

Pages 1 to 20

TRANSISTORS, HIGH POWER, PNP, BASED ON TYPE 2N5153

ESCC Detail Specification No. 5204/002

ISSUE 2 September 2004

PAGE

ISSUE 2

LEGAL DISCLAIMER AND COPYRIGHT

European Space Agency, Copyright © 2004. All rights reserved.

The European Space Agency disclaims any liability or responsibility, to any person or entity, with respect to any loss or damage caused, or allleged to be caused, directly or indirectly by the use and application of this ESCC publication.

This publication, without the prior permission of the European Space Agency and provided that it is not used for a commercial purpose, may be:

- copied in whole in any medium without alteration or modification.
- copied in part, in any medium, provided that the ESCC document identification, comprising the ESCC symbol, document number and document issue, is removed.

PAGE	2	
ISSUE	2	

DOCUMENTATION CHANGE NOTICE

(Refer to https://escies.org for ESCC DCR content)

DCR No.	CHANGE DESCRIPTION					
80	Specification upissued to incorporate technical and editorial changes per DCR.					
	3					

PAGE 3 ISSUE 2

TABLE OF CONTENTS

		<u>Page</u>
1.	GENERAL	5
1.1	Scope	5
1.2	Component Type Variants	5
1.3	Maximum Ratings	5
1.4	Parameter Derating Information	5
1.5	Physical Dimensions	5
1.6	Functional Diagram	5
1.7	High Temperature Test Precautions	5
2.	APPLICABLE DOCUMENTS	5
3.	TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS	5
4.	REQUIREMENTS	11
4.1	General	11
4.2	Deviations from Generic Specification	11
4.2.1	Deviations from Special In-process Controls	11
4.2.2	Deviations from Final Production Tests	11
4.2.3	Deviations from Burn-in and Electrical Measurements	11
4.2.4	Deviations from Qualification Tests	11
4.2.5	Deviations from Lot Acceptance Tests	11
4.3	Mechanical Requirements	11
4.3.1	Dimension Check	11
4.3.2	Weight	11
4.3.3	Terminal Strength	11.
4.4	Materials and Finishes	12
4.4.1	Case	12
4.4.2	Lead Material and Finish	12
4.5	Marking	12
4.5.1	General	12
4.5.2	Lead Identification	12
4.5.3	The ESCC Component Number	12
4.5.4	Traceability Information	13
4.6	Electrical Measurements	13
4.6.1	Electrical Measurements at Room Temperature	13
4.6.2	Electrical Measurements at High and Low Temperatures	13
4.6.3	Circuits for Electrical Measurements	13
4.7	Burn-in Tests	13
4.7.1	Parameter Drift Values	13
4.7.2	Conditions for High Temperature Reverse Bias Burn-in	13
4.7.3	Conditions for Power Burn-in	13
4.7.4	Electrical Circuit for High Temperature Reverse Bias Burn-in	13
4.7.5	Electrical Circuit for Power Burn-in	13
4.7.6	Verification of Safe Operating Area	13
4.8	Environmental and Endurance Tests	19
4.8.1	Electrical Measurements on Completion of Environmental Tests	19
4.8.2	Electrical Measurements at Intermediate Points and on Completion of Endurance Tests	19
4.8.3	Conditions for Operating Life Test	19
4.8.4	Electrical Circuit for Operating Life Test	19
4.8.5	Conditions for High Temperature Storage Test	19

PAGE 4

		<u>Page</u>
TABLES	<u>3</u>	
1(a)	Type Variants	6
1(b)	Maximum Ratings	6
2	Electrical Measurements at Room Temperature - DC Parameters	14
	Electrical Measurements at Room Temperature - AC Parameters	15
3	Electrical Measurements at High and Low Temperatures	15
4	Parameter Drift Values	17
5(a)	Conditions for High Temperature Reverse Bias Burn-in	17
5(b)	Conditions for Power Burn-in and Operating Life Tests	18
6	Electrical Measurements at Intermediate Points and on Completion of Endurance Testing	20
FIGURI	<u>≣S</u>	
1	Parameter Derating Information	7
2	Physical Dimensions	8
3	Functional Diagram	10
4	Circuits for Electrical Measurements	16
5(a)	Electrical Circuit for High Temperature Reverse Bias Burn-in	18
5(b)	Electrical Circuit for Power Burn-in and Operating Life Tests	18

APPENDICES (Applicable to specific Manufacturers only) None.

PAGE

ISSUE 2

5

1. **GENERAL**

1.1 SCOPE

This specification details the ratings, physical and electrical characteristics, test and inspection data for a Transistor, High Power, PNP, based on Type 2N5153.

It shall be read in conjunction with ESCC Generic Specification No. 5000, the requirements of which are supplemented herein.

1.2 COMPONENT TYPE VARIANTS

Variants of the basic transistors specified herein, which also covered by this specification, are given in Table 1(a).

1.3 MAXIMUM RATINGS

The maximum ratings, which shall not be exceeded at any time during use or storage, applicable to the transistors specified herein, are scheduled in Table 1(b).

1.4 PARAMETER DERATING INFORMATION

The derating information applicable to the transistors specified herein is shown in Figure 1.

1.5 PHYSICAL DIMENSIONS

The physical dimensions of the transistors specified herein are shown in Figure 2.

1.6 FUNCTIONAL DIAGRAM

The functional diagram, showing lead identification, of the transistors specified herein, is shown in Figure 3.

1.7 HIGH TEMPERATURE TEST PRECAUTIONS

For tin-lead plated or solder-dipped lead finish, all tests to be performed at a temperature that exceeds + 125°C shall be carried out in 100% inert atmosphere.

2. APPLICABLE DOCUMENTS

The following documents form part of this specification and shall be read in conjunction with it:-

- (a) ESCC Generic Specification No. 5000 for Discrete Semiconductors.
- (b) MIL-STD-750, Test Methods and Procedures for Semiconductor Devices.

3. TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS

For the purpose of this specification, the terms, definitions, abbreviations, symbols and units specified in ESCC Basic Specification No. 21300 shall apply.

PAGE ISSUE 2

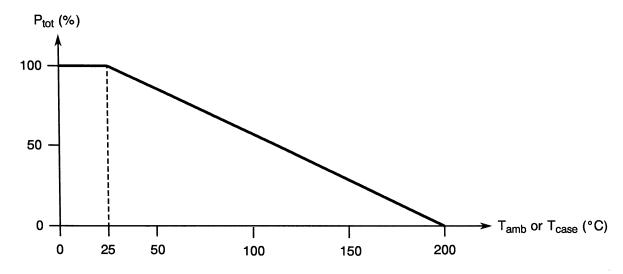
TABLE 1(a) - TYPE VARIANTS

VARIANT	BASED ON TYPE	CASE	FIGURE	LEAD MATERIAL AND FINISH
01	2N5153	TO39	2(a)	D2
02	2N5153	TO39	2(a)	D3 or D4
03	2N5153	TO39	2(a)	D7
04	2N5153	TO257	2(b)	H2
05	2N5153	TO257	2(b)	H4
06	2N5153	SMD.5	2(c)	Q14

TABLE 1(b) - MAXIMUM RATINGS

No.	CHARACTERISTIC	SYMBOL	MAXIMUM RATING	UNIT	REMARKS
1	Collector-Base Voltage	V _{CBO}	-100	V	
2	Collector-Emitter Voltage	V _{CEO}	-80	V	
3	Emitter-Base Voltage	V _{EBO}	-5.5	V	
4	Collector Current (Continuous)	lc	-5	Α	
5	Power Dissipation 1 Variants 01 to 03 Variants 04 to 06	P _{tot1}	1 3.3	W	T _{amb} = +25°C See Note 1
6	Power Dissipation 2 Variants 01 to 03 Variants 04 to 06	P _{tot2}	10 35	W	T _{case} = +25°C See Note 1
7	Operating Temperature Range	T _{op}	-65 to +200	°C	T _{amb} or T _{case}
8	Storage Temperature Range	T _{stg}	-65 to +200	°C	
9	Soldering Temperature Variants 01 to 05 Variant 06	T _{sol}	+ 260 + 245	°C	Notes 2, 3
10	Thermal Resistance (Junction to Case) Variants 01 to 03 Variants 04 to 06	R _{TH(J-C)}	17.5 5	°C/W	

- For derating at T_{amb} or T_{case} > +25°C, see Figure 1.
 For Variants 01 to 05, duration 10 seconds maximum at a distance of not less than 1.5mm from the device body and the same lead shall not be resoldered until 3 minutes have elapsed.
- 3. For Variant 06, duration 5 seconds maximum and the same package shall not be resoldered until 3 minutes have elapsed.


PAGE

ISSUE 2

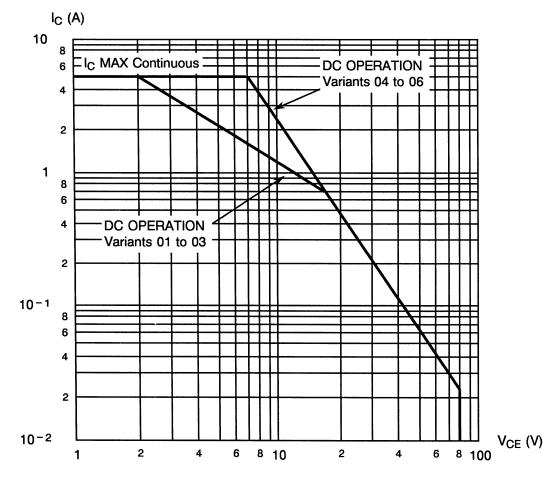

7

FIGURE 1 - PARAMETER DERATING INFORMATION

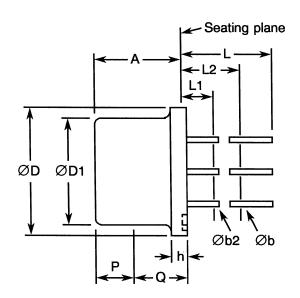
FIGURE 1(a) - POWER DISSIPATION VERSUS TEMPERATURE

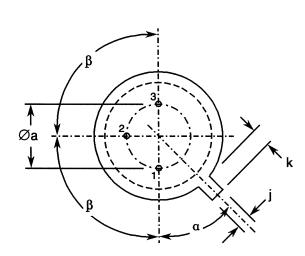
FIGURE 1(b) - FORWARD BIAS SAFE OPERATING AREA (MAXIMUM CONTINUOUS DC)

Collector Current versus Collector-Emitter Voltage

NOTES

1. See Para. 4.7.6.


PAGE


ISSUE 2

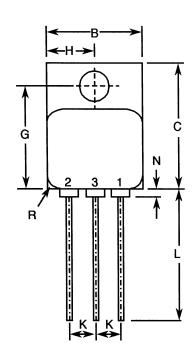
8

FIGURE 2 - PHYSICAL DIMENSIONS

FIGURE 2(a) - VARIANTS 01 TO 03

SYMBOL	MILLIM	ETRES	NOTES
STIVIBOL	MIN.	MAX.	NOTES
Øa	4.83	5.33	
Α	6.1	6.6	
Øb	0.406	0.533	2
Øb2	0.406	0.483	2
ØD	8.89	9.4	
ØD1	8	8.51	
h	0.229	3.18	
j	0.711	0.864	
k	0.737	1.02	3
	12.7	-	2
l1	-	1.27	2
12	6.35	-	2
Р	2.54	-	1
Q	-	-	4
α		DMINAL	
β	90° NC	DMINAL	

- 1. This zone is controlled for automatic handling. The variation in actual diameter within this zone shall not exceed 0.254mm.
- 2. (Three leads) Øb2 applies between I1 and I2. Ø b applies between I2 and 12.7mm from seating plane. Diameter is uncontrolled in I1 and beyond 12.7mm from seating plane.
 - 3. Measured from maximum diameter of the actual device.
 - 4. Details of outline in this zone optional.


PAGE

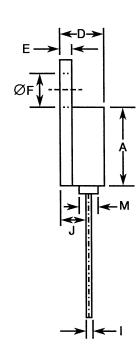
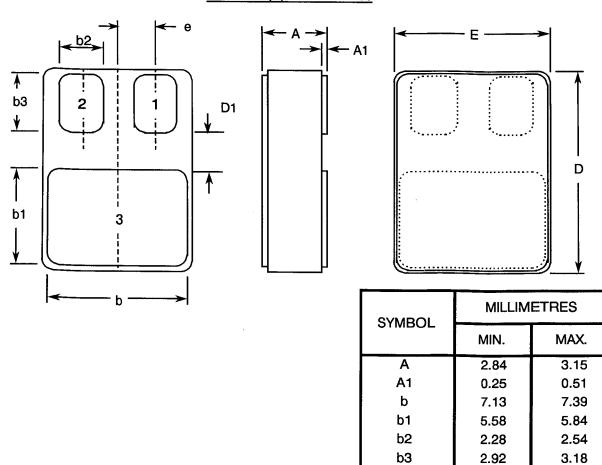

ISSUE 2

FIGURE 2 - PHYSICAL DIMENSIONS (CONT.)

FIGURE 2(b) - VARIANTS 04 AND 05

SYMBOL	MILLIM	ETRES		
STWIDOL	MIN.	MAX.		
Α	10.41	10.67		
В	10.41	10.67		
С	16.51	16.76		
D	4.7	5.33		
E	0.89	1.14		
ØF	3.56	3.81		
G	13.39	13.64		
н	5.13	5.38		
i i	0.64	0.89		
J	2.92	3.18		
K	2.41	2.67		
L	15.24	16.51		
М	2.29 Typical			
N	- 0.71			
R	1.65 Typical			



PAGE 10

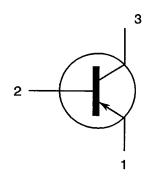

ISSUE 2

FIGURE 2 - PHYSICAL DIMENSIONS

FIGURE 2(c) - VARIANT 06

FIGURE 3 - FUNCTIONAL DIAGRAM

1. Emitter.

D

D1

Ε

- 2. Base.
- 3. Collector.

10.03

0.76

7.39

1.91 Typical

10.28

7.64

- 1. For Variants 01 to 03, the collector is internally connected to the case.
- 2. For Variants 04 to 06, the collector is isolated from the case.

PAGE 11

ISSUE 2

4. **REQUIREMENTS**

4.1 GENERAL

The complete requirements for procurement of the transistors specified herein are stated in this specification and ESCC Generic Specification No. 5000 for Discrete Semiconductors. Deviations from the Generic Specification applicable to this specification only, are listed in Para. 4.2.

Deviations from the applicable Generic Specification and this Detail Specification, formally agreed with specific Manufacturers on the basis that the alternative requirements are equivalent to the ESCC requirements and do not affect the components' reliability, are listed in the appendices attached to this specification.

4.2 <u>DEVIATIONS FROM GENERIC SPECIFICATION</u>

4.2.1 Deviations from Special In-process Controls

None.

4.2.2 <u>Deviations from Final Production Tests (Chart II)</u>

None.

4.2.3 <u>Deviations from Burn-in and Electrical Measurements (Chart III)</u>

None.

4.2.4 <u>Deviations from Qualification Tests (Chart IV)</u>

Terminal Strength: Not applicable for Variant 06.

4.2.5 <u>Deviations from Lot Acceptance Tests (Chart V)</u>

Terminal Strength: Not applicable for Variant 06.

4.3 <u>MECHANICAL REQUIREMENTS</u>

4.3.1 Dimension Check

The dimensions of the transistors specified herein shall be checked. They shall conform to those shown in Figure 2.

4.3.2 Weight

The maximum weight of the transistors specified herein shall be 1.5 grammes for Variants 01 to 03, 5 grammes for Variants 04 and 05 and 2 grammes for Variant 06.

4.3.3 Terminal Strength

The requirements for terminal strength testing are specified in Section 9 of ESCC Generic Specification No. 5000. The test conditions shall be as follows:-

Variants 01 to 03

Test Condition: 'E', Lead Fatigue.

Variants 04 and 05

Test Condition: 'A' (Tension).

Applied Force: 10 N.

Duration : 10 seconds.

PAGE 12

ISSUE 2

4.4 MATERIALS AND FINISHES

The materials and finishes shall be as specified herein. Where a definite material is not specified, a material which will enable the transistors specified herein to meet the performance requirements of this specification shall be used. Acceptance or approval of any constituent material does not guarantee acceptance of the finished product.

4.4.1 <u>Case</u>

For Variants 01 to 03, the case shall be hermetically sealed and have a metal body with hard glass seals and the lid shall be welded, brazed, preform soldered or glass frit sealed.

For Variants 04 and 05, the case shall be hermetically sealed and have a metal body, the Fe/Ni copper core pin shall pass through a ceramic eyelet brazed into the frame and the lid shall be welded.

For Variant 06, the case shall be hermetically sealed and have a ceramic body with a Kovar lid.

4.4.2 Lead Material and Finish

For Variants 01 to 03, the lead material shall be Type 'D' with either Type '2', Type '3 or 4' or Type '7' finish in accordance with the requirements of ESCC Basic Specification No. 23500. (See Table 1(a) for Type Variants).

For Variants 04 and 05, the lead material shall be Type 'H' with either Type '2' or Type '4' finish in accordance with the requirements of ESCC Basic Specification No. 23500. (See Table 1(a) for Type Variants).

For Variant 06, the lead material shall be Type 'Q' with Type '14' finish in accordance with the requirements of ESCC Basic Specification No. 23500.

4.5 MARKING

4.5.1 General

The marking of all components delivered to this specification shall be in accordance with the requirements of ESCC Basic Specification No. 21700 and the following paragraphs. When the component is too small to accomodate all of the marking specified, as much as space permits shall be marked and the marking information, in full, shall accompany the component in its primary package.

The information to be marked and the order of precedence, shall be as follows:-

- (a) Lead Identification.
- (b) The ESCC Component Number.
- (c) Traceability Information.

4.5.2 Lead Identification

Lead identification shall be as shown in Figures 2 and 3.

4.5.3 The ESCC Component Number

Each component shall bear the ESCC Component Number which shall be constituted and marked as follows:

Detail Specification Number	<u>520400202</u> 	ļ
Type Variant (see Table 1(a)) ———		l
Testing Level (B or C, as applicable)		J

PAGE 13

ISSUE 2

4.5.4 <u>Traceability Information</u>

Each component shall be marked in respect of traceability information in accordance with the requirements of ESCC Basic Specification No. 21700.

4.6 <u>ELECTRICAL MEASUREMENTS</u>

4.6.1 <u>Electrical Measurements at Room Temperature</u>

The parameters to be measured at room temperature are scheduled in Table 2. Unless otherwise stated, the measurements shall be performed at T_{amb} = +22 ±3 °C.

4.6.2 <u>Electrical Measurements at High and Low Temperatures</u>

The parameters to be measured at high and low temperatures are scheduled in Table 3.

4.6.3 <u>Circuits for Electrical Measurements</u>

Circuits for use in performing the electrical measurements listed in Tables 2 and 3 are shown in Figure 4.

4.7 BURN-IN TESTS

4.7.1 Parameter Drift Values

The parameter drift values applicable to burn-in are specified in Table 4 of this specification. Unless otherwise stated, the measurements shall be performed at T_{amb} = +22±3 °C. The parameter drift values (Δ) applicable to the parameters scheduled, shall not be exceeded. In addition to these drift value requirements, the appropriate limit value specified for a given parameter in Table 2 shall not be exceeded.

4.7.2 Conditions for High Temperature Reverse Bias Burn-in

The requirements for high temperature reverse bias burn-in are specified in Section 7 of ESCC Generic Specification No. 5000. The conditions for high temperature reverse bias burn-in shall be as specified in Table 5(a) of this specification.

4.7.3 Conditions for Power Burn-in

The requirements for power burn-in are specified in Section 7 of ESCC Generic Specification No. 5000. The conditions for power burn-in shall be as specified in Table 5(b) of this specification.

4.7.4 <u>Electrical Circuit for High Temperature Reverse Bias.</u>

The circuit required for performing the high temperature reverse bias burn-in test is shown in Figure 5(a) of this specification.

4.7.5 Electrical Circuit for Power Burn-in

The circuit required for performing the power burn-in test is shown in Figure 5(b) of this specification.

4.7.6 <u>Verification of Safe Operating Area</u>

The requirements for the verification of the Safe Operating Area are specified in Section 9 of ESCC Generic Specification No. 5000. The test method shall be as follows:-

Maximum continuous DC in accordance with MIL-STD-750, Method 3052 and Figure 1(b) of this specification, at $T_{case} = +25$ °C and for an operating time of 50ms maximum.

For Variants 01 to 06: $I_C = 500$ mA, $V_{CE} = 18$ V.

PAGE 14

ISSUE 2

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - DC PARAMETERS

	No.	CHARACTERISTICS	TICS SYMBOL MIL-STD-750 TEST CONDITIONS		TEST COMPLETIONS	LIM	ITS	UNIT
	NO.	CHARACTERISTICS	SAMBOL	TEST METHOD	TEST CONDITIONS	MIN	MAX	UNIT
0	1	Collector-Emitter Breakdown Voltage	V _{(BR)CEO}	3011	I _C = -100mA I _B = 0A Note 1	- 80	-	V
	2	Collector-Emitter Cut-off Current	I _{CES}	3041	V _{CE} = -60V V _{BE} = 0V	-	-1	μА
	3	Collector-Emitter Cut-off Current	I _{CEO}	3041	V _{CE} = -40V I _B = 0A	-	- 50	μА
	4	Emitter-Base Cut-off Current 1	l _{EBO1}	3061	V _{EB} = -4V I _C = 0A	-	-1	μА
	5	Emitter-Base Cut-off Current 2	I _{EBO2}	3061	V _{EB} = -5.5V I _C = 0A	-	-1	mA
٥	6	DC Forward Current Transfer Ratio 1	h∎ _{FE1}	3076	V _{CE} = -5V I _C = -50mA Note 1	50	-	-
	7	DC Forward Current Transfer Ratio 2	h _{FE2}	3076	V _{CE} = -5V I _C = -2.5A Note 1	70	200	-
	8	DC Forward Current Transfer Ratio 3	h _{FE3}	3076	V _{CE} = -5V I _C = -5A Note 1	40	-	-
	9	Collector-Emitter Saturation Voltage	V _{CE(SAT)}	3071	I _C = -5A I _B = -500mA Notes 1 and 2	-	-1.5	V
	10	Base-Emitter Saturation Voltage 1	V _{BE(SAT)1}	3066	I _C = -2.5A I _B = -250mA Notes 1 and 2	-	- 1.45	V
	11	Base-Emitter Saturation Voltage 2	V _{BE(SAT)2}	3066	I _C = -5A I _B = -500mA Notes 1, 2	-	-2.2	V

- 1. Pulsed measurement: Pulse Length ≤300µs, Duty Cycle ≤2%.
- 2. Saturation voltages measured 6mm from header.

PAGE 15 ISSUE 2

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - AC PARAMETERS

No.	CHARACTERISTICS	SVMBOL	MIL-STD-750	TEST	TEST CONDITIONS	LIM	ITS	UNIT
140.	ONALIAOTERISTICS	STIVIDOL	TEST METHOD	FIG.	(Note 1)	MIN.	MAX.	UNIT
12	AC Forward Current Transfer Ratio	h _{fe}	3206	-	V _{CE} = -5V I _C = -500mA f = 20MHz	3.5	•	-
13	Output Capacitance	C _{obo}	3236	-	V _{CB} = -10V I _E = 0A f = 1MHz	1	250	pF
14	Turn-on Time	t _{on}	-	4	$I_{C} = -5A$ $I_{B1} = -500\text{mA}$ $I_{B2} = 500\text{mA}$ $V_{CC} = -30V$ $V_{BB} = 4V$ $V_{IN} \simeq -51V$	-	500	ns
15	Turn-off Time	t _{off}	-	4	$I_C = -5A$ $I_{B1} = -500\text{mA}$ $I_{B2} = 500\text{mA}$ $V_{CC} = -30V$ $V_{BB} = 4V$ $V_{IN} \simeq -51V$	-	1.3	μѕ

NOTES

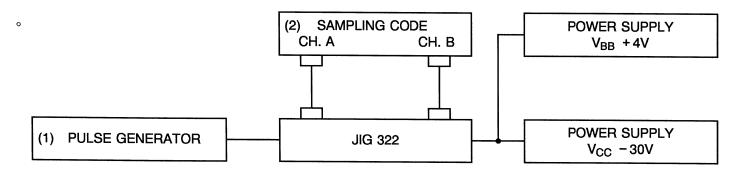
1. Measurements performed on a sample basis, LTPD 7 or less.

TABLE 3 - ELECTRICAL MEASUREMENTS AT HIGH AND LOW TEMPERATURES

No.	CHARACTERISTICS	SYMBOL	MIL-STD-750	TEST CONDITIONS	LIM	LIMITS	
	OT IN I DIOTE HOTHOU	OTNIBOL	TEST METHOD	TEST CONDITIONS	MIN.	MAX.	UNIT
2	Collector-Emitter Cut-off Current	I _{CES}	3041	V _{CE} = -60V V _{BE} = 0V T _{amb} = +150°C	-	-10	μА
7	DC Forward Current Transfer Ratio 2	h _{FE2}	3076	$V_{CE} = -5V$ $I_{C} = -2.5A$ $T_{amb} = -55^{\circ}C$ Note 1	35	-	-

NOTES

1. Pulsed measurement: Pulse Length ≤300μs, Duty Cycle ≤2%.



PAGE 16

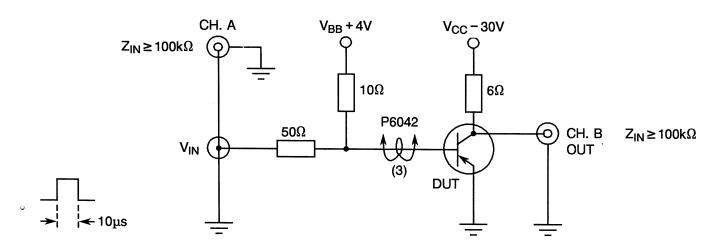
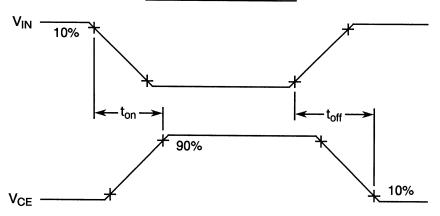

ISSUE 2

FIGURE 4 - CIRCUITS FOR ELECTRICAL MEASUREMENTS


BLOCK DIAGRAM

EQUIVALENT TEST CIRCUIT

VOLTAGE WAVEFORMS

- Pulse generator Type EH132 or equivalent, t_r≤20ns, t_p=10µs, Duty Cycle=1%.
 Sampling Scope Tetroniks 568 or equivalent.
- 3. Adjust V_{IN} V_B with current probe P6042.

PAGE 17

ISSUE 2

TABLE 4 - PARAMETER DRIFT VALUES

No.	CHARACTERISTICS	SYMBOL	SPEC. AND/OR TEST METHOD	TEST CONDITION	CHANGE LIMITS (Δ)	UNIT
2	Collector-Emitter Cut-off Current	ICES	As per Table 2	As per Table 2	± 100	nA
7	DC Forward Current Transfer Ratio 2	h _{FE2}	As per Table 2	As per Table 2	± 25	%
9	Collector-Emitter Saturation Voltage	V _{CE(SAT)}	As per Table 2	As per Table 2	± 100	mV

TABLE 5(a) - CONDITIONS FOR HIGH TEMPERATURE REVERSE BIAS BURN-IN

No.	CHARACTERISTIC	SYMBOL	CONDITION	UNIT
1	Ambient Temperature	T _{amb}	+ 150	°C
2	Collector-Base Voltage	Base Voltage V _{CB} - 60		V
3	Emitter-Base Voltage	V _{EB}	- 4.5	V
4	Duration	t	48	Hours

TABLE 5(b) - CONDITIONS FOR POWER BURN-IN AND OPERATING LIFE TESTS

VARIANTS 01 TO 03

No.	CHARACTERISTIC	SYMBOL	CONDITION	UNIT
1	Ambient Temperature	T _{amb}	+20 to +50 (1)	°C
2	Power Dissipation 1	P _{tot1}	Max. rating at T _{amb} according to derating curve (See Figure 1(a))	W
3	Collector-Base Voltage	V _{CB}	-20	٧

NOTES

1. No heat sink nor forced air directly on the device shall be permitted.

PAGE 18

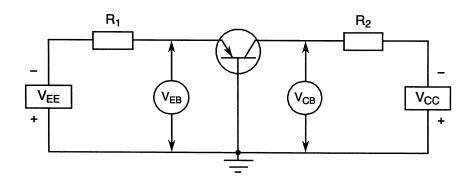
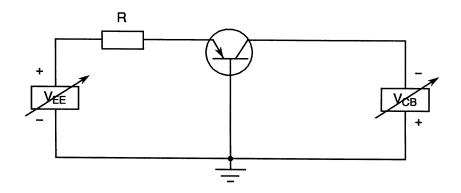

ISSUE 2

TABLE 5(b) - CONDITIONS FOR POWER BURN-IN AND OPERATING LIFE TESTS (CONT.)


VARIANTS 04 TO 06

No.	CHARACTERISTIC	SYMBOL	CONDITION	UNIT
1	Case Temperature	T _{case}	+ 100(+ 0 - 5)	°C
2	Power Dissipation 2	P _{tot2}	Max. rating at T _{case} according to derating curve (See Figure 1(a))	W
3	Collector-Base Voltage	V _{CB}	-20	V

FIGURE 5(a) - ELECTRICAL CIRCUIT FOR HIGH TEMPERATURE REVERSE BIAS BURN-IN

FIGURE 5(b) - ELECTRICAL CIRCUIT FOR POWER BURN-IN AND OPERATING LIFE TESTS

PAGE 19

ISSUE 2

4.8 <u>ENVIRONMENTAL AND ENDURANCE TESTS (CHARTS IV AND V OF ESCC GENERIC SPECIFICATION NO. 5000)</u>

4.8.1 <u>Electrical Measurements on Completion of Environmental Tests</u>

The parameters to be measured on completion of environmental tests are scheduled in Table 2. Unless otherwise stated, the measurements shall be performed at T_{amb} = +22 ±3 °C.

4.8.2 <u>Electrical Measurements at Intermediate Points and on Completion of Endurance Tests</u>

The parameters to be measured at intermediate points and on completion of endurance testing are scheduled in Table 6. Unless otherwise stated, the measurements shall be performed at $T_{amb} = +22 \pm 3$ °C.

4.8.3 <u>Conditions for Operating Life Test (Part of Endurance Testing)</u>

The requirements for operating life testing are specified in Section 9 of ESCC Generic Specification No. 5000. The conditions for operating life testing shall be the same as specified in Table 5(b) for the power burn-in test.

4.8.4 <u>Electrical Circuit for Operating Life Test</u>

The circuit required for performing the operating life test shall be the same as shown in Figure 5(b) for power burn-in.

4.8.5 Conditions for High Temperature Storage Test (Part of Endurance Testing)

The requirements for the high temperature storage test are specified in ESCC Generic Specification No. 5000. The temperature to be applied shall be the maximum storage temperature specified in Table 1(b) of this specification.

PAGE 20

ISSUE 2

TABLE 6 - ELECTRICAL MEASUREMENTS AT INTERMEDIATE POINTS AND ON COMPLETION OF ENDURANCE TESTING

No.	CHARACTERISTICS	SYMBOL	SPEC. AND/OR TEST METHOD	TEST CONDITION	LIMITS		UNIT
					MIN.	MAX.	UNIT
2	Collector-Emitter Cut-off Current	ICES	As per Table 2	As per Table 2	-	-1	μА
7	DC Forward Current Transfer Ratio 2	h _{FE2}	As per Table 2	As per Table 2	70	200	-
9	Collector-Emitter Saturation Voltage	V _{CE(SAT)}	As per Table 2	As per Table 2	-	-1.5	V