

Page i

TRANSISTORS, HIGH POWER, NPN, BASED ON TYPES 2N5664 THROUGH 2N5667 ESCC Detail Specification No. 5203/038

ISSUE 1 October 2002

ESCC Detail Specification

PAGE	ii
ISSUE	1

LEGAL DISCLAIMER AND COPYRIGHT

European Space Agency, Copyright © 2002. All rights reserved.

The European Space Agency disclaims any liability or responsibility, to any person or entity, with respect to any loss or damage caused, or allleged to be caused, directly or indirectly by the use and application of this ESCC publication.

This publication, without the prior permission of the European Space Ageny and provided that it is not used for a commercial purpose, may be:

- copied in whole in any medium without alteration or modification.
- copied in part, in any medium, provided that the ESCC document identification, comprising the ESCC symbol, document number and document issue, is removed.

european space agency agence spatiale européenne

Pages 1 to 25

TRANSISTORS, HIGH POWER, NPN, BASED ON TYPES 2N5664 THROUGH 2N5667

ESA/SCC Detail Specification No. 5203/038

space components coordination group

		Approved by		
Issue/Rev.	Date	SCCG Chairman	ESA Director General or his Deputy	
Issue 3	November 1994	Ponomical	Horm	
Revision 'A'	September 1996	Sa mit	Hoon	

Rev. 'A'

PAGE 2

ISSUE 3

DOCUMENTATION CHANGE NOTICE

Davi	Devi	CHANGE	
Rev. Letter	Rev. Date	CHANGE Reference Item	Approved DCR No.
		This Issue supersedes Issue 2 and incorporates all modifications defined in Revisions 'A' and 'B' to Issue 2 and the following DCR's:- Cover page DCN Para. 1.2 : Text deleted and new text added Para. 1.4 : New text added Para. 2 : Item "(c)" deleted Table 1(b) : In Remarks, "T _{case} " added Figure 1(b) : Note deleted and new Note added Figure 1(c) : Test Conditions added from Table 3 : Note added Figure 2 : Imperial dimensions deleted from Tables and Notes Para. 4.2.3 : Existing text deleted and new text added Para. 4.5.1 : Existing text deleted and new text added Para. 4.5.5 : Deleted Para. 4.6.2 : Sentence added Para. 4.7.3 : In second sentence, "5" amended to "5(b)" Para. 4.7.4 : Renumbered as "4.7.5" : New Para. 4.7.6 added Para. 4.7.6 : New Para. 4.7.6 added Table 2 : Imperial dimensions deleted from Note 2 Table 3 : Test 19 details transferred to Figure 1(c) and Test deleted : Imperial dimensions deleted from Note 2 Table 5(a) : Entry added Table 5 : Renumbered as "5(b)" Figure 5(a) : Entry added Figure 5 : Renumbered as "5(b)" Paras 4.8.1/4.8.2 : Second sentence, "5" amended to "5(b)" Paras 4.8.3 : In second sentence, "5" amended to "5(b)" Paras 4.8.3 : In second sentence, "5" amended to "5(b)"	None None 23661 221193 23661 221193 221193 221193 221193 23661
'A'	Sept. '96	P1. Cover Page P2. DCN P5. Para. 1.7 : Text amended	None None 21083

PAGE 3

ISSUE 3

TABLE OF CONTENTS

		<u>Page</u>
1.	<u>GENERAL</u>	5
1.1	Scope	5
1.2	Component Type Variants	5
1.3	Maximum Ratings	5
1.4	Parameter Derating Information	5
1.5	Physical Dimensions	5
1.6	Functional Diagram	5
1.7	High Temperature Test Precautions	5
2.	APPLICABLE DOCUMENTS	5
3.	TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS	5
4.	REQUIREMENTS	14
4.1	General	14
4.2	Deviations from Generic Specification	14
4.2.1	Deviations from Special In-process Controls	14
4.2.2	Deviations from Final Production Tests	14
4.2.3	Deviations from Burn-in Tests	14
4.2.4	Deviations from Qualification Tests	14
4.2.5	Deviations from Lot Acceptance Tests	14
4.3	Mechanical Requirements	14
4.3.1	Dimension Check	14
4.3.2	Weight	14
4.3.3	Terminal Strength	14
4.4	Materials and Finishes	15
4.4.1	Case	15
4.4.2	Lead Material and Finish	15
4.5	Marking	15
4.5.1	General	15
4.5.2	Lead Identification	15
4.5.3	The SCC Component Number	15
4.5.4	Traceability Information	15
4.6	Electrical Measurements	16
4.6.1	Electrical Measurements at Room Temperature	16
4.6.2	Electrical Measurements at High and Low Temperatures	16
4.6.3	Circuits for Electrical Measurements	16
4.7	Burn-in Tests	16
4.7.1	Parameter Drift Values	16
4.7.2	Conditions for High Temperature Reverse Bias Burn-in	16
4.7.3	Conditions for Power Burn-in	16
4.7.4	Electrical Circuit for High Temperature Reverse Bias Burn-in	16
4.7.5	Electrical Circuit for Power Burn-in	16
4.7.6	Verification of Safe Operating Area	16
4.8	Environmental and Endurance Tests	23
4.8.1	Electrical Measurements on Completion of Environmental Tests	23
4.8.2	Electrical Measurements at Intermediate Points and on Completion of Endurance Tests	23
4.8.3 4.8.4	Conditions for Operating Life Tests Electrical Circuits for Operating Life Tests	23 23
4.8.5	Conditions for High Temperature Storage Test	23 23
-T.U.J	Conditions for riight comporations oftenage 10st	20

PAGE 4
ISSUE 3

TABLES	<u>}</u>	<u>Page</u>
1(a)	Type Variants	6
1(b)	Maximum Ratings	7
2 ′	Electrical Measurements at Room Temperature - d.c. Parameters	17
	Electrical Measurements at Room Temperature - a.c. Parameters	19
3	Electrical Measurements at High and Low Temperatures	20
4	Parameter Drift Values	20
5(a)	Conditions for High Temperature Reverse Bias Burn-in	22
5(b)	Conditions for Power Burn-in and Operating Life Tests	22
6	Electrical Measurements at Intermediate Points and on Completion of Endurance Testing	24
FIGURE	<u>s</u>	
1(a)	Parameter Derating Information	7
1(b)	Forward Bias Safe Operating Area (Maximum Continuous d.c.)	8
1(c)	Forward Bias Safe Operating Area for Switching Between Saturation and Cut-off (Clamped Inductive Load)	9
2	Physical Dimensions	10
3	Functional Diagram	13
4	Circuits for Electrical Measurements	21
5(a)	Electrical Circuit for High Temperature Reverse Bias Burn-in	22
5(b)	Electrical Circuit for Power Burn-in and Operating Life Tests	22
APPENI	DICES (Applicable to specific Manufacturers only)	
'A'	Agreed Deviations for Unitrode/Solitron	25

Rev. 'A'

PAGE

ISSUE 3

5

1. GENERAL

1.1 SCOPE

This specification details the ratings, physical and electrical characteristics, test and inspection data for a Transistor, High Power, NPN, based on Types 2N5664 through 2N5667. It shall be read in conjunction with ESA/SCC Generic Specification No. 5000, the requirements of which are supplemented herein.

1.2 COMPONENT TYPE VARIANTS

Variants of the basic transistors specified herein, which are also covered by this specification, are given in Table 1(a)

1.3 MAXIMUM RATINGS

The maximum ratings, which shall not be exceeded at any time during use or storage, applicable to the transistors specified herein are as scheduled in Table 1(b).

1.4 PARAMETER DERATING INFORMATION

The derating information applicable to the transistors specified herein is shown in Figure 1(a).

The safe operating area information applicable to the transistors specified herein is shown in Figures 1(b) and 1(c).

1.5 PHYSICAL DIMENSIONS

The physical dimensions of the transistors specified herein are shown in Figure 2.

1.6 FUNCTIONAL DIAGRAM

The functional diagram showing lead identification, of the transistors specified herein, is shown in Figure 3.

1.7 HIGH TEMPERATURE TEST PRECAUTIONS

• For tin-lead plated or solder-dipped lead finish, all tests to be performed at a temperature that exceeds +125°C shall be carried out in a 100% inert atmosphere.

2. APPLICABLE DOCUMENTS

The following documents for part of this specification and shall be read in conjunction with it:-

- (a) ESA/SCC Generic Specification No. 5000 for Discrete Semiconductor Components.
- (b) MIL-STD-750, Test Methods and Procedures for Semiconductor Devices.

3. TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS

For the purpose of this specification, the terms, definitions, abbreviations, symbols and units specified in ESA/SCC Basic Specification No. 21300 shall apply.

PAGE 6

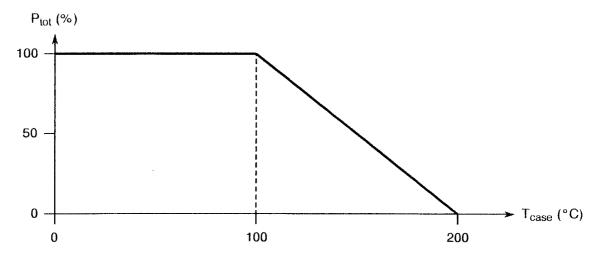
ISSUE 3

TABLE 1(a) - TYPE VARIANTS

VARIANT	BASED ON TYPE	CASE	FIGURE	LEAD MATERIAL AND FINISH
01	2N5664	TO66	2(a)	D2
02	2N5664	TO66	2(a)	D3 or D4
03	2N5665	TO66	2(a)	D2
04	2N5665	TO66	2(a)	D3 or D4
05	2N5666	TO5	2(b)	D2
06	2N5666	TO5	2(b)	D3 or D4
07	2N5667	TO5	2(b)	D2
08	2N5667	TO5	2(b)	D3 or D4
09	2N5666	TO39	2(c)	D2
10	2N5666	TO39	2(c)	D3 or D4
11	2N5667	TO39	2(c)	D2
12	2N5667	TO39	2(c)	D3 or D4

PAGE 7

ISSUE 3


TABLE 1(b) - MAXIMUM RATINGS

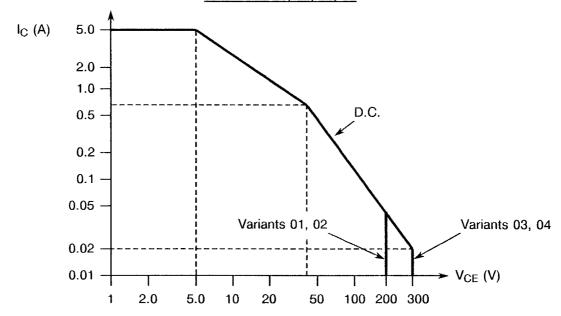
No.	CHARACTERISTICS	SYMBOL.	MAXIMUM RATINGS	UNIT	REMARKS
1	Collector - Base Voltage Variants 01-02-05-06-09-10 Variants 03-04-07-08-11-12	V _{CBO}	250 400	V	
2	Collector - Emitter Voltage Variants 01-02-05-06-09-10 Variants 03-04-07-08-11-12	V _{CEO}	200 300	V	
3	Emitter - Base Voltage	V_{EBO}	6.0	V	
4	d.c. Collector Current (Continuous)	lc	5.0	Α	
5	Peak Collector Current	I _{CP}	10	Apk	
6	d.c. Base Current	lΒ	1.0	А	
7	Power Dissipation Variants 01-02-03-04 Variants 05-06-07-08-09-10-11-12	P _{tot}	30 15	W	Note 1
8	Operating Temperature Range	T _{op}	-65 to +200	°C	T _{case}
9	Storage Temperature Range	T _{stg}	-65 to +200	°C	
10	Soldering Temperature	T _{sol}	+ 260	۰C	Note 2
11	Thermal Resistance Variants 01-02-03-04 Variants 05-06-07-08-09-10-11-12	R _{TH(J-C)}	3.3 6.7	°C/W	

NOTES

- 1. At T_{case} = +100°C. For derating at T_{case} > +100°C, see Figure 1(a).
- 2. Duration 10 seconds maximum at a distance of not less than 1.5mm from the device body and the same lead shall not be resoldered until 3 minutes have elapsed.

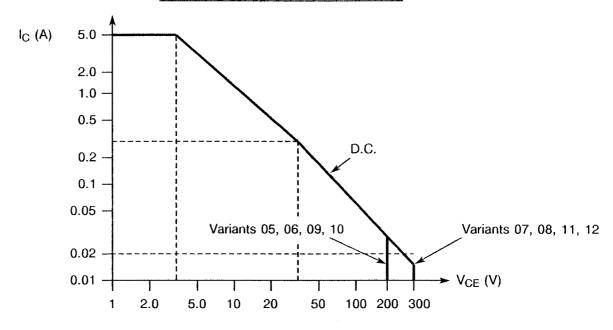
FIGURE 1(a) - PARAMETER DERATING INFORMATION

Power Dissipation versus Temperature



PAGE 8

ISSUE 3


FIGURE 1(b) - FORWARD BIAS SAFE OPERATING AREA (MAXIMUM CONTINUOUS d.c.)

VARIANTS 01, 02, 03, 04

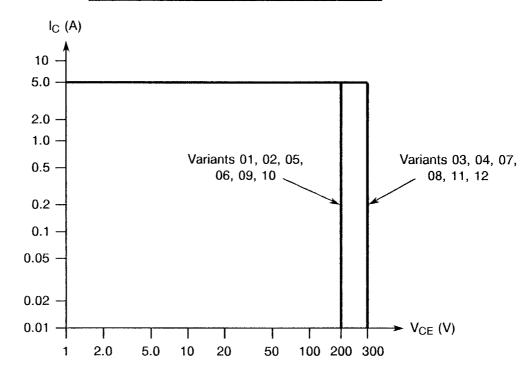
Collector Current versus Collector-Emitter Voltage

VARIANTS 05, 06, 07, 08, 09, 10, 11, 12

Collector Current versus Collector-Emitter Voltage

NOTES

1. See Para. 4.7.6.



PAGE

9

ISSUE 3

FIGURE 1(c) - FORWARD BIAS SAFE OPERATING AREA FOR SWITCHING BETWEEN SATURATION AND CUT-OFF (CLAMPED INDUCTIVE LOAD)

Collector Current versus Collector-Emitter Voltage

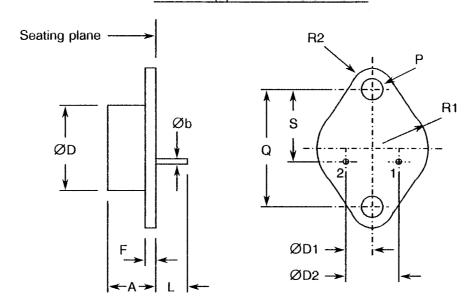
TEST CONDITIONS

$V_{CC} = 50V$	$R_S = 0.50\Omega$	Variants 01-02-05-06-09-10
$I_{\rm C} = 5.0$ A	$R_{BB1} = 50\Omega$	Clamp Voltage = 200(+ 0 - 5) V
$R_L \leq 2.0\Omega$	$V_{BB1} = 50V$	Variants 03-04-07-08-11-12
L = 40mH	$R_{BB2} = 50\Omega$	Clamp Voltage = $300(+0-5)$ V
t _r + t _f ≤ 10μs	$V_{BB2} = -4.0V$	
$t_p = 4.0 ms$		

NOTES

1. See Para. 4.7.6.

Duty Cycle ≤ 2.0%



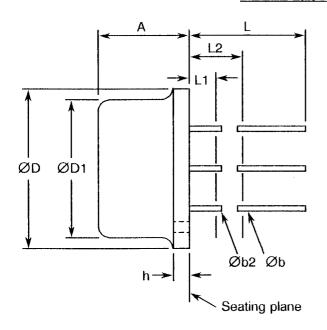
PAGE 10

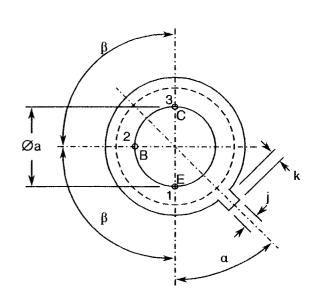
ISSUE 3

FIGURE 2 - PHYSICAL DIMENSIONS

FIGURE 2(a) - VARIANTS 01 TO 04

SYMBOL	MILLIM	ETRES	REMARKS	
STWIBUL	MIN.	MAX.	NEWIARKS	
Α	6.35	8.63		
Øb	0.711	0.863		
ØD	-	15.75		
ØD1	2.36	2.72		
ØD2	4.82	5.33		
F	1.27	1.90		
L	9.41	-		
Р	3.60	3.68	Both holes	
Q	24.33	24.43		
R1	-	8.89		
R2	-	3.68		
S	14.47	14.98		




PAGE 11

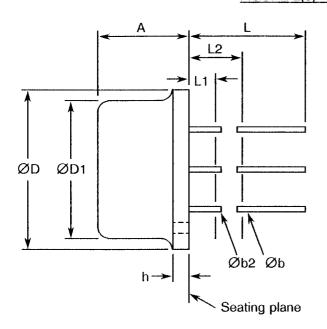
ISSUE 2

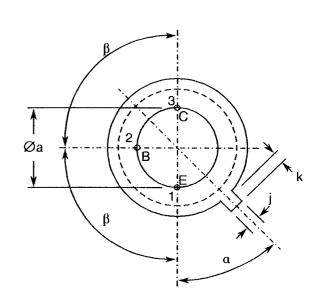
FIGURE 2 - PHYSICAL DIMENSIONS (CONTINUED)

FIGURE 2(b) - VARIANTS 05 TO 08

SYMBOL	MILLIMETRES		NOTES
STIVIDOL	MIN.	MAX.	NOTES
Øa	4.83	5.33	
Α	6.10	6.60	
Øb	0.406	0.533	1
Øb2	0.406	0.483	1
ØD	8.51	9.40	
ØD1	7.75	8.51	
h	0.254	0.762	
j	0.711	0.864	
k	0.737	1.14	2
L	38.10	44.45	1
L1	-	1.27	1
L2	6.35	-	1
α	45°		
β	90)°	

NOTES: See Page 13.




PAGE 12

ISSUE 2

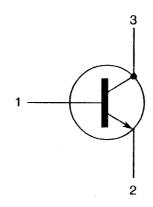
FIGURE 2 - PHYSICAL DIMENSIONS (CONTINUED)

FIGURE 2(c) - VARIANTS 09 TO 12

SYMBOL	MILLIMETRES		NOTES	
STWIDOL	MIN.	MAX.	NOTES	
Øa	4.83	5.33		
Α	6.10	6.60		
Øb	0.406	0.533	1	
Øb2	0.406	0.483	1	
ØD	8.89	9.40		
ØD1	8.00	8.51		
h	0.229	3.18		
j	0.711	0.864		
k	0.737	1.02	2	
L	12.70	-	1	
L1	-	1.27	1	
L2	6.35	-	1	
α	45°			
β	90)°		

NOTES: See Page 13.

PAGE 13

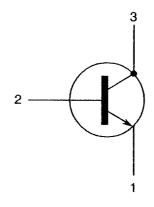

FIGURE 2 - PHYSICAL DIMENSIONS (CONTINUED)

NOTES

- 1. (3 leads) Øb2 applies between L1 and L2. Øb applies between L2 and 12.70mm from seating plane. Dismater is uncontrolled in L1 and beyond 12.70mm from seating plane.
- 2. Measured from maximum diameter of the actual device.

FIGURE 3 - FUNCTIONAL DIAGRAM

FIGURE 3(a) - VARIANTS 01 TO 04



- 1. Base
- 2. Emitter
- 3. Collector

NOTES

1. The collector is internally connected to the case.

FIGURE 3(b) - VARIANTS 05 TO 12

- 1. Emitter
- 2. Base
- 3. Collector

NOTES

1. The collector is internally connected to the case.

PAGE 14

ISSUE 3

4. **REQUIREMENTS**

4.1 GENERAL

The complete requirements for procurement of the transistors specified herein are stated in this specification and ESA/SCC Generic Specification No. 5000. Deviations from the Generic Specification, applicable to this specification only, are listed in Para. 4.2.

Deviations from the applicable Generic Specification and this Detail Specification, formally agreed with specific Manufacturers on the basis that the alternative requirements are equivalent to the ESA/SCC requirements are do not affect the components' reliability, are listed in the appendices attached to this specification.

4.2 <u>DEVIATIONS FROM GENERIC SPECIFICATION</u>

4.2.1 <u>Deviations from Special In-process Controls</u>

None.

4.2.2 <u>Deviations from Final Production Tests (Chart II)</u>

None.

4.2.3 Deviations from Burn-in Tests (Chart III)

(a) Para. 7.1.1(a), "High Temperature Reverse Bias" test and subsequent electrical measurements related to this test shall be omitted.

4.2.4 <u>Deviations from Qualification Tests (Chart IV)</u>

None.

4.2.5 <u>Deviations from Lot Acceptance Tests (Chart V)</u>

None.

4.3 MECHANICAL REQUIREMENTS

4.3.1 <u>Dimension Check</u>

The dimensions of the transistors specified herein shall be checked. They shall conform to those shown in Figure 2.

4.3.2 Weight

The maximum weight of the transistors specified herein shall be 18 grammes for Variants 01 to 04 and 12 grammes for Variants 05 and 12.

4.3.3 <u>Terminal Strength</u>

The requirements for terminal strength testing are specified in Section 9 of ESA/SCC Generic Specification No. 5000. The test conditions shall be as follows:-

Variants 01 to 04

Test Condition: 'A' (Tension)
Applied Force: 10 Newtons
Duration: 10 seconds

Variants 05 to 12

Test Condition: 'E' (Lead Fatigue)

Applied Force: 5.0 ± 0.1 Newtons, 3 bends at 45°

PAGE 15

ISSUE 3

520303801R

4.4 MATERIALS AND FINISHES

The materials and finishes shall be as specified herein. Where a definite material is not specified, a material which will enable the transistors specified herein to meet the performance requirements of this specification shall be used. Acceptance or approval of any constituent material does not quarantee acceptance of the finished product.

4.4.1 Case

The case shall be hermetically sealed and have a metal body with hard glass seals and the lid shall be welded, brazed, preform soldered or glass frit sealed.

4.4.2 Lead Material and Finish

The lead material shall be either Type 'D' with either Type '2' or Type '3 or 4' finish in accordance with the requirements of ESA/SCC Basic Specification No. 23500 (see Table 1(a) for Type Variants.

4.5 MARKING

4.5.1 General

The marking of components delivered to this specification shall be in accordance with the requirements of ESA/SCC Basic Specification No. 21700 and the following paragraphs. When the component is too small to accommodate all of the marking specified, as much as space permits shall be marked and the marking information, in full, shall accompany the component in its primary package.

The information to be marked and the order of precedence, shall be as follows:-

- (a) Lead Identification.
- (b) The SCC Component Number.
- (c) Traceability Information.

4.5.2 <u>Lead Identification</u>

Lead identification shall be as shown in Figures 2 and 3.

4.5.3 The SCC Component Number

Each component shall bear the SCC Component Number which shall be constituted and marked as follows:-

	<u> </u>	2222	- 7
Detail Specification Number			
Type Variant (see Table 1(a))			
Testing Level (B or C, as applicable)			

4.5.4 Traceability Information

Each component shall be marked in respect of traceability information in accordance with the requirements of ESA/SCC Basic Specification No. 21700.

PAGE 16

ISSUE 3

4.6 ELECTRICAL MEASUREMENTS

4.6.1 Electrical Measurements at Room Temperature

The parameters to be measured at room temperature are scheduled in Table 2. Unless otherwise specified, measurements shall be performed at T_{amb} = +25 ±3 °C.

4.6.2 Electrical Measurements at High and Low Temperatures

The parameters to be measured at high and low temperatures are scheduled in Table 3. The measurements shall be performed at $T_{amb} = -55(+5-0)$ and +150(+0-5) °C respectively.

4.6.3 Circuits for Electrical Measurements

Circuits for use in performing the electrical measurements listed in Table 2 of this specification are shown in Figure 4.

4.7 BURN-IN TESTS

4.7.1 Parameter Drift Values

The parameter drift values applicable to burn-in are specified in Table 4 of this specification. Unless otherwise stated, measurements shall be performed at T_{amb} = +25 ±3 °C. The parameter drift values (Δ) applicable to the parameters scheduled shall not be exceeded. In addition to these drift value requirements for a given parameter, the appropriate limit value specified in Table 2 shall not be exceeded.

4.7.2 Conditions for High Temperature Reverse Bias Burn-in

Not applicable.

4.7.3 Conditions for Power Burn-in

The requirements for power burn-in are specified in Section 7 of ESA/SCC Generic Specification No. 5000. The conditions for power burn-in shall be as specified in Table 5(b) of this specification.

4.7.4 Electrical Circuit for High Temperature Reverse Bias Burn-in

Not applicable.

4.7.5 Electrical Circuit for Power Burn-in

Not applicable.

4.7.6 Verification of Safe Operating Area

The requirements for verification of safe operating area testing are specified in Section 9 of ESA/SCC Generic Specification No. 5000.

The tests and Test Methods shall be as follows:-

- (a) Maximum Continuous d.c., in accordance with MIL-STD-750, Method 3051 and Figure 1(b) of this specification, at T_{case} = +100°C.
- (b) Switching between Saturation and Cut-off, Clamped Inductive Load, in accordance with MIL-STD-750, Method 3053, Test Condition B and Figure 1 (c) of this specification, at $T_{case} = +100$ °C.

PAGE 17

ISSUE 3

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - d.c. PARAMETERS

No. CHARACTERISTICS		HARACTERISTICS I SYMBOL I	MIL-STD-750	TECT CONDITIONS	LIMITS		UNIT
NO.	CHARACTERISTICS	SYMBOL	TEST METHOD	TEST CONDITIONS	MIN	MAX	OIVIT
1	Collector-Emitter Breakdown Voltage	V _(BR) CER	3011 Bias Cond. 'B'	I_{C} = 10mA R_{BE} = 100 Ω Variants 01-02-05-06-09-10 Variants 03-04-07-08-11-12 Note 1	250 400	-	V
2	Collector-Emitter Breakdown Voltage	V _{(BR)CEO}	3011 Bias Cond. 'D'	I _C = 10mA Variants 01-02-05-06-09-10 Variants 03-04-07-08-11-12 Note 1	200 300	-	V
3	Emitter-Base Breakdown Voltage	V _{(BR)EBO}	3026 Bias Cond. 'D'	l _E = 10µA	6.0	-	μΑ
4	Collector-Emitter Cut-off Current	ICES	3041 Bias Cond. 'C'	Variants 01-02-05-06-09-10 V _{CE} = 200V Variants 03-04-07-08-11-12 V _{CE} = 300V	-	0.2	μА
5	Collector-Base Cut-off Current 1	I _{CBO1}	3036 Bias Cond. 'D'	Variants 01-02-05-06-09-10 V_{CB} = 200V Variants 03-04-07-08-11-12 V_{CB} = 300V	-	0.1	μА
6	Collector-Base Cut-off Current 2	I _{CBO2}	3036 Bias Cond. 'D'	Variants 01-02-05-06-09-10 V _{CB} = 250V Variants 03-04-07-08-11-12 V _{CB} = 400V	-	0.1	mA
7	d.c. Forward Current Transfer Ratio 1	h _{FE1}	3076	V _{CE} = 2.0V, I _C = 0.5A Variants 01-02-05-06-09-10 Variants 03-04-07-08-11-12 Note 1	40 25	-	-
8	d.c. Forward Current Transfer Ratio 2	h _{FE2}	3076	V _{CE} = 5.0V, I _C = 1.0A Variants 01-02-05-06-09-10 Variants 03-04-07-08-11-12 Note 1	40 25	120 75	-
9	d.c. Forward Current Transfer Ratio 3	h _{FE3}	3076	V _{CE} = 5.0V, I _C = 3.0A Variants 01-02-05-06-09-10 Variants 03-04-07-08-11-12 Note 1	15 10	-	-
10	d.c. Forward Current Transfer Ratio 4	h _{FE4}	3076	V _{CE} = 5.0V, I _C = 5.0A Note 1	5.0	-	-

NOTES: See Page 19.

PAGE 18

ISSUE 3

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - d.c. PARAMETERS (CONT'D)

No.	CHARACTERISTICS	SYMBOL	MIL-STD-750	TEST CONDITIONS	LIM	MAX 0.4	UNIT
NO.	OHANAO FENISTIOS	STMBOL	TEST METHOD	1231 CONDITIONS	MIN	MAX	
11	Collector-Emitter Saturation Voltage 1	V _{CE(SAT)1}	3071	I_C = 3.0A Variants 01-02-05-06-09-10 I_B = 0.3A Variants 03-04-07-08-11-12 I_B = 0.6A Notes 1 and 2	-	0.4	V
12	Collector-Emitter Saturation Voltage 2	V _{CE(SAT)2}	3071	I _C = 5.0A I _B = 1.0A Notes 1 and 2	-	1.0	٧
13	Base-Emitter Saturation Voltage 1	V _{BE(SAT)1}	3066 Bias Cond. 'A'	I_C = 3.0A Variants 01-02-05-06-09-10 I_B = 0.3A Variants 03-04-07-08-11-12 I_B = 0.6A Notes 1 and 2	-	1.2	V
14	Base-Emitter Saturation Voltage 2	V _{BE(SAT)2}	3066 Bias Cond. 'A'	I _C = 5.0A I _B = 1.0A Notes 1 and 2	-	1.5	V

NOTES: See Page 19.

PAGE 19

ISSUE 3

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - a.c. PARAMETERS

No	No. CHARACTERISTICS S		MIL-STD-750	TEST		LIMITS		UNIT
INO.	OHARAOTERISTIOS	SYMBOL	TEST METHOD	TEST METHOD FIG. (NOTE 3)		MIN	MAX	UNIT
15	Gain-Bandwidth Product	f _T	3306	-	$V_{CE} = 5.0V$ $I_{C} = 0.5A$ $f = 10MHz$	20	70	MHz
16	Open Circuit Output Capacitance	C _{obo}	3236	-	V _{CB} = 10V I _E = 0 f = 1.0MHz	-	120	pF
17	Turn-on Time	t _{on}	-	4(a) 4(b)	V_{CC} = 100V I_{C} = 1.0A Variants 01-02-05-06- 09-10 I_{B1} = $-I_{B2}$ = 30mA Variants 03-04-07-08- 11-12 I_{B1} = $-I_{B2}$ = 50mA	-	0.25	μѕ
18	Turn-off Time	t _{off}	-	4(a) 4(b)	$V_{CC} = 100V$ $I_C = 1.0A$ Variants 01-02-05-06- 09-10 $I_{B1} = -I_{B2} = 30mA$ Variants 03-04-07-08- 11-12 $I_{B1} = -I_{B2} = 50mA$	-	1.5	μs

NOTES

- 1. Pulsed measurement, pulse length ≤300us, Duty Cycle ≤2.0%.
- 2. Devices shall be measured at less than 3.175mm from the case.
- 3. Measurements shall be performed on a sample basis, LTPD7 or less.

PAGE 20

ISSUE 3

TABLE 3 - ELECTRICAL MEASUREMENTS AT HIGH AND LOW TEMPERATURES

No.	CHARACTERISTICS	SYMBOL	MIL-STD-750	TEST CONDITIONS	LIM	MAX 100	UNIT
NO.	NO. CHARACTERISTICS STINDOL .		TEST METHOD	TEST CONDITIONS	MIN	MAX	OWN
4	Collector-Emitter Cut-off Current	ICES	3041 Bias Cond. 'C'	Variants 01-02-05-06-09-10 $V_{CE} = 200V$ Variants 03-04-07-08-11-12 $V_{CE} = 300V$ $T_{amb} = +150(+0-5) °C$	-	100	μΑ
8	d.c. Forward Current Transfer Ratio 2	h _{FE2}	3076	V_{CE} = 5.0V, I_{C} = 1.0A Variants 01-02-05-06-09-10 Variants 03-04-07-08-11-12 T_{amb} = -65(+5-0) °C	15 10	-	-

NOTES

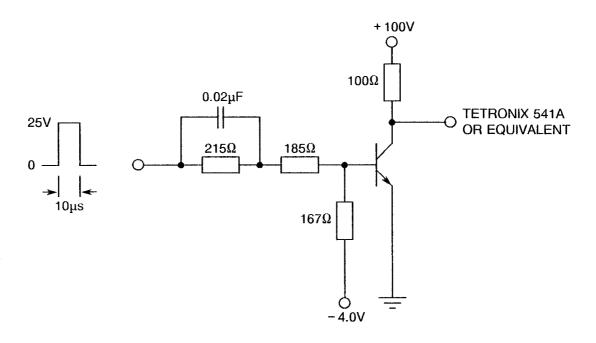
1. Pulsed measurement, pulse length \leq 300us, Duty Cycle \leq 2.0%.

TABLE 4 - PARAMETER DRIFT VALUES

No.	CHARACTERISTICS	SYMBOL	SPEC. AND/OR TEST METHOD	TEST CONDITIONS	CHANGE LIMITS (Δ)	UNIT
4	Collector-Emitter Cut-off Current	I _{CES}	As per Table 2	As per Table 2	±20 or (1) ±100	nA %
8	D.C. Forward Current Transfer Ratio 2	h _{FE2}	As per Table 2	As per Table 2	± 25	%
12	Collector-Emitter Saturation Voltage 2	V _{CE(SAT)2}	As per Table 2	As per Table 2	± 100	mV

NOTES

1. Whichever is greater, referred to the initial value.



PAGE 21

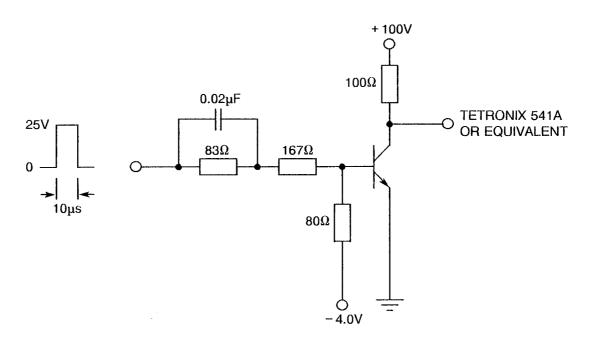

ISSUE 3

FIGURE 4 - CIRCUITS FOR ELECTRICAL MEASUREMENTS

FIGURE 4(a) - CIRCUITS FOR SWITCHING SPEED MEASUREMENTS, VARIANTS 01, 02, 05, 06, 09, 10

FIGURE 4(b) - CIRCUITS FOR SWITCHING SPEED MEASUREMENTS, VARIANTS 03, 04, 07, 08, 11, 12

NOTES

- 1. Input Pulse Voltage, -4.0V and +100V shall be adjusted to obtain the correct values of IB1, IB2 and IC.
- 2. Pulse Generator t_r and $t_f \le 15$ ns, $Z_{out} = 50\Omega$, Duty Cycle $\le 2.0\%$.
- 3. Resistors shall be non-inductive types.

PAGE 22

ISSUE 3

TABLE 5(a) - CONDITIONS FOR HIGH TEMPERATURE REVERSE BIAS BURN-IN

Not applicable.

TABLE 5(b) - CONDITIONS FOR POWER BURN-IN AND OPERATING LIFE TESTS

No.	CHARACTERISTICS	SYMBOL	CONDITIONS	UNIT
1	Ambient Temperature	T _{amb}	+ 25 ± 3	°C
2	Power Dissipation	P _{tot}	Variants 01 to 04: 2.5 Variants 05 to 12: 1.2 Note 1	W
3	Collector-Emitter Voltage	V _{CE}	Variants 01 to 04: 100 Variants 05 to 12: 150	٧

NOTES

1. No heatsink, or forced air directly on the device, shall be permitted.

FIGURE 5(a) - ELECTRICAL CIRCUIT FOR HIGH TEMPERATURE REVERSE BIAS BURN-IN

Not applicable.

FIGURE 5(b) - ELECTRICAL CIRCUIT FOR POWER BURN-IN AND OPERATING LIFE TESTS

Not applicable.

PAGE 23

ISSUE 3

4.8 <u>ENVIRONMENTAL AND ENDURANCE TESTS (CHARTS IV AND V OF ESA/SCC GENERIC SPECIFICATION NO. 5000)</u>

4.8.1 <u>Electrical Measurements on Completion of Environmental Tests</u>

The parameters to be measured on completion of environmental tests are scheduled in Table 2. Unless otherwise stated, the measurements shall be performed at T_{amb} = +25 ±3 °C.

4.8.2 Electrical Measurements at Intermediate Points and on Completion of Endurance Tests

The parameters to be measured at intermediate points and on completion of endurance tests are scheduled in Table 6 of this specification. Unless otherwise stated, the measurements shall be performed at $T_{amb} = +25 \pm 3$ °C.

4.8.3 Conditions for Operating Life Tests (Part of Endurance Testing)

The requirements for operating life testing are specified in Section 9 of ESA/SCC Generic Specification No. 5000. The conditions for operating life testing shall be the same as specified in Table 5(b) for the power burn-in test.

4.8.4 Electrical Circuits for Operating Life Tests

Not applicable.

4.8.5 Conditions for High Temperature Storage Test (Part of Endurance Testing)

The requirements for the high temperature storage test are specified in ESA/SCC Generic Specification No. 5000. The temperature to be applied shall be the maximum storage temperature specified in Table 1(b) of this specification.

PAGE 24

ISSUE 3

TABLE 6 - ELECTRICAL MEASUREMENTS AT INTERMEDIATE POINTS AND ON COMPLETION OF ENDURANCE TESTING

No.	CHARACTERISTICS	SYMBOL	SPEC. AND/OR	TEST	LIMITS		UNIT
140.	OHAHAOTENIOTIOO	JIMBOL	TEST METHOD	CONDITIONS	MIN.	MAX.	OIVII
4	Collector-Emitter Cut-off Current	I _{CES}	As per Table 2	As per Table 2	-	0.2	μА
8	d.c. Forward Transfer Ratio 2	h _{FE2}	As per Table 2	As per Table 2	See T	able 2	-
12	Collector-Emitter Saturation Voltage 2	V _{CE(SAT)2}	As per Table 2	As per Table 2	-	1.0	V

PAGE 25

ISSUE 3

APPENDIX 'A'

Page 1 of 1

AGREED DEVIATIONS FOR UNITRODE/SOLITRON

ITEMS AFFECTED	DESCRIPTION OF DEVIATIONS
Para. 4.2.2	Para. 9.1, "Internal (Pre-encapsulation) Inspection", shall be performed in accordance with MIL-STD-750, Method 2074. Para. 9.10, "External Visual Inspection", shall be performed in accordance with MIL-STD-750, Method 2071.
Para. 4.2.3	Para. 9.10, "External Visual Inspection", shall be performed in accordance with MIL-STD-750, Method 2071. Para. 9.12, "Radiographic Inspection", shall be performed in accordance with MIL-STD-750, Method 2076.
Para. 4.2.4	Para. 9.10, "External Visual Inspection", shall be performed in accordance with MIL-STD-750, Method 2071.
Para. 4.2.5	Para. 9.10, "External Visual Inspection", shall be performed in accordance with MIL-STD-750, Method 2071.