

Technology Flow Definition Norspace SAW Device Manufacturing for Space Applications Doc. no.: NORS\SAW\GEN\MIF\TNO629 Issue: 1 Date: 30.05.2011 Page 1 of 10

Technology Flow Definition Norspace SAW Device Manufacturing for Space Application

	Name	Sign	Date
Prepared by	Cecilie Berg	Ocitie Berg	30/5-2011
Checked by	Øystein Johansen	Jupten Johnnin	31/5-2011
Approved by	Sigmund Bardal	Smill ll	31/5-2011
Approved QA	Harald Bjørn Hansen	fleeh flen	31 May 2011
		· · · · · · · · · · · · · · · · · · ·	

© Norspace AS - Proprietary Information - Reproduction forbidden

CHANGE RECORD

Date	lss.	Page	Change
30. May 11	1	-	Initial issue

TABLE OF CONTENT

1.	SCOPE AND OBJECTIVE	3
2.	Technology Flow Definition	4
Cor	ntact Information	4
Init	tial Qualification	4
Ма	intenance of Qualification	4
Ар	olicable documents	4
Тес	chnology flow abstract	6

1. SCOPE AND OBJECTIVE

This document presents the Technology Flow Definition concerning the Norspace SAW device manufacturing for space applications. The document is prepared as part of WP1200 in the SAW Technology Flow Qualification (SAW TFQ) program.

2. Technology Flow Definition

NORSPACE

Contact Information

Address	ESCC Chief Inspector
Norspace AS	Cecilie Berg
Knutsrødveien 7	Tel: (+47) 3303 2700
N-3189 Horten	Fax: (+47) 3303 2800
Norway	email: <u>cecilie.berg@norspace.no</u>

Initial Qualification

QualificationValidity datesCertificate No.		Type designation	
No. 303	June 2011 – June 2013	SAW filters (transversal band pass/resonator/notch/ low loss impedance element)	

Maintenance of Qualification

Qualification Certificate No.	Validity dates	Comment

Applicable documents

ESCC Generic Specification 3502

ESCC Detail Specification 3502/002

Norspace PIDs:

PID534_3 SAW Device Assembly with flow NORSF-A1

PID630_4 SAW Crystal Manufacturing with flow NORSF-C1

List of Qualified Components

For each design a detail specification is produced by Norspace. Where the SAW component is not proprietary to the customer the detail specification is published in ESCIES as a supporting document. Available detail specifications are found in the table below.

Detail specification	Component Type
ESCC 3502/002	

Technology flow abstract

1. Technology Flow

The Technology Flow covers the design, fabrication, assembly, screening, in-process control and testing of the Norspace SAW filters manufactured within the NORSF-C1 and NORSF-A1 processes. The design, crystal manufacturing, assembly, screening and testing is performed in the Norspace facility at Knudsrødveien 7 in Horten, Norway.

Description	Scope		
Design	Norspace specification Ko 03.00		
Crystal manufacturing	Process flow NORSF-C1 on purchased SAW-grade surface polished wafers.		
	<u>Wafer materials:</u> Quartz (SiO ₂), Lithium niobate (LiNbO ₃), Lithium tantalate (LiTaO ₃), Langasite (La ₃ Ga ₅ SiO ₁₄)		
	Wafer dimensions: 3" diameter 0.5 mm thick 3" diameter 1.0 mm thick 4" diameter 1.5 mm thick		
Assembly	Process flow NORSF-A1.		
	<u>Crystal dimensions:</u> from 1.7 mm \times 3.1 mm up to 8 mm \times 76 mm.		
	Packages:		
	 Gold plated Fe-Ni-Co-alloy flat packs. From 4 up to 50 leads with ceramic or glass feedthroughs. External wings for screw attach on some types. <u>Package dimensions:</u> From 8 mm × 8 mm up to 85 mm × 12 mm. 		
	 Gold plated Fe-Ni-Co-alloy flat packs with Cu-W base, 4 or 6 leads and ceramic feedthroughs. <u>Package dimensions:</u> From 11 mm × 11 mm up to 7 mm × 21 mm. 		
	 Gold plated ceramic Leadless Chip Carrier (LCC) package, 10 solder pads. <u>Package dimension:</u> 5 mm × 7 mm. 		

Screening and test	Incoming inspection		
	In-process inspection		
	• 100% Wafer probe electrical test		
	100% Visual inspection		
	Final production tests		
	Customer Source Inspection		
	Screening		
	Burn-in and electrical measurements		
	Test procedures		
	External visual inspection		
	Qualification testing		
	Lot acceptance testing		

(a) Basic Information

The SAW devices are passive devices and typically require external tuning.

Frequency range: From 10 MHz up to 4 GHz. Max operating temperature range: -30 / +85 °C (maximum), -20 / +70 °C (typical). Input power: design sensitive.

(b) Component types

- Transversal band pass SAW filters with frequencies up to 4 GHz.
- SAW Resonator filters
- SAW Notch filters
- Impedance element filters with low loss

2. Design

The design programs are in-house developed procedures and libraries. Each new design is custom made for the application by Norspace design engineers. The design centre is in Horten, Norway.

2.1 Transversal band pass SAW filters

The transversal filters consist of one input transducer and one output transducer, see figure below. The transducers are interdigital transducers formed by a metal pattern on a piezoelectric material (wafer). The transducers can be withdrawal weighted and/or length (apodization) weighted. The detailed weighting functions are calculated in a dedicated filter synthesis software and used as input to the mask layout software. The simulation of the filter response is performed by a dedicated SAW Analysis software.

2.2 Resonator filters

The resonator filter consists of input and output transducers as described above. These are normally unweighted. The transducers are backed by reflectors, see figure below. The reflectors are I/4 wide etched grooves or metal fingers. The same SW is used for simulation of the transducers and reflectors.

Technology Flow Definition Norspace SAW Device Manufacturing for Space Applications

Doc. no.: NORS\SAW\GEN\MIF\TNO629 Issue: 1 Date: 30.05.2011 Page 9 of 10

2.3 SAW Notch filters

The notch are based on single port resonator elements, so called impedance elements (see below).

2.3.1 Impedance element filters with low loss

Impedance element filters are constructed from one port SAW resonators. The one port SAW resonators consist of one interdigital transducer backed by one reflector on each side, as shown in the figure below.

3. Fabrication

The NORSF-C1 process at Norspace comprises

- SAW crystal manufacturing on SAW grade polished single crystal wafers from quartz, LiNbO₃, LiTaO₃ and La₃Ga₅SiO₁₄ (langasite).
- Externally purchased SAW wafers
- SAW wafer thickness between 0.5 mm and 1.5 mm.

- Photolithography with line widths down to 0.3 µm. No upper limit.
- Metallization performed with AI or Cr/AI. Metal thickness 400 10 000 Å.

The process can manufacture SAW elements of band pass, resonator or notch type with centre frequencies in the range 10 MHz to 4 GHz.

4. Assembly

Norspace assembly flow NORSF-A1 technology flow covers the following capabilities:

Package	Die Attach	Wire Bond	Lid Seal	Leads
Flatpack/LCC. Au plated. CuW base/ Fe-Ni-Co alloy or ceramic with Fe-Ni-Co alloy seal ring.	Silicone rubber	Ultrasonic ball- wedge, 25 µm Au wire	Resistance seam sealing. N ₂ atmosphere.	Au plated

5. Test

Measurements are performed using a Vector Network Analyzer (VNA),

All equipment in the electrical test set-up shall have the same characteristic impedance. The S-parameters are measured on the VNA and transferred to a PC for post-processing and analysis. Before testing the VNA and its test cables must be calibrated as specified in the manual for the instrument (full 2-port calibration).

Test vehicles used for qualification: SQF-3800, SLC-4320.

Test vehicles used for maintenance: SQF-3800, SLC-3900, or similar devices.

6. Radiation

- The devices are regarded as radiation insensitive within a small drift in centre frequency and phase allowed for in the design margins.
- Radiation testing has been performed successfully up to 50 MRad(Si) for quartz and 1 MRad(Si) for LiNbO₃, LiTaO₃ and Langasite.

Qualified wafer materials: Quartz, LiNbO₃. LiTaO₃, Langasite (La₃Ga₅SiO₁₄).