Microsoft Windows OS, or Dynamic Shared Object (DSO XE "DSO" \t " Dynamic Shared Object" ) on the Unix OS), two additional functions that do not include the name of the package shall be defined as well, as global functions in dynamic libraries do not create naming conflicts at link time. These Initialise() and corresponding Finalise() functions shall call the functions including the package name. As a package may reference other packages as a Dependency, which indicates that a type referenced from an implementation in the package requires a type implemented in the referenced package, the initialise and finalise functions of these dependencies shall be called as well.

	#ifdef  WIN32

#define DLL_EXPORT __declspec(dllexport)

#else

#define DLL_EXPORT

#endif

extern "C"

{

    /// Initialise function for dynamic package.

    DLL_EXPORT bool Initialise(

        Smp::ISimulator* simulator,

        Smp::Publication::ITypeRegistry* typeRegistry);

    /// Finalise function for dynamic package.

    DLL_EXPORT bool Finalise();

}




There are no rules on the order in which packages are initialised, as the type registration process via Universally Unique Identifiers (UUIDs) does not introduce dependencies on the order. However, the initialise and finalise functions may get called several times during initialisation (e.g. when referenced from more than one package), so the implementation needs to ensure that types are only registered once, and memory is released only once as well.

6.6.1.2 Implementation

An Implementation selects a single Type from a catalogue for a Package. For the implementation, the Uuid of the type is used, unless the type is a Model: For a model, a different UUID for the implementation can be specified, as for a model, different implementations may exist in different packages.

Implementation of a Model

When the Implementation points to a Model (via its Type link), a corresponding class factory has to be registered with the managed simulator (IManagedSimulator) using the RegisterFactory() method. This class factory uses the Uuid of the Model (as specification identifier) as well as the Uuid of the Implementation (as implementation identifier). This allows registering more than one implementation for a Model definition in a Catalogue.

This will only work when the simulator passed to the Initialise() function is a managed simulator, i.e. it implements the optional IManagedSimulator interface.

Implementation of a Service

When the Implementation points to a Service (via its Type link), an instance of the Service shall be created and added to the simulator (ISimulator) using the AddService() method.

Implementation of a Value Type

When the Implementation points to a ValueType (via its Type link), the corresponding user-defined value type has to be registered in the type registry (ITypeRegistry). This is done by calling the global register function (for Enumeration, Integer, Float, Array, String) or method (Structure, Class, Exception) of the type. 

6.6.2 Bundle Format

For distribution of a binary package, this C++ Mapping defines a C++ specific Bundle Format. A Bundle is an archive (e.g. a tar file on Linux, or a zip file on Windows) which can provide any number of folders and files that make up the bundle. The structure of folders and files within the bundle, and the names of folders and files are not standardised, and can include both SMP artefacts (Smdl Catalogues, Assemblies, Schedules, Packages and Configurations) and other files not standardised by SMP (including, but not limited to, source code files, libraries, and documentation).

The added value of a Bundle is an additional Bundle Manifest with the following name:

SMP.MF

This Manifest is an ASCII file (aligned with the OSGi manifest format) which contains key-value pairs in the following format:

Key: Value

· Key and Value are separated by a colon.

· They Key must only contain alpha-numerical characters, underscore (“_”) and dash (“-“).

· The Value starts at the first non-whitespace character after the colon (“:”), and is terminated by the end of line

All valid Keys are allowed, but a number of Keys have a defined meaning:

	Key
	Meaning

	Bundle-Copyright
	Copyright statement for the bundle.

	Bundle-ContactAddress
	Full address of a person or company that can be contacted.

	Bundle-DocURL
	URL where documentation for the bundle can be retrieved from.

	Bundle-Description
	Textual description of the bundle and its content.

	Bundle-ManifestVersion
	A bundle manifest may express the version of the OSGi manifest header syntax in the Bundle-ManifestVersion header. If specified, the bundle manifest version must be’2’.

	Bundle-Name
	The Bundle-Name header defines a readable name for this bundle. This should be a short, human-readable name that can contain spaces.

	Bundle-SymbolicName
	The Bundle-SymbolicName manifest header is a mandatory header. The bundle symbolic name and bundle version allow a bundle to be uniquely identified in the Framework. That is, a bundle with a given symbolic name and version is treated as equal to another bundle with the same (case sensitive) symbolic name and exact version.

The installation of a bundle with a Bundle-SymbolicName and Bundle-Version identical to an existing bundle must fail.

	Bundle-Vendor
	The Bundle-Vendor header contains a human-readable description of the bundle vendor.

	Bundle-Version
	Bundle-Version is an optional header; the default value is 0.0.0.

A version consists of major, minor and micro version components. If the minor or micro version components are not specified, they have a default value of 0.

Versions are comparable. Their comparison is done numerically and sequentially on the major, minor, and micro components. A version is considered equal to another version if the major, minor, and micro components are equal.

	Require-Bundle
	The Require-Bundle header specifies the required exports from another bundle. This is a comma-separated list of required bundles, where each bundle is at least specified by its symbolic name, optionally followed by a specific version:

<Bundle-SymbolicName>[; Bundle-Version="<Bundle-Version>"]

	Compiler-Name
	Name of the compiler that has been used to compile the source code.

	Compiler-Version
	Version of the compiler that has been used to compile the source code.

	OS-Name
	Name of the Operating System.

	OS-Version
	Version of the Operating System.


6.6.3 Binary Distribution

The mapping of a Package to C++ defines which symbols a static or dynamic library of SMP2 Types has to expose. This has been done to enable binary distribution of models, where only the header files (for the compiler) and the libraries (for the linker) have to be provided, but no implementation source code. Nevertheless, binary compatibility depends on a number of other constraints, which may even vary between operating systems and compilers. The following guidelines help to reduce problems, but are by no means complete:

· The operating system on which the Simulation Environment runs should be used to compile the models.

· The same C++ compiler that has been used to compile the Simulation Environment (the component providing the implementation of the ISimulator interface) should be used to compile the models.

· The compiler settings that have been used to compile the Simulation Environment (the component providing the implementation of the ISimulator interface) should be used to compile the models.
The objective of these guidelines is to ensure that resolving of symbols and Run-Time Type Information (RTTI) is compatible between the Simulation Environment and the models, and that both depend on the same libraries of the same operating system (e.g. same glibc library).

ECSS Secretariat�


ESA-ESTEC


Requirements & Standards Division


Noordwijk, The Netherlands











� This is because an array cannot be used as return type of an operation in C++.





14

