

redundant.

DOCUMENT CHANGE REQUEST

125 Originator: S Thacker DCR number Changes required for: General Date: 2004/06/14 Date sent: 2004/06/14 Organisation: ESA/ESTEC Status: IMPLEMENTED Title: CMOS Dual Complementary Pair plus Inverter having unbuffered Outputs, based on type 4007UB Number: 9202/038 Issue: 1 Other documents affected: Page: Figure 3(b) Mode Select Table - page 13 Paragraph: Figure 3(b) Mode Select Table - page 13 Original wording: Proposed wording: In addition to general changes to the specification format/layout/content for the 4000B series as summarised in ESCC approved DCR90, there are some additional specific technical changes to this specification as follows: 1) Figure 3(b) Mode Select table is deleted and replaced by the Truth Table plus the general notes (in para 1.8(note 2), 1.9(note 1), 1.10(note 3) & 2.3.3(note 1) that for the purposes of Testing, the device is configured to function as a Triple - see attached sheets for current and new spec. Justification: This DCR is raised for clarification and for conformity of content and format within the 4000B series of specifications. The existing mode table pattern 1 reflects the configuration used in the spec for testing purposes - as per the

clarifications/modifications per this DCR. All other patterns are included for no specific reason and are considered

Attachments:
DCR_pages_for_9202038.pdf, null
Modifications:
N/A
Approval signature:
Jl. Kaile
Date signed:
2004-06-14

ESA/SCC Detail Specification No. 9202/038

PAGE 13

ISSUE 4

FIGURE 3(a) - PIN ASSIGNMENT (CONT'D)

FLAT PACKAGE, SO AND DUAL-IN-LINE TO CHIP CARRIER PIN ASSIGNMENT

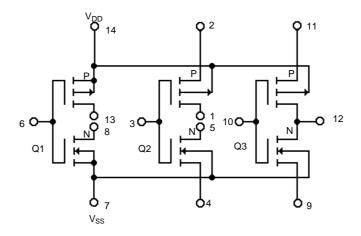
FLAT PACKAGE, SO AND

DUAL-IN-LINE PIN OUTS 1 2 3 4 5 6 7 8 9 10 11 12 13 14

CHIP CARRIER PIN OUTS 2 4 5 6 7 9 10 12 14 15 16 17 19 20

FIGURE 3(b) - MODE SELECT TABLE

PATTERN NO.	MODE	PIN CONNECTIONS	
1	Triple Inverters	14 to 2 to 11; 8 to 13; 1 to 5; 4 to 7 to 9; Positive Logic $Y = \overline{A}$	
2	3-Input NOR Gate	13 to 2; 1 to11; 12 to 5 to 8; 7 to 4 to 9; Positive Logic Y = A + B + C	
3	3-Input NAND Gate	1 to 2 to 13; 2 to 14 to 11; 4 to 8; 5 to 9; Positive Logic Y = ABC	
4	High Sink-Current Driver	6 to 3 to 10; 8 to 5 to 12; 11 to 14; 7 to 4 to 9	
5	High Source-Current Driver	6 to 3 to 10; 13 to 1 to 12; 14 to 2 to 11; 7 to 9	
6	High Sink and Source-Current Driver	6 to 3 to 10; 14 to 2 to 11; 7 to 4 to 9; 13 to 8 to 1 to 5 to 12	
7	Dual bi-directional Transmission Gating	1 to 5 to 12; 2 to 9; 11 to 14; 8 to 13 to 10; 6 to3	


ISSUE 2

Symbols	Dimension	Notes	
Symbols	Min	Max	Notes
M	0.33	0.43	
N	4.31 TY		

1.7.5 <u>Consolidated Notes</u>

- 1. Index area; a notch or a dot shall be located adjacent to Pin 1 and shall be within the shaded area shown. For chip carrier packages, the index shall be as shown.
- 2. The dimension shall be measured from the seating plane to the base plane.
- 3. The true position pin spacing is 1.27mm between centrelines. Each pin centreline shall be located within ±0.13mm of its true longitudinal position relative to Pin 1 and the highest pin number.
- 4. The true position pin spacing is 2.54mm between centrelines. Each pin centreline shall be located within ±0.25mm of its true longitudinal position relative to Pin 1 and the highest pin number.
- 5. All terminals.
- 6. 12 spaces for flat, dual-in-line and small outline packages. 16 spaces for chip carrier packages.
- 7. Index corner only 2 dimensions.
- 8. 3 non-index corners 6 dimensions.
- 9. For all pins, either pin shape may be supplied.

1.8 FUNCTIONAL DIAGRAM

Pin No.	Symbol	Description	Pin No.	Symbol	Discription
1	Q2PS	Q2(P) SOURCE	8	Q1ND	Q1(N) DRAIN
2	Q2PD	Q2(P) DRAIN	9	Q3NS	Q3(N) SOURCE
3	Q2G	Q2 GATES	10	Q3G	Q3 GATES
4	Q2NS	Q2(N) SOURCE	11	Q3PD	Q3(P) DRAIN
5	Q2ND	Q2(N) DRAIN	12	Q3ND/ Q3PS	Q3(N) DRAIN, Q3(P) SOURCE
6	Q1G	Q1 GATES	13	Q1PS	Q1(P) SOURCE
7	V _{SS}	V _{SS} , Q1-Q2-Q3(N) SUBSTRATES, Q1(N) SOURCE	14	V _{DD}	V _{DD} , Q1-Q2-Q3(P) SUBSTRATES, Q1(P) DRAIN

NOTES:

- 1. Pin numbers relate to FP, DIP and SO packages only
- 2. For the purpose of testing in accordance with this specification, unless otherwise specified, the component pins shall be connected as follows to configure the component to function as a Triple Inverter (Positive Logic $Y = \overline{A}$):

$$\begin{split} &V_{DD} = \text{Q2PD} = \text{Q3PD} \quad \text{(Pin 14 to 2 to 11)} \\ &V_{SS} = \text{Q2NS} = \text{Q3NS} \quad \text{(Pin 7 to 4 to 9)} \\ &\text{Q1ND} = \text{Q1PS} \qquad \text{(Pin 8 to 13)} \\ &\text{Q2ND} = \text{Q2PS} \qquad \text{(Pin 5 to 1)} \end{split}$$

EACH INVERTER

1.9 <u>PIN ASSIGNMENT</u>

Pin	Function			Function		
	FP, DIP and SO	ССР	Pin	FP, DIP and SO	CCP	
1	Q2PS Output (2Y)	-	11	Q3PD	-	
2	Q2PD	Q2PS Output (2Y)	12	Q3ND/Q3PS Output (3Y)	Q1ND Output (1Y)	
3	Q2G input (2A)	-	13	Q1PS Output (1Y)	-	
4	Q2NS	Q2PD	14	V _{DD}	Q3NS	
5	Q2ND Output (2Y)	Q2G input (2A)	15	-	Q3G Input (3A)	
6	Q1G Input (1A)	Q2NS	16	-	Q3PD	
7	V _{SS}	Q2ND Output (2Y)	17	-	Q3ND/Q3PS Output (3Y)	
8	Q1ND Output (1Y)	-	18	-	-	
9	Q3NS	Q1G Input (1A)	19	-	Q1PS Output (1Y)	
10	Q3G Input (3A)	V _{SS}	20	-	V _{DD}	

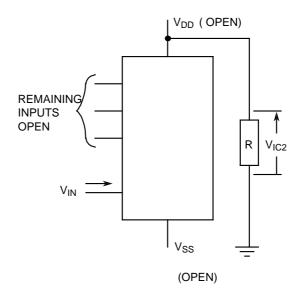
NOTES:

1. The definition of Input and Output pins is based on configuration of the component to function as a Triple Inverter.

1.10 TRUTH TABLE

- 1. Logic Level Definitions: L = Low Level, H = High Level.
- 2. Positive Logic: $Y = \overline{A}$.
- 3. The truth table is based on configuration of the component to function as a Triple Inverter.

EACH GATE


INPUT (A)	OUTPUT (Y)
QnG	QnND/QnPS
L	Н
Н	L

Characteristics	Symbols	MIL-STD-883	Test Conditions	Limits		Units
	Test Method Note 1		Min	Max		
Threshold Voltage N-Channel	V _{THN}	-	Q3G at Ground Q2NS and Q3NS Connected to V _{SS} All Other Inputs: V _{IN} =5V V _{DD} =5V, I _{SS} =-10µA T _{amb} =+125°C T _{amb} =- 55°C	-0.3 -0.7	-3.5 -3.5	V
Threshold Voltage P-Channel	V _{THP}	-	Q3G at Ground Q2PS and Q3PS Connected to V _{DD} All Other Inputs: V _{IN} =-5V V _{SS} =-5V, I _{DD} =10µA T _{amb} =+125°C T _{amb} =- 55°C	0.3 0.7	3.5 3.5	V

2.3.3 Notes to Electrical Measurement Tables

- Unless otherwise specified all tests shall be performed with the component configured to function
 as a Triple Inverter. Unless otherwise specified all inputs and outputs shall be tested for each
 characteristic, inputs not under test shall be V_{IN} = V_{SS} or V_{DD} and outputs not under test shall be
 open.
- Functional tests shall be performed to verify Truth Table with V_{OH} ≥ V_{DD} -0.5V, V_{OL} ≤ 0.5V. The Maximum time to output comparator strobe = 300μs.
- 3. Quiescent Current shall be tested using the following input conditions:
 - (a) All Inputs Q1G = Q2G = Q3G = V_{IH} .
 - (b) All Inputs Q1G = Q2G = Q3G = V_{IL} .
- 4. Interchange of forcing and measuring parameters is permitted.
- 5. Input Clamp Voltage 2 to V_{DD}, V_{IC2}, shall be tested on each input as follows:-

