

Page i

INTEGRATED CIRCUITS, SILICON MONOLITHIC,

CMOS DUAL BINARY UP COUNTER,

BASED ON TYPE 4520B

ESCC Detail Specification No. 9204/028

ISSUE 1 October 2002

Document Custodian: European Space Agency - see https://escies.org

LEGAL DISCLAIMER AND COPYRIGHT

European Space Agency, Copyright © 2002. All rights reserved.

The European Space Agency disclaims any liability or responsibility, to any person or entity, with respect to any loss or damage caused, or alleged to be caused, directly or indirectly by the use and application of this ESCC publication.

This publication, without the prior permission of the European Space Ageny and provided that it is not used for a commercial purpose, may be:

- copied in whole in any medium without alteration or modification.
- copied in part, in any medium, provided that the ESCC document identification, comprising the ESCC symbol, document number and document issue, is removed.

european space agency agence spatiale européenne

Pages 1 to 48

INTEGRATED CIRCUITS, SILICON MONOLITHIC,

CMOS DUAL BINARY UP COUNTER,

BASED ON TYPE 4520B

ESA/SCC Detail Specification No. 9204/028

space components coordination group

		Approved by		
lssue/Rev.	Date	SCCG Chairman	ESA Director General or his Deputy	
Issue 3	June 2001	Sa mitt	Arm	
······································				
ut ton a the total and				

DOCUMENTATION CHANGE NOTICE

Rev. Letter	Rev. Date	CHANGE Reference Item	Approved DCR No.

		ESA/SCC Detail Specification No. 9204/028		PAGE ISSUE	3 3
		TABLE OF CONTENTS		r	7
1.	GENERAL			<u>r</u>	⁵ age 5
1.1	Scope				5
1.2	Component Type Varia	nts			5
1.3	Maximum Ratings				5
1.4	Parameter Derating Info	ormation			5
1.5	Physical Dimensions	e			5
1.6	Pin Assignment				5
1.7	Truth Table				5
1.8	Circuit Schematic				5
1.9 1.10	Functional Diagram				5
1.10	Handling Precautions Input Protection Networ	l-			5 5
2.	APPLICABLE DOCUM				16
3.		S, ABBREVIATIONS, SYMBOLS AND U	NITS		16
4.	REQUIREMENTS				16
4.1	General				16
4.2	Deviations from Generic				16
4.2.1	Deviations from Special				16
4.2.2					16
4.2.3	Deviations from Burn-in Tests				16
4.2.4					16
4.2.5					17
4.3 4.3.1	Mechanical Requirements				17
4.3.1	Dimension Check Weight				17 17
4.4	Materials and Finishes				17 17
4.4.1	Case				17
4.4.2	Lead Material and Finis	h			17
4.5	Marking				17
4.5.1	General				17
4.5.2	Lead Identification				17
4.5.3	The SCC Component N	lumber			18
4.5.4	Traceability Information				18
4.6	Electrical Measurement	S			18
4.6.1	Electrical Measurement	s at Room Temperature			18
4.6.2		s at High and Low Temperatures			18
4.6.3	Circuits for Electrical M	easurements			18
4.7	Burn-in Tests				18
4.7.1	Parameter Drift Values				18
4.7.2	Conditions for H.T.R.B.				18
4.7.3	Electrical Circuits for H			-	18
4.8	Environmental and Endurance Tests				46
4.8.1	Electrical Measurements on Completion of Environmental Tests				46
4.8.2	Electrical Measurements at Intermediate Points during Endurance Tests				46
4.8.3		ts on Completion of Endurance Tests			46
4.8.4	Conditions for Operatin	-			46
4.8.5 4.8.6	Electrical Circuits for O				46
4.0.0		nperature Storage Test			46

|--|

TABLES

1(a)	Type Variants	6
1(b)	Maximum Ratings	6
2	Electrical Measurements at Room Temperature, d.c. Parameters	19
	Electrical Measurements at Room Temperature, a.c. Parameters	23
3(a)	Electrical Measurements at High Temperature	25
3(b)	Electrical Measurements at Low Temperature	29
4	Parameter Drift Values	41
5(a)	Conditions for Burn-in High Temperature Reverse Bias, N-Channels	42
5(b)	Conditions for Burn-in High Temperature Reverse Bias, P-Channels	42
5(c)	Conditions for Burn-in Dynamic	43
6	Electrical Measurements on Completion of Environmental Tests and at Intermediate Points and on Completion of EnduranceTesting	47

FIGURES

1	Not applicable	
2	Physical Dimensions	7
3(a)	Pin Assignment	13
3(b)	Truth Table	13
3(c)	Circuit Schematic	14
3(d)	Functional Diagram	15
3(e)	Input Protection Network	15
4	Circuits for Electrical Measurements	33
5(a)	Electrical Circuit for Burn-in High Temperature Reverse Bias, N-Channels	44
5(b)	Electrical Circuit for Burn-in High Temperature Reverse Bias, P-Channels	44
5(c)	Electrical Circuit for Burn-in Dynamic	45
APPE	NDICES (Applicable to specific Manufacturers only)	
'A'	Agreed Deviations for STMicroelectronics (F)	48

1. GENERAL

1.1 SCOPE

This specification details the ratings, physical and electrical characteristics, test and inspection data for a silicon monolithic, CMOS Dual Binary Up Counter, having fully buffered outputs, based on Type 4520B. It shall be read in conjunction with ESA/SCC Generic Specification No. 9000, the requirements of which are supplemented herein.

1.2 COMPONENT TYPE VARIANTS

Variants of the basic type integrated circuits specified herein, which are also covered by this specification, are given in Table 1(a).

1.3 MAXIMUM RATINGS

The maximum ratings, which shall not be exceeded at any time during use or storage, applicable to the integrated circuits specified herein, are as scheduled in Table 1(b).

Maximum ratings shall only be exceeded during testing to the extent specified in this specification and when stipulated in Test Methods and Procedures of the applicable ESA/SCC Generic Specification.

1.4 PARAMETER DERATING INFORMATION (FIGURE 1)

Not applicable.

- 1.5 <u>PHYSICAL DIMENSIONS</u> As per Figure 2.
- 1.6 <u>PIN ASSIGNMENT</u> As per Figure 3(a).
- 1.7 <u>TRUTH TABLE</u> As per Figure 3(b).
- 1.8 <u>CIRCUIT SCHEMATIC</u> As per Figure 3(c).
- 1.9 <u>FUNCTIONAL DIAGRAM</u> As per Figure 3(d).

1.10 HANDLING PRECAUTIONS

These devices are susceptible to damage by electrostatic discharge. Therefore, suitable precautions shall be employed for protection during all phases of manufacture, testing, packaging, shipment and any handling. These components are Categorised as Class 1 with a Minimum Critical Path Failure Voltage of 400 Volts.

1.11 INPUT PROTECTION NETWORK

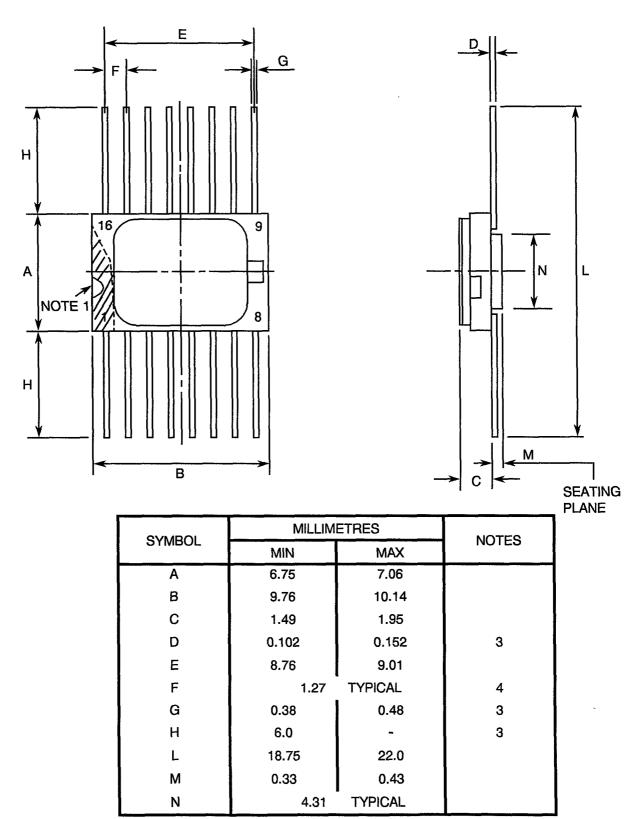
Double diode protection shall be incorporated into each input as shown in Figure 3(e).

TABLE 1(a) - TYPE VARIANTS

VARIANT	CASE	FIGURE	LEAD MATERIAL AND/OR FINISH
01	FLAT	2(a)	G2 or G8
02	FLAT	2(a)	G4
03	D.I.L.	2(b)	G2 or G8
04	D.I.L.	2(b)	G4
07	CHIP CARRIER	2(c)	2
08	D.I.L.	2(d)	G2
09	D.I.L.	2(d)	G4

TABLE 1(b) - MAXIMUM RATINGS

NO.	CHARACTERISTICS	SYMBOL	MAXIMUM RATINGS	UNIT	REMARKS
1	Supply Voltage	V _{DD}	-0.5 to + 18	V	Note 1
2	Input Voltage	V _{IN}	-0.5 to V _{DD} + 0.5	V	Note 2 Power on
3	D.C. Input Current	± I _{IN}	10	mA	-
4	D.C. Output Current	± I _O	10	mA	Note 3
5	Device Dissipation	PD	200	mWdc	Per Package
6	Output Dissipation	P _{DSO}	100	mWdc	Note 4
7	Operating Temperature Range	Т _{ор}	-55 to + 125	°C	-
8	Storage Temperature Range	T _{stg}	-65 to + 150	°C	-
9	Soldering Temperature For FP and DIP For CCP	T _{sol}	+ 300 + 245	°C	Note 5 Note 6


NOTES

- 1. Device is functional from + 3V to + 15V with reference to V_{SS}.
- 2. V_{DD} + 0.5V should not exceed + 18V.
- 3. The maximum output current of any single output.
- 4. The maximum power dissipation of any single output.
- 5. Duration 10 seconds maximum at a distance of not less than 1.5mm from the device body and the same lead shall not be resoldered until 3 minutes have elapsed.
- 6. Duration 30 seconds maximum and the same terminal shall not be resoldered until 3 minutes have elapsed.

FIGURE 2 - PHYSICAL DIMENSIONS

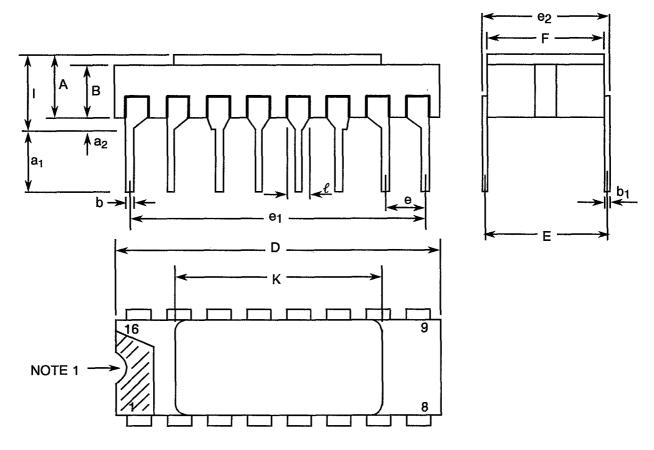
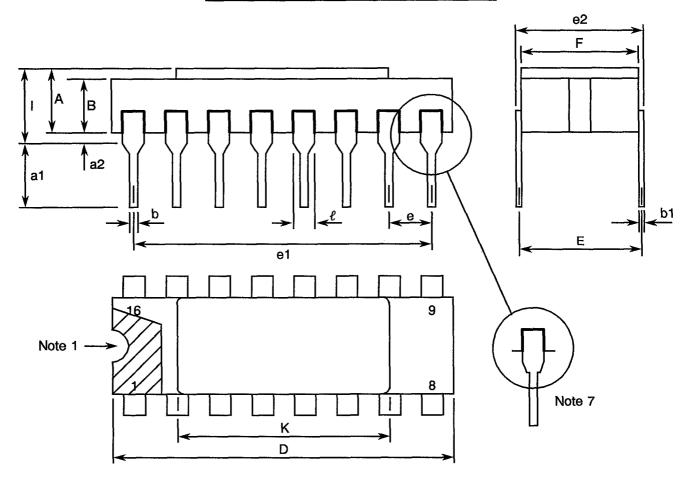


FIGURE 2 - PHYSICAL DIMENSIONS (CONTINUED)

FIGURE 2(b) - DUAL-IN-LINE PACKAGE, 16-PIN

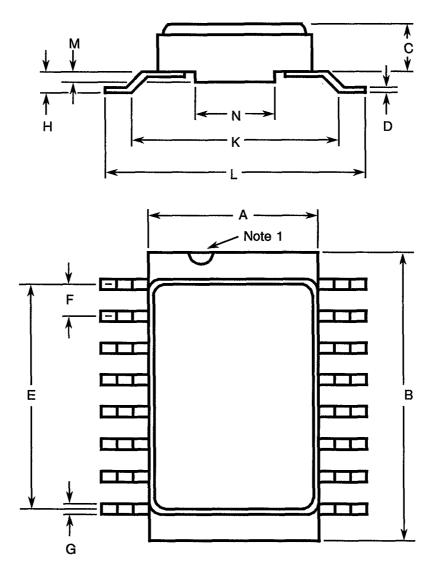
SYMBOL	MILLIMETRES		NOTES
STWBOL	MIN	MAX	NOTES
A	2.10	2.54	
a ₁	3.0	3.7	
a ₂	0.63	1.14	2
В	1.82	2.23	
b	0.40	0.50	3
b ₁	0.20	0.30	3
D	18.79	19.20	
E	7.36	7.87	
е	2.41	2.67	4
θ1	17.65	17.90	
e ₂	7.62	8.12	
F	7.11	7.62	
I	-	3.70	
к	10.90	12.10	
l	1.27 TYPICAL		


FIGURE 2 - PHYSICAL DIMENSIONS (CONTINUED)

FIGUE	E 2(c) - CHIP CAI	RRIER - 20-TERM	INAL
C Pin 1 Identification f →			d2 f
A 🚺			A1
Identification chamfered angle for positioning			
DIMENSIONS		ETRES	NOTES
A A1 B C C ₁ D	MIN 1.14 1.63 0.55 1.06 1.91 8.67	MAX 1.95 2.36 0.72 1.47 2.41 9.09	3 3
D1 d, d1 d2 E E1	7.21 1.27 7.62 8.67	9.09 7.52 TYPICAL TYPICAL 9.09 7.50	4
e, e1 e2 f, g h, h1	7.21 1.27 7.62 - 1.01	7.52 TYPICAL TYPICAL 0.76 TYPICAL	4 6 5
j, j1	0.51	TYPICAL	5

FIGURE 2 - PHYSICAL DIMENSIONS (CONTINUED)

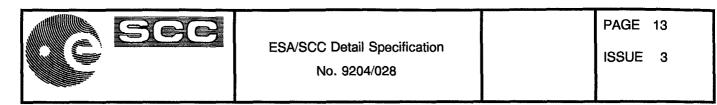
FIGURE 2(d) - DUAL-IN-LINE PACKAGE, 16-PIN

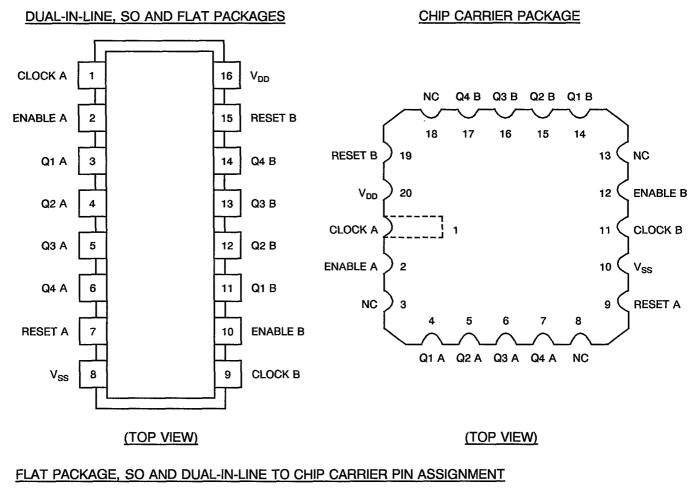


SYMBOL	MILLIM	NOTES	
STIVIDUL	MIN	MAX	NUTE5
A	2.10	2.71	
a1	3.00	3.70	
a2	0.63	1.14	3
В	1.82	2.39	
b	0.40	0.50	8
b1	0.20	0.30	8
D	20.06	20.58	
E	7.36	7.87	
е	2.54 T	YPICAL	6, 9
e1	17.65	17.90	
e2	7.62	8.12	
F	7.29	7.70	
ł	-	3.83	
К	10.90	12.10	
ł	1.14	1.50	8

FIGURE 2 - PHYSICAL DIMENSIONS (CONTINUED)

FIGURE 2(e) - SMALL OUTLINE CERAMIC PACKAGE, 16-PIN


SYMBOL	MILLIMETRES		NOTES
	MIN.	MAX.	NUTES
A	6.75	7.06	
В	9.76	10.14	
С	1.49	1.95	
D	0.102	0.152	3
E	8.76	9.01	
F	1.27 TYPICAL		4
G	0.38	0.48	3
Н	0.60	0.90	3
K	9.00 TYPICAL		
L	10	10.65	
M	0.33	0.43	
N	4.31 TYPICAL		


FIGURE 2 - PHYSICAL DIMENSIONS (CONTINUED)

NOTES TO FIGURES 2(a) TO 2(e) INCLUSIVE

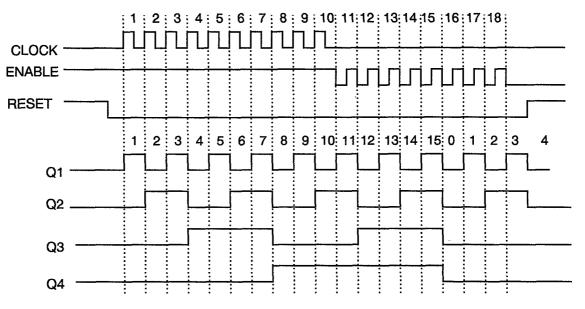
- 1. Index area; a notch, letter or dot shall be located adjacent to Pin 1 and shall be within the shaded area shown. For chip carrier packages the index shall be as defined in Figure 2(c).
- 2. The dimension shall be measured from the seating plane to the base plane.
- 3. All leads or terminals.
- 4. 16 pin packages : 14 spaces 20 terminal packages : 12 spaces
- 5. Index corner only.
- 6. Three non-index corners.
- 7. For all pins, either pin shape may be supplied.

FIGURE 3(a) - PIN ASSIGNMENT

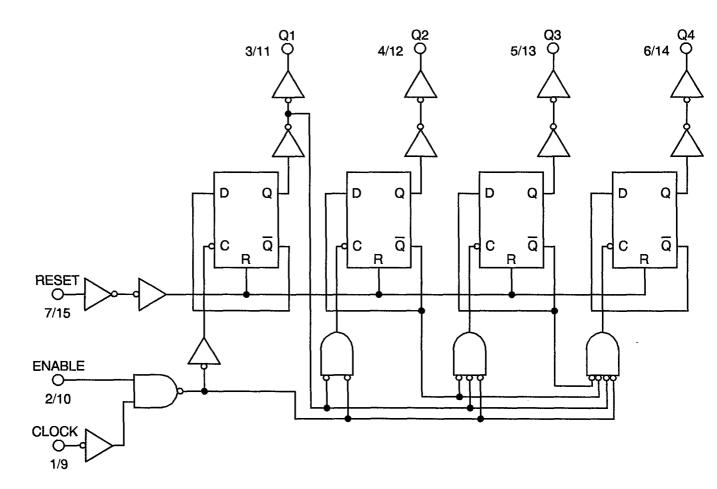
FLAT PACKAGE, SO AND DUAL-IN-LINE PIN OUTS	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
CHIP CARRIER PIN OUTS	1	2	4	5	6	7	9	10	11	12	14	15	16	17	19	20

FIGURE 3(b) - TRUTH TABLE

CLOCK	ENABLE	RESET	ACTION
↑ (Н	L	Increment Counter
L	↓	L	Increment Counter
\downarrow	Х	L	No Change
×	1	L	No Change
1	L	L	No Change
н	Ļ	L	No Change
Х	Х	н	Q1 thru Q4 = L


NOTES

1. Logic Level Definitions: L=Low Level, H=High Level, X=Don't Care


2. \uparrow = Positive-going transition, \downarrow = Negative-going transition.

TIMING DIAGRAM

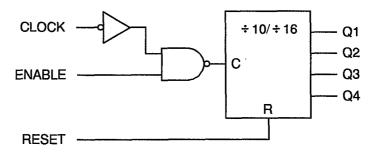


FIGURE 3(c) - CIRCUIT SCHEMATIC

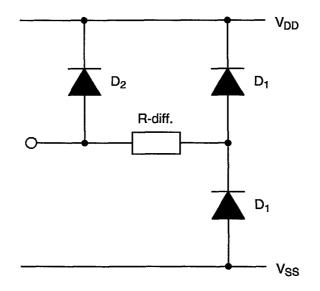


FIGURE 3(d) - FUNCTIONAL DIAGRAM (EACH COUNTER)

FIGURE 3(e) - INPUT PROTECTION NETWORK

2. APPLICABLE DOCUMENTS

The following documents form part of this specification and shall be read in conjunction with it:-

- (a) ESA/SCC Generic Specification No. 9000 for Integrated Circuits.
- (b) MIL-STD-883, Test Methods and Procedures for Micro-electronics.

3. TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS

For the purpose of this specification, the terms, definitions, abbreviations, symbols and units specified in ESA/SCC Basic Specification No. 21300 shall apply. In addition, the following abbreviations are used:

V_{IC} - Input Clamp Voltage

PDSO - Single Output Power Dissipation

CKT - Circuit

4. **REQUIREMENTS**

4.1 <u>GENERAL</u>

The complete requirements for procurement of the integrated circuits specified herein shall be as stated in this specification and ESA/SCC Generic Specification No. 9000 for Integrated Circuits. Deviations from the Generic Specification, applicable to this specification only, are listed in Para. 4.2.

Deviations from the applicable Generic Specification and this Detail Specification, formally agreed with specific Manufacturers on the basis that the alternative requirements are equivalent to the ESA/SCC requirement and do not affect the components' reliability, are listed in the appendices attached to this specification.

4.2 DEVIATIONS FROM GENERIC SPECIFICATION

- 4.2.1 <u>Deviations from Special In-process Controls</u> None.
- 4.2.2 <u>Deviations from Final Production Tests (Chart II)</u> None.
- 4.2.3 Deviations from Burn-in Tests (Chart III)
 - 4.2.3.1 Deviations from High Temperature Reverse Bias (H.T.R.B.)

Prior to operating power burn-in, a high temperature reverse bias (H.T.R.B.) screen at +125°C shall be added for the N-Channel and then for the P-Channel in accordance with Tables 5(a) and 5(b) of this specification. Each exposure to H.T.R.B. shall be 72 hours and Table 4 Parameter Drift Values shall be applied at 0 and 144 hours.

4.2.4 Deviations from Qualification Tests (Chart IV)

None.

4.2.5 Deviations from Lot Acceptance Tests (Chart V)

None.

4.3 MECHANICAL REQUIREMENTS

4.3.1 Dimension Check

The dimensions of the integrated circuits specified herein shall be checked. They shall conform to those shown in Figure 2.

4.3.2 Weight

The maximum weight of the integrated circuits specified herein shall be 1.5 grammes for the dual-in-line package, 0.6 grammes for the flat package, and 0.52 grammes for the chip carrier package.

4.4 MATERIALS AND FINISHES

The materials and finishes shall be as specified herein. Where a definite material is not specified, a material which will enable the integrated circuits specified herein to meet the performance requirements of this specification shall be used. Acceptance or approval of any constituent material does not guarantee acceptance of the finished product.

4.4.1 <u>Case</u>

The case shall be hermetically sealed and have a metal body with hard glass seals or a ceramic body and the lids shall be welded, brazed or preform-soldered.

4.4.2 Lead Material and Finish

For dual-in-line and flat packages, the material shall be Type 'G' with either Type '4' or Type '2 or 8' finish in accordance with ESA/SCC Basic Specification No. 23500. For chip carrier packages the finish shall be Type '2' in accordance with ESA/SCC Basic Specification No. 23500. For SO ceramic packages, the material shall be Type 'G' with either Type '2' or Type '4' finish in accordance with ESA/SCC Basic Specification No. 23500. (See Table 1(a) for Type Variants).

4.5 MARKING

4.5.1 General

The marking of all components delivered to this specification shall be in accordance with the requirements of ESA/SCC Basic Specification No. 21700. Each component shall be marked in respect of:-

- (a) Lead Identification.
- (b) The SCC Component Number.
- (c) Traceability Information.

4.5.2 Lead Identification

For dual-in-line and flat packages, an index shall be located at the top of the package in the position defined in Note 1 to Figure 2 or, alternatively, a tab may be used to identify Pin No. 1. The pin numbering must be read with the index or tab on the left-hand side. For chip carrier packages, the index shall be as defined by Figure 2(c).

920402801B

4.5.3 The SCC Component Number

Each component shall bear the SCC Component Number which shall be constituted and marked as follows:

Detail Specification Number

Type Variant, as applicable

Testing Level (B or C, as appropriate) _____

4.5.4 Traceability Information

Each component shall be marked in respect of traceability information in accordance with the requirements of ESA/SCC Basic Specification No. 21700.

4.6 ELECTRICAL MEASUREMENTS

4.6.1 Electrical Measurements at Room Temperature

The parameters to be measured in respect of electrical characteristics are scheduled in Table 2. Unless otherwise specified, the measurements shall be performed at T_{amb} = +22±3 °C.

4.6.2 Electrical Measurements at High and Low Temperatures

The parameters to be measured at high and low temperatures are scheduled in Table 3. The measurements shall be performed at T_{amb} = +125(+0-5) °C and -55(+5-0) °C respectively.

4.6.3 Circuits for Electrical Measurements

Circuits and functional test sequence for use in performing electrical measurements listed in Tables 2 and 3 of this specification are shown in Figure 4.

4.7 BURN-IN TESTS

4.7.1 Parameter Drift Values

The parameter drift values applicable to burn-in are specified in Table 4 of this specification. Unless otherwise stated, measurements shall be performed at $+22\pm3$ °C. The parameter drift values (Δ) applicable to the parameters scheduled, shall not be exceeded. In addition to these drift value requirements, the appropriate limit value specified for a given parameter in Table 2 shall not be exceeded.

4.7.2 Conditions for H.T.R.B. and Burn-in

The requirements for H.T.R.B. and Burn-in are specified in Section 7 of ESA/SCC Generic Specification No. 9000. The conditions for H.T.R.B. and Burn-in shall be as specified in Tables 5(a), 5(b) and 5(c) of this specification.

4.7.3 Electrical Circuits for H.T.R.B. and Burn-in

Circuits for use in performing the H.T.R.B. and Burn-in tests are shown in Figures 5(a), 5(b) and 5(c) of this specification.

ISSUE 3

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - d.c. PARAMETERS

NO.	CHARACTERISTICS	SYMBOL	TEST METHOD	TEST	TEST CONDITIONS (PINS UNDER TEST	LIM	ITS	UNIT
NO.	CHARACTERISTICS	STMBUL	MIL-STD 883	FIG.	D/F = DIP AND FP C = CCP)	MIN	MAX	UNIT
1	Functional Test	-	-	4(a)	Verify Truth Table without Load. V _{DD} = 3Vdc, V _{SS} = 0Vdc Notes 1 and 2	-	-	-
2	Functional Test	-	-	4(a)	Verify Truth Table without Load. V _{DD} = 15Vdc, V _{SS} = 0Vdc Notes 1 and 2	-	-	-
3 to 4	Quiescent Current	IDD .	3005	4(b)	$V_{IL} = 0Vdc, V_{IH} = 15Vdc$ $V_{DD} = 15Vdc, V_{SS} = 0Vdc$ Note 3 (Pin D/F 16) (Pin C 20)	-	1.0	μΑ
5 to 10	Input Current Low Level	ι _L	3009	4(c)	$V_{IN} \text{ (Under Test) = 0Vdc} \\ V_{IN} \text{ (All Other Inputs)} \\ = 15Vdc \\ V_{DD} = 15Vdc, V_{SS} = 0Vdc \\ \text{(Pins D/F 1-2-7-9-10-15)} \\ \text{(Pins C 1-2-9-11-12-19)} \\ \end{array}$	-	-50	nA
11 to 16	Input Current High Level	μн	3010	4(d)	V_{IN} (Under Test) = 15Vdc V_{IN} (All Other Inputs) = 0Vdc V_{DD} = 15Vdc, V_{SS} = 0Vdc (Pins D/F 1-2-7-9-10-15) (Pins C 1-2-9-11-12-19)	-	50	nA
17 to 24	Output Voltage Low Level	V _{OL}	3007	4(e)	Counter Under Test: V_{IN} (All Inputs) = 15Vdc V_{OUT} = Open Other Counter: V_{IN} (All Inputs) = 15Vdc V_{DD} = 15Vdc, V_{SS} = 0Vdc (Pins D/F 3-4-5-6-11-12- 13-14) (Pins C 4-5-6-7-14-15-16- 17)	-	0.05	v

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - d.c. PARAMETERS (CONT'D)

NO.	CHARACTERISTICS	SYMBOL	TEST METHOD	TEST	TEST CONDITIONS (PINS UNDER TEST	LIM	ITS	UNIT
NU.	CHARACTERISTICS	STMBOL	MIL-STD 883	FIG.	D/F = DIP AND FP C = CCP)	MIN	МАХ	UNIT
25 to 32	Output Voltage High Level	V _{OH}	3006	4(f)	Counter Under Test: V_{IN} (Clock) = Pulse Generator V_{IN} (Reset) = 0Vdc V_{IN} (Enable) = 15Vdc V_{OUT} = Open Other Counter: V_{IN} (All Inputs) = 15Vdc V_{DD} = 15Vdc, V_{SS} = 0Vdc (Pins D/F 3-4-5-6-11-12- 13-14) (Pins C 4-5-6-7-14-15-16- 17)	14.95		V
33 to 40	Output Drive Current N-Channel	I _{OL1}	-	4(g)	Counter Under Test: V_{IN} (All Inputs) = 5Vdc V_{OUT} = 0.4Vdc Other Counter: V_{IN} (All Inputs) = 5Vdc V_{DD} = 5Vdc, V_{SS} = 0Vdc Note 4 (Pins D/F 3-4-5-6-11-12- 13-14) (Pins C 4-5-6-7-14-15-16- 17)	0.51		mA
41 to 48	Output Drive Current N-Channel	I _{OL2}	-	4(g)	Counter Under Test: V_{IN} (All Inputs) = 15Vdc V_{OUT} = 1.5Vdc Other Counter: V_{IN} (All Inputs) = 15Vdc V_{DD} = 15Vdc, V_{SS} = 0Vdc Note 4 (Pins D/F 3-4-5-6-11-12- 13-14) (Pins C 4-5-6-7-14-15-16- 17)	3.4	-	mA

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - d.c. PARAMETERS (CONT'D)

			TEST METHOD	TEST	TEST CONDITIONS (PINS UNDER TEST	LIM	ITS	UNIT
NO.	CHARACTERISTICS	SYMBOL	MIL-STD 883	FIG.	D/F = DIP AND FP C = CCP)	MIN	MAX	UNIT
49 to 56	Output Drive Current P-Channel	Юн1	-	4(h)	Counter Under Test: V_{IN} (Clock) = Pulse Generator V_{IN} (Reset) = 0Vdc V_{IN} (Reset) = 0Vdc V_{UN} (Enable) = 5Vdc V_{OUT} = 4.6Vdc Other Counter: V_{IN} (All Inputs) = 5Vdc V_{DD} = 5Vdc, V_{SS} = 0Vdc Note 4 (Pins D/F 3-4-5-6-11-12-13-14) (Pins C 4-5-6-7-14-15-16-17)	-0.51	-	mA
57 to 64	Output Drive Current P-Channel	Юн2	-	4(h)	Counter Under Test: V_{IN} (Clock) = Pulse Generator V_{IN} (Reset) = 0Vdc V_{IN} (Reset) = 15Vdc V_{OUT} = 13.5Vdc Other Counter: V_{IN} (All Inputs) = 15Vdc V_{DD} = 15Vdc, V_{SS} = 0Vdc Note 4 (Pins D/F 3-4-5-6-11-12- 13-14) (Pins C 4-5-6-7-14-15-16- 17)	-3.4	-	mA
65	Input Voltage Low Level (Noise Immunity) (Functional Test) Input Voltage High Level (Noise Immunity) (Functional Test)	V _{IL1} V _{IH1}	-	4(a)	$V_{IL} = 1.5 Vdc$ $V_{IH} = 3.5 Vdc$ $V_{DD} = 5 Vdc, V_{SS} = 0 Vdc$ Note 5 (Pins D/F 3-4-5-6-11-12- 13-14) (Pins C 4-5-6-7-14-15-16- 17)	4.5	- 0.5	v
66	Input Voltage Low Level (Noise Immunity) (Functional Test) Input Voltage High Level (Noise Immunity) (Functional Test)	V _{IL2} V _{IH2}	-	4(a)	$V_{IL} = 4Vdc$ $V_{IH} = 11Vdc$ $V_{DD} = 15Vdc, V_{SS} = 0Vdc$ Note 5 (Pins D/F 3-4-5-6-11-12- 13-14) (Pins C 4-5-6-7-14-15-16- 17)	-	1.5	v

NOTES: See Page 24.

ISSUE 3

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - d.c. PARAMETERS (CONT'D)

NO.	CHARACTERISTICS	SYMBOL	TEST METHOD	TEST	TEST CONDITIONS (PINS UNDER TEST	LIMITS		UNIT
NO.	CHARACTERISTICS	STNDUL	MIL-STD 883	FIG.	D/F = DIP AND FP C = CCP)	MIN	MAX	UNIT
67	Threshold Voltage N-Channel	Vthn	-	4(i)	Clock A Input at Ground All Other Inputs: $V_{IN} = 5Vdc$ $V_{DD} = 5Vdc$, $I_{SS} = -10\mu A$ (Pin D/F 8) (Pin C 10)	-0.7	-3.0	V
68	Threshold Voltage P-Channel	VTHP	-	4(j)	Clock A Input at Ground: All Other Inputs: $V_{IN} = -5Vdc$ $V_{SS} = -5Vdc$, $I_{DD} = 10\mu A$ (Pin D/F 16) (Pin C 20)	0.7	3.0	V
69 to 74	Input Clamp Voltage (to V _{SS})	V _{IC1}	-	4(k)	I_{IN} (Under Test) = -100µA V_{DD} = Open, V_{SS} = 0Vdc All Other Pins Open (Pins D/F 1-2-7-9-10-15) (Pins C 1-2-9-11-12-19)	-	-2.0	V
75 to 80	Input Clamp Voltage (to V _{DD})	V _{IC2}	-	4(I)	V _{IN} (Under Test) = 6Vdc V _{SS} = Open, R = 30kΩ (Pins D/F 1-2-7-9-10-15) (Pins C 1-2-9-11-12-19)	3.0	-	V

ISSUE 3

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - a.c. PARAMETERS

		0)(1/170)	TEST METHOD	TEST	TEST CONDITIONS (PINS UNDER TEST	LIM	ITS	
NO.	CHARACTERISTICS	SYMBOL	MIL-STD 883	FIG.	D/F = DIP AND FP C = CCP)	MIN	МАХ	UNIT
81 to 86	Input Capacitance	C _{IN}	3012	4(m)	V _{IN} (Not Under Test) = 0Vdc V _{DD} = V _{SS} = 0Vdc Note 6 (Pins D/F 1-2-7-9-10-15) (Pins C 1-2-9-11-12-19)	-	7.5	pF
87	Propagation Delay Low to High, (Clock to Output)	tplh	3003	4(n)	$ \begin{array}{l} V_{IN} \; (\text{Under Test}) \; = \; Pulse \\ \text{Generator} \\ V_{IH} \; = \; 5 \text{Vdc}, \; V_{IL} \; = \; 0 \text{Vdc} \\ V_{IN}(\text{Reset}) \; = \; 0 \text{Vdc} \\ V_{IN}(\text{Enable}) \; = \; 5 \text{Vdc} \\ V_{DD} \; = \; 5 \text{Vdc}, \; V_{SS} \; = \; 0 \text{Vdc} \\ \text{Notes 7 and 8} \\ \hline \frac{\text{Pins D/F}}{1 \; \text{to 3}} \; \frac{\text{Pins C}}{1 \; \text{to 4}} \end{array} $	-	510	ns
88	Propagation Delay High to Low, (Clock to Output)	t₽HL	3003	4(n)	$ \begin{array}{l} V_{IN} \mbox{ (Under Test) = Pulse} \\ \mbox{ Generator } \\ V_{IH} = 5Vdc, \ V_{IL} = 0Vdc \\ V_{IN}(Reset) = 0Vdc \\ V_{IN}(Enable) = 5Vdc \\ V_{DD} = 5Vdc, \ V_{SS} = 0Vdc \\ Notes \ 7 \ and \ 8 \\ \hline \frac{Pins \ D/F}{1 \ to \ 3} \frac{Pins \ C}{1 \ to \ 4} \end{array} $	-	510	ns
89	Transition Time Low to High	tτιΗ	3004	4(n)	$V_{IN} \text{ (Under Test)} = \text{Pulse}$ Generator $V_{IN} \text{ (Reset)} = 0\text{Vdc}$ $V_{IN}(\text{All Other Inputs)}$ = 5Vdc $V_{DD} = 5\text{Vdc}, V_{SS} = 0\text{Vdc}$ Note 7 (Pin D/F 3) (Pin C 4)	-	150	ns
90	Transition Time High to Low	t _{thl}	3004	4(n)	$V_{IN} \text{ (Under Test)} = \text{Pulse}$ Generator $V_{IN} \text{ (Reset)} = 0\text{Vdc}$ $V_{IN} \text{ (All Other Inputs)}$ = 5Vdc $V_{DD} = 5\text{Vdc}, V_{SS} = 0\text{Vdc}$ Note 7 (Pin D/F 3) (Pin C 4)	-	150	ns

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - a.c. PARAMETERS (CONT'D)

NO.		RISTICS SYMBOL	3OL METHOD MIL-STD 883	TEST	TEST CONDITIONS (PINS UNDER TEST	LIMITS		UNIT
1.0.				FIG.	D/F = DIP AND FP C = CCP)	MIN	MAX	UNIT
91	Maximum Clock Frequency	^f (CL)	-	-	Clock = Pulse Generator V_{DD} = 5Vdc, V_{SS} = 0Vdc Notes 7 and 9 (Pin D/F 1) (Pin C 1)	1.5	-	MHz

NOTES

- 1. GO-NO-GO Test, each pattern of Test Table 4(a). $V_{OH} \ge V_{DD} 0.5$ Vdc $V_{OL} \le 0.5$ Vdc
- 2. Maximum time to output comparator strobe 300µsec.
- 3. Test is performed with the switch in both positions shown in Figure 4(b).
- 4. Interchange of forcing and measuring function is permitted.
- 5. This is performed as a Functional Test in which extreme V_{IN} conditions are applied and output voltage is measured.
- Measurement performed on a sample basis, LTPD7 or less, with a Capacitance Bridge connected between each input under test and V_{SS}, only for Lots where LAT Level 2 is to be performed. (For LTPD sampling plan, see Annexe I of ESA/SCC 9000).
- 7. Measurement performed on a sample basis, LTPD7 or less, (see Annexe I of ESA/SCC 9000).
- 8. Before commencement of test, load all stages with low or high in accordance with Test Table 4(a), and measure propagation time at change.
- A pulse, having the following conditions, shall be applied to the clock input: V_p = 0Vdc to V_{DD} Vdc. Maximum clock frequency f_(CL) requirement is considered met if proper output state changes occur with the pulse repetition rate set to that given in the "Limits" column.

TABLE 3(a) - ELECTRICAL MEASUREMENTS AT HIGH TEMPERATURE, + 125(+0-5) °C

NO.	CHARACTERISTICS	SYMBOL	TEST METHOD	TEST	TEST CONDITIONS (PINS UNDER TEST	LIM	ITS	UNIT
100.	CHARACTERISTICS	STWBUL	MIL-STD 883	FIG.	D/F = DIP AND FP C = CCP)	MIN	MAX	UNIT
1	Functional Test	-	_	4(a)	Verify Truth Table without Load. V _{DD} = 3Vdc, V _{SS} = 0Vdc Notes 1 and 2	-	-	-
2	Functional Test	-	-	4(a)	Verify Truth Table without Load. V _{DD} = 15Vdc, V _{SS} = 0Vdc Notes 1 and 2	-	-	-
3 to 4	Quiescent Current	IDD	3005	4(b)	$V_{IL} = 0Vdc, V_{IH} = 15Vdc$ $V_{DD} = 15Vdc, V_{SS} = 0Vdc$ Note 3 (Pin D/F 16) (Pin C 20)	-	30	μΑ
5 to 10	Input Current Low Level	Ι _Ι	3009	4(c)	$V_{IN} \text{ (Under Test) = 0Vdc} \\ V_{IN}(All Other Inputs) \\ = 15Vdc \\ V_{DD} = 15Vdc, V_{SS} = 0Vdc \\ (Pins D/F 1-2-7-9-10-15) \\ (Pins C 1-2-9-11-12-19) \\ \end{cases}$	-	-100	nA
11 to 16	Input Current High Level	lιH	3010	4(d)	$V_{IN} \text{ (Under Test)} = 15 \text{Vdc} \\ V_{IN}(\text{All Other Inputs}) \\ = 0 \text{Vdc} \\ V_{DD} = 15 \text{Vdc}, V_{SS} = 0 \text{Vdc} \\ (\text{Pins D/F 1-2-7-9-10-15}) \\ (\text{Pins C 1-2-9-11-12-19}) \\ \end{cases}$	-	100	nA
17 to 24	Output Voltage Low Level	V _{OL}	3007	4(e)	Counter Under Test: V_{IN} (All Inputs) = 15Vdc V_{OUT} = Open Other Counter: V_{IN} (All Inputs) = 15Vdc V_{DD} = 15Vdc, V_{SS} = 0Vdc (Pins D/F 3-4-5-6-11-12- 13-14) (Pins C 4-5-6-7-14-15-16- 17)	-	0.05	V

TABLE 3(a) - ELECTRICAL MEASUREMENTS AT HIGH TEMPERATURE, + 125(+0-5) °C (CONT'D)

NO.	CHARACTERISTICS	SYMBOL	TEST METHOD	TEST	TEST CONDITIONS (PINS UNDER TEST	LIM	ITS	UNIT
NO.	CHARACTERISTICS	STMBOL	MIL-STD 883	FIG.	D/F = DIP AND FP C = CCP)	MIN	МАХ	UNIT
25 to 32	Output Voltage High Level	V _{OH}	3006	4(f)	Counter Under Test: V_{IN} (Clock) = Pulse Generator V_{IN} (Reset) = 0Vdc V_{IN} (Enable) = 15Vdc V_{OUT} = Open Other Counter: V_{IN} (All Inputs) = 15Vdc V_{DD} = 15Vdc, V_{SS} = 0Vdc (Pins D/F 3-4-5-6-11-12- 13-14) (Pins C 4-5-6-7-14-15-16- 17)	14.95	-	V
33 to 40	Output Drive Current N-Channel	I _{OL1}	-	4(g)	Counter Under Test: V_{IN} (All Inputs) = 5Vdc V_{OUT} = 0.4Vdc Other Counter: V_{IN} (All Inputs) = 5Vdc V_{DD} = 5Vdc, V_{SS} = 0Vdc Note 4 (Pins D/F 3-4-5-6-11-12- 13-14) (Pins C 4-5-6-7-14-15-16- 17)	0.36	-	۳A
41 to 48	Output Drive Current N-Channel	I _{OL2}	-	4(g)	Counter Under Test: V_{IN} (All Inputs) = 15Vdc V_{OUT} = 1.5Vdc Other Counter: V_{IN} (All Inputs) = 15Vdc V_{DD} = 15Vdc, V_{SS} = 0Vdc Note 4 (Pins D/F 3-4-5-6-11-12- 13-14) (Pins C 4-5-6-7-14-15-16- 17)	2.4	-	mA

ISSUE 3

TABLE 3(a) - ELECTRICAL MEASUREMENTS AT HIGH TEMPERATURE, + 125(+0-5) °C (CONT'D)

		0)44001	TEST METHOD	TEST	TEST CONDITIONS (PINS UNDER TEST	LIM	ITS	LINIT
NO.	CHARACTERISTICS	SYMBOL	MIL-STD 883	FIG.	D/F = DIP AND FP C = CCP)	MIN	МАХ	UNIT
49 to 56	Output Drive Current P-Channel	Юн1	-	4(h)	Counter Under Test: V_{IN} (Clock) = Pulse Generator V_{IN} (Reset) = 0Vdc V_{IN} (Reset) = 0Vdc V_{IN} (Enable) = 5Vdc V_{OUT} = 4.6Vdc Other Counter: V_{IN} (All Inputs) = 5Vdc V_{DD} = 5Vdc, V_{SS} = 0Vdc Note 4 (Pins D/F 3-4-5-6-11-12-13-14) (Pins C 4-5-6-7-14-15-16-17)	-0.36	-	mA
57 to 64	Output Drive Current P-Channel	IOH2	-	4(h)	Counter Under Test: V_{IN} (Clock) = Pulse Generator V_{IN} (Reset) = 0Vdc V_{IN} (Reset) = 15Vdc V_{OUT} = 13.5Vdc Other Counter: V_{IN} (All Inputs) = 15Vdc V_{DD} = 15Vdc, V_{SS} = 0Vdc Note 4 (Pins D/F 3-4-5-6-11-12- 13-14) (Pins C 4-5-6-7-14-15-16- 17)	-2.4	-	mA
65	Input Voltage Low Level (Noise Immunity) (Functional Test) Input Voltage High Level (Noise Immunity) (Functional Test)	V _{IL1} V _{IH1}	-	4(a)	$V_{IL} = 1.5 Vdc$ $V_{IH} = 3.5 Vdc$ $V_{DD} = 5 Vdc, V_{SS} = 0 Vdc$ Note 5 (Pins D/F 3-4-5-6-11-12- 13-14) (Pins C 4-5-6-7-14-15-16- 17)	4.5	0.5	v
66	Input Voltage Low Level (Noise Immunity) (Functional Test) Input Voltage High Level (Noise Immunity) (Functional Test)	V _{IL2} V _{IH2}	-	4(a)	$V_{IL} = 4Vdc$ $V_{IH} = 11Vdc$ $V_{DD} = 15Vdc, V_{SS} = 0Vdc$ Note 5 (Pins D/F 3-4-5-6-11-12- 13-14) (Pins C 4-5-6-7-14-15-16- 17)	-	1.5	v

TABLE 3(a) - ELECTRICAL MEASUREMENTS AT HIGH TEMPERATURE, + 125(+0-5) °C (CONT'D)

NO. CHARACTERI	CHARACTERISTICS	SYMBOL	TEST METHOD	TEST	TEST CONDITIONS (PINS UNDER TEST	LIM	UNIT	
NO.	CHARACTERISTICS	STNIBUL	MIL-STD 883	FIG.	D/F = DIP AND FP C = CCP)	MIN	MAX	UNIT
67	Threshold Voltage N-Channel	V _{THN}	-	4(i)	Clock A Input at Ground: All Other Inputs: $V_{IN} = 5Vdc$ $V_{DD} = 5Vdc$, $I_{SS} = -10\mu A$ (Pin D/F 8) (Pin C 10)	-0.3	-3.5	V
68	Threshold Voltage P-Channel	V _{THP}	-	4(j)	Clock A Input at Ground: All Other Inputs: $V_{IN} = -5Vdc$ $V_{SS} = -5Vdc$, $I_{DD} = 10\mu A$ (Pin D/F 16) (Pin C 20)	0.3	3.5	V

ISSUE 3

TABLE 3(b) - ELECTRICAL MEASUREMENTS AT LOW TEMPERATURE, -55(+5-0) °C

NO. CHARACTERISTICS		SYMBOL	TEST METHOD	TEST	TEST CONDITIONS (PINS UNDER TEST	LIM	ITS	UNIT
NO.	CHARACTERISTICS	STMBUL	MIL-STD FIG. D/F = DIP AND FP 883 C = CCP)		MIN	МАХ		
1	Functional Test	-	-	4(a)	Verify Truth Table without Load. V _{DD} = 3Vdc, V _{SS} = 0Vdc Notes 1 and 2	-	-	-
2	Functional Test	-	-	4(a)	Verify Truth Table without Load. V _{DD} = 15Vdc, V _{SS} = 0Vdc Notes 1 and 2	-	-	-
3 to 4	Quiescent Current	$ I_{DD} \qquad 3005 \qquad 4(b) \qquad V_{IL} = 0Vdc, \ V_{IH} = 15Vdc \\ V_{DD} = 15Vdc, \ V_{SS} = 0Vdc \\ Note \ 3 \\ (Pin \ D/F \ 16) \\ (Pin \ C \ 20) $				-	1.0	μΑ
5 to 10	Input Current Low Level	ΙL	3009	4(c)	$V_{IN} \text{ (Under Test) = 0Vdc} \\ V_{IN} \text{ (All Other Inputs)} \\ = 15Vdc \\ V_{DD} = 15Vdc, V_{SS} = 0Vdc \\ \text{(Pins D/F 1-2-7-9-10-15)} \\ \text{(Pins C 1-2-9-11-12-19)} \\ \end{array}$	-	-50	nA
11 to 16	Input Current High Level	lιH	3010	4(d)	$V_{IN} \text{ (Under Test)} = 15 \text{Vdc} \\ V_{IN} \text{ (All Other Inputs)} \\ = 0 \text{Vdc} \\ V_{DD} = 15 \text{Vdc}, V_{SS} = 0 \text{Vdc} \\ \text{(Pins D/F 1-2-7-9-10-15)} \\ \text{(Pins C 1-2-9-11-12-19)} \\ \end{array}$	-	50	nA
17 to 24	Output Voltage Low Level	V _{OL}	3007	4(e)	Counter Under Test: V_{IN} (All Inputs) = 15Vdc V_{OUT} = Open Other Counter: V_{IN} (All Inputs) = 15Vdc V_{DD} = 15Vdc, V_{SS} = 0Vdc (Pins D/F 3-4-5-6-11-12- 13-14) (Pins C 4-5-6-7-14-15-16- 17)	-	0.05	V

PAGE 30

ISSUE 3

TABLE 3(b) - ELECTRICAL MEASUREMENTS AT LOW TEMPERATURE, -55(+5-0) °C (CONT'D)

NO. CHARACTERISTICS		SYMBOL	TEST METHOD	TEST	TEST CONDITIONS (PINS UNDER TEST	LIM	ITS	UNIT
NO.	CHARACTERISTICS	STMBUL	MIL-STD 883	FIG.	D/F = DIP AND FP C = CCP)	MIN	MAX	UNIT
25 to 32	Output Voltage High Level	V _{OH}	3006	4(f)	Counter Under Test: V_{IN} (Clock) = Pulse Generator V_{IN} (Reset) = 0Vdc V_{IN} (Enable) = 15Vdc V_{OUT} = Open Other Counter: V_{IN} (All Inputs) = 15Vdc V_{DD} = 15Vdc, V_{SS} = 0Vdc (Pins D/F 3-4-5-6-11-12- 13-14) (Pins C 4-5-6-7-14-15-16- 17)	14.95		V
33 to 40	Output Drive Current N-Channel	l _{OL1}	-	4(g)	Counter Under Test: V_{IN} (All Inputs) = 5Vdc V_{OUT} = 0.4Vdc Other Counter: V_{IN} (All Inputs) = 5Vdc V_{DD} = 5Vdc, V_{SS} = 0Vdc Note 4 (Pins D/F 3-4-5-6-11-12- 13-14) (Pins C 4-5-6-7-14-15-16- 17)	0.64	-	mA
41 to 48	Output Drive Current N-Channel	I _{OL2}	-	4(g)	Counter Under Test: V_{IN} (All Inputs) = 15Vdc V_{OUT} = 1.5Vdc Other Counter: V_{IN} (All Inputs) = 15Vdc V_{DD} = 15Vdc, V_{SS} = 0Vdc Note 4 (Pins D/F 3-4-5-6-11-12- 13-14) (Pins C 4-5-6-7-14-15-16- 17)	4.2	-	mA

TABLE 3(b) - ELECTRICAL MEASUREMENTS AT LOW TEMPERATURE, -55(+5-0) °C (CONT'D)

	NO. CHARACTERISTICS		TEST METHOD	TEST	TEST CONDITIONS (PINS UNDER TEST	LIM	ITS	UNIT
NU.	CHARACTERISTICS	SYMBOL	MIL-STD 883	FIG.	D/F = DIP AND FP C = CCP)	MIN	MAX	
49 to 56	Output Drive Current P-Channel	nnel V_{IN} (Clock) = Pulse Generator V_{IN} (Reset) = 0Vdc V_{IN} (Enable) = 5Vdc V_{OUT} = 4.6Vdc Other Counter: V_{IN} (All Inputs) = 5Vdc V_{DD} = 5Vdc, V_{SS} = 0Vdc Note 4 (Pins D/F 3-4-5-6-11-12- 13-14) (Pins C 4-5-6-7-14-15-16- 17)						
57 to 64	Output Drive Current P-Channel	IOH2	-	4(h)	Counter Under Test: V_{IN} (Clock) = Pulse Generator V_{IN} (Reset) = 0Vdc V_{IN} (Reset) = 15Vdc V_{OUT} = 13.5Vdc Other Counter: V_{IN} (All Inputs) = 15Vdc V_{DD} = 15Vdc, V_{SS} = 0Vdc Note 4 (Pins D/F 3-4-5-6-11-12-13-14) (Pins C 4-5-6-7-14-15-16-17)	-4.2	-	mA
65	Input Voltage Low Level (Noise Immunity) (Functional Test) Input Voltage High Level (Noise Immunity) (Functional Test)	V _{IL1} V _{IH1}	$\begin{array}{c c} & & V_{IL} = 1.5 \text{Vdc} \\ & V_{IH} = 3.5 \text{Vdc} \\ & V_{DD} = 5 \text{Vdc}, \ V_{SS} = 0 \text{Vdc} \\ & \text{Note 5} \\ & (\text{Pins D/F 3-4-5-6-11-12-13-14}) \\ & (\text{Pins C 4-5-6-7-14-15-16-17}) \\ \end{array}$			4.5	- 0.5	v
66	Input Voltage Low Level (Noise Immunity) (Functional Test) Input Voltage High Level (Noise Immunity) (Functional Test)	V _{IL2} V _{IH2}	-	4(a)	$V_{IL} = 4Vdc$ $V_{IH} = 11Vdc$ $V_{DD} = 15Vdc, V_{SS} = 0Vdc$ Note 5 (Pins D/F 3-4-5-6-11-12- 13-14) (Pins C 4-5-6-7-14-15-16- 17)	-	1.5	v

TABLE 3(b) - ELECTRICAL MEASUREMENTS AT LOW TEMPERATURE, -55(+5-0) °C (CONT'D)

NO.	CHARACTERISTICS	SYMBOL	TEST METHOD	TEST	TEST CONDITIONS (PINS UNDER TEST	LIM	ITS	UNIT V V
NU.	CHARACTERIS 1103	STINBUL	MIL-STD 883	FIG.	D/F = DIP AND FP C = CCP)	MIN	MAX	
67	Threshold Voltage N-Channel	V _{THN}	-	4(i)	Clock A Input at Ground: All Other Inputs: $V_{IN} = 5Vdc$ $V_{DD} = 5Vdc$, $I_{SS} = -10\mu A$ (Pin D/F 8) (Pin C 10)	-0.7	-3.5	V
68	Threshold Voltage P-Channel	Vthp	-	4(j)	Clock A Input at Ground: All Other Inputs: $V_{IN} = -5Vdc$ $V_{SS} = -5Vdc$, $I_{DD} = 10\mu A$ (Pin D/F 16) (Pin C 20)	0.7	3.5	V

FIGURE 4 - CIRCUITS FOR ELECTRICAL MEASUREMENTS

FIGURE 4(a) - FUNCTIONAL TEST TABLE

PATTERN 1 2 3 4 5 6 7 9 10 11 12 13 14 15 8 1 1 0 0 0 0 1 1 0 <	IPPLY
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V _{DD}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1
5 1 1 0 0 0 0 1 1 0	
6 1 0 0 0 0 1 0	
7 1 1 0 0 0 1 0	
8 0 1 0	
9 1 1 1 0 0 0 1 0	
10 0 1 1 0	
11 1 1 0 1 0 0 1 0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
13 1 1 1 1 0 0 0 1 0	
13 1 1 1 1 0 0 0 1 0	
14 0 1 1 1 0	
15 1 1 0 0 1 0	l
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
21 1 1 1 1 0 0 1 0	
22 0 1 1 1 0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
24 1 0 0 0 1 0 1 1 0 0 0 0 0 25 0 0 0 0 1 0 0 1 0 <td></td>	
24 1 0 0 0 1 0 1 1 0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
28 1 0 0 0 1 0 1 1 0 1 0 1 0 1 0	
29 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 1 0	
30 1 0 0 0 1 0 1 1 1 1 1 0 1 1 1 1 0	
31 0 0 0 0 1 0 0 1 1 1 0 0 0 0 32 1 0 0 0 1 0 1 1 1 0 0 0 0 33 0 0 0 0 1 0 1 1 0 0 1 0 0 34 1 0 0 0 1 0 1 1 0 1 0 0 35 0 0 0 0 1 0 1 1 0 0 0 36 1 0 0 0 1 0 1 1 0 0 37 0 0 0 1 0 1 1 1 0 0 38 1 0 0 1 0 1 1 1 0 0	1
31 0 0 0 0 1 0 0 1 1 1 0 0 0 0 32 1 0 0 0 1 0 1 1 1 0 0 0 0 33 0 0 0 0 1 0 1 1 0 0 1 0 0 34 1 0 0 0 1 0 1 1 0 1 0 0 35 0 0 0 0 1 0 1 1 0 0 0 36 1 0 0 0 1 0 1 1 0 0 37 0 0 0 1 0 1 1 1 0 0 38 1 0 0 1 0 1 1 1 0 0	Į
32 1 0 0 0 1 0 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1 0	1
33 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0	
34 1 0 0 0 1 0 1 1 1 0 1 0 0 0 35 0 0 0 0 1 0 1 1 0 1 0 0 0 36 1 0 0 0 1 0 1 1 0 0 0 37 0 0 0 1 0 1 1 1 0 0 38 1 0 0 0 1 0 1 1 1 0 0	
35 0 0 0 0 1 0 0 1 1 0 1 0 0 0 0 1 1 0 1 0 0 0 0 1 1 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1	1
36 1 0 0 0 1 0 1 1 0 1 0 0 37 0 0 0 0 1 0 0 1 1 0 1 1 0 0 38 1 0 0 0 1 0 1 1 1 1 0 0	
37 0 0 0 0 1 0 1 1 0 0 38 1 0 0 0 1 0 1 1 1 0 0	
38 1 0 0 0 1 0 1 1 1 1 0 0	
	-
40 1 0 0 0 1 0 1 1 0 0 0 1 0	
41 1 1 0 0 0 1 0 1 1 0 0 0 1 0	
42 0 1 0 0 0 1 0 0 1 0 0 1 0	
43 1 1 1 0 0 1 0 1 1 1 0 0 1 0	
44 0 1 1 0 0 1 0 0 1 1 0 0 1 0	
45 1 1 0 1 0 1 0 1 0 1 0 1 0	¥

FIGURE 4 - CIRCUITS FOR ELECTRICAL MEASUREMENTS (CONT'D)

FIGURE 4(a) - FUNCTIONAL TEST TABLE (CONT'D)

NO. 1 2 3 4 5 6 7 9 10 11 12 13 14 15 8 16 46 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <td< th=""><th>PATTERN</th><th></th><th></th><th></th><th></th><th></th><th>PIN</th><th>NUI</th><th>MBE</th><th>RS</th><th></th><th></th><th></th><th></th><th></th><th>D.C</th><th>. SU</th><th>IPPLY</th></td<>	PATTERN						PIN	NUI	MBE	RS						D.C	. SU	IPPLY
47 1 1 1 1 0 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	NO.	1	2	3	4	5	6	7	9	10	11	12	13	14	15	8		16
48 0 1 1 1 0 1 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 1 0 1	46	0	1	0	1	0	1	0	0	1	0	1	0	1	0	0		V _{DD}
49 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 1	47	1	1	1	1	0	1	0	1	1	1	1	0	1	0	1		
50 0 1 0 0 1 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1	48	0	1	1	1	0	1	0	0	1	1	1	0	1	0			
51 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 0	49	1	1	0	0	1	1	0	1	1	0	0	1	1	0			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	50	0	1	0	0	1	1	0	0	1	0	0	1	1	0			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	51	1	1	1	0	1	1	0	1	1	1	0	1	1	0			
54 0 1 0 1 1 0 0 1 0 1 1 1 1 0 0 1	52	0	1	1	0	1	1	0	0	1	1	0	1	1	0			
55 1 0	53	1	1	0	1	1	1	0	1	1	0	1	1	1	0			
56 0 1 0	54	0	1	0	1	1	1	0	0	1	0	1	1	1	0			
57 1 1 0 0 0 0 1 1 0	55	1	1	1	1	1	1	0	1	1	1	1	1	1	0			
58 0 1 0 0 0 0 1 1 0	56	0	1	1	1	1	1	0	0	1	1	1	1	1	0			
59 1 1 1 0 0 0 1 1 1 0	57	1	1	0	0	0	0	0	1	1	0	0	0	0	0			
60 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0	58	0	1	0	0	0	0	0	0	1	0	0	0	0	0			
61 1 1 0 1 0 0 1 1 0 1 0 0 0 0 1 0	59	1	1	1	0	0	0	0	1	1	1	0	0	0	0			
62 0 1 0 1 0 0 0 1 0 1 0 0 0 63 1 1 1 1 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 1 1 0 0 1 1	60	0	1	1	0	0	0	0	0	1	1	0	0	0	0			
62 0 1 0 1 0 0 0 1 0 1 0 0 0 63 1 1 1 1 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 1 1 0 0 1 1	61	1	1	0	1	0	0	0	1	1	0	1	0	0	0			
64 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 <td>62</td> <td>0</td> <td>1</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td></td> <td></td> <td>l</td>	62	0	1	0	1	0	0	0	0	1	0	1	0	0	0			l
65 1 1 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1	63	1	1	1	1	0	0	0	1	1	1	1	0	0	0			
66 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0	64	0	1	1	1	0	0	0	0	1	1	1	0	0	0			
67 1 1 1 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 1 1 0 1	65	1	1	0	0	1	0	0	1	1	0	0	1	0	0			1
68 0 1 1 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 0 1	66	0	1	0	0	1	0	0	0	1	0	0	1	0	0			
69 1 1 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	67	1	1	1	0	1	0	0	1	1	1	0	1	0	0			
70 0 1 0 1 1 0 1 1 1 1 0 0 1 1 1 0 0 71 1 1 1 1 1 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 <td>68</td> <td>0</td> <td>1</td> <td>1</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>1</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td></td> <td></td> <td></td>	68	0	1	1	0	1	0	0	0	1	1	0	1	0	0			
71 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0	69	1	1	0	1	1	0	0	1	1	0	1	1	0	0			
72 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0	70	0	1	0	1	1	0	0	0	1	0	1	1	0	0			
73 1 1 0 0 1 0 1 1 0 0 1 0 74 0 1 0 0 1 0 0 1 0 0 1 0 75 1 1 1 0 0 1 0 1 1 0 0 1 0 76 0 1 1 0 0 1 1 1 0 0 1 0 77 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 78 0 1 0 1 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 0	71	1	1	1	1	1	0	0	1	1	1	1	1	0	0			
74 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0	72	0	1	1	1	1	0	0	0	1	1	1	1	0	0			
75 1 1 1 0 0 1 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1	73	1	1	0	0	0	1	0	1	1	0	0	0	1	0			
76 0 1 1 0 0 1 1 0 0 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0	74	0	1	0	0	0	1	0	0	1	0	0	0	1	0			
77 1 1 0 1 0 1 1 0 1 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0	75	1	1	1	0	0	1	0	1	1	1	0	0	1	0			
78 0 1 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1	76	0	1	1	0	0	1	0	0	1	1	0	0	1	0			
78 0 1 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1	77	1	1	0	1	0	1	0	1	1	0	1	0	1	0			
79 1 1 1 1 0 1 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1	78	0	1	0	1	0	1	0	0	1	0	1	0	1	0			
80 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1	79	1	1	1	1		1	0		1	1	1	0	1	0			
81 1 1 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0	80	0	1	1	1		1	0	0	1	1	1	0	1	0			
82 0 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0	81	1		0	0		1	0		1	0	0	1	1	0			
83 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 0 1	82	0	1	0	0		1			1	0		1	1	0			
84 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1	83	1	1	1	0		1	0		1	1		1	1	0			-
85 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 1 1 0 0 1		0		1			1			1	1		1		0	ļļ		
86 0 1 0 1 1 0 0 1 0 1 1 1 0 87 1 1 1 1 1 0 1 <td></td> <td>1</td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td>		1		0						1			1					
87 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1																		
88 1 1 0 0 0 0 1 1 1 0 0 0 0 1																		
90 1 1 0 0 0 0 1 1 1 0 0 0 0 1 🕴 🦞		1																¥

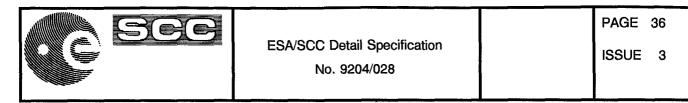

FIGURE 4 - CIRCUITS FOR ELECTRICAL MEASUREMENTS (CONT'D)

FIGURE 4(a) - FUNCTIONAL TEST TABLE (CONT'D)

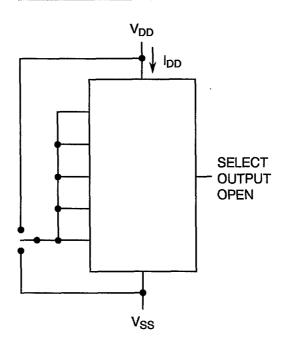
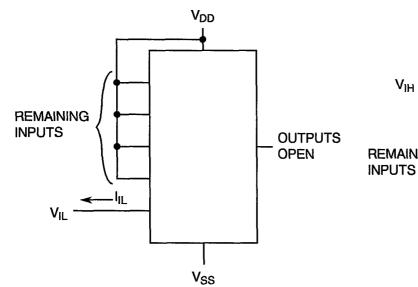
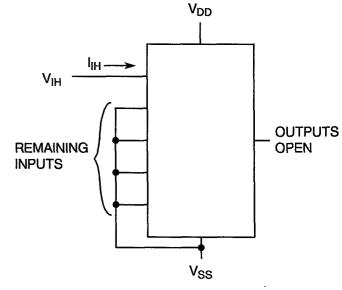
PATTERN						PIN	I NUI	MBE	RS						D.C	. SU	PPLY
NO.	1	2	3	4	5	6	7	9	10	11	12	13	14	15	8		16
91	1	0	0	0	0	0	1	1	0	0	0	0	0	1	0		V _{DD}
92	1	1	0	0	0	0	1	1	1	0	0	0	0	1	1		
93	1	1	0	0	0	0	0	1	1	0	0	0	0	0			
94	0	1	0	0	0	0	0	0	1	0	0	0	0	0			
95	1	1	1	0	0	0	0	1	1	1	0	0	0	0			
96	0	1	1	0	0	0	0	0	1	1	0	0	0	0			
97	1	1	0	1	0	0	0	1	1	0	1	0	0	0			
98	0	1	0	1	0	0	0	0	1	0	1	0	0	0			
99	1	1	1	1	0	0	0	1	1	1	1	0	0	0			
100	0	1	1	1	0	0	0	0	1	1	1	0	0	0			
101	1	1	0	0	1	0	0	1	1	0	0	1	0	0			
102	0	1	0	0	1	0	0	0	1	0	0	1	0	0			
103	1	1	1	0	1	0	0	1	1	1	0	1	0	0			
104	0	1	1	0	1	0	0	0	1	1	0	1	0	0			
105	1	1	0	1	1	0	0	1	1	0	1	1	0	0			
106	0	1	0	1	1	0	0	0	1	0	1	1	0	0			
107	1	1	1	1	1	0	0	1	1	1	1	1	0	0			
108	0	1	1	1	1	0	0	0	1	1	1	1	0	0			
109	1	1	0	0	0	1	0	1	1	0	0	0	1	0			
110	0	1	0	0	0	1	0	0	1	0	0	0	1	0			
111	1	1	1	0	0	1	0	1	1	1	0	0	1	0			
112	0	1	1	0	0	1	0	0	1	1	0	0	1	0			
113	1	1	0	1	0	1	0	1	1	0	1	0	1	0			ļ
114	0	1	0	1	0	1	0	0	1	0	1	0	1	0			
115	1	1	1	1	0	1	0	1	1	1	1	0	1	0			
116	0	1	1	1	0	1	0	0	1	1	1	0	1	0			
117	1	1	0	0	1	1	0	1	1	0	0	1	1	0			
118	0	1	0	0	1	1	0	0	1	0	0	1	1	0			
119	1	1	1	0	1	1	0	1	1	1	0	1	1	0			
120	0	1	1	0	1	1	0	0	1	1	0	1	1	0			
121	1	1	0	1	1	1	0	1	1	0	1	1	1	0			
122	0	1	0	1	1	1	0	0	1	0	1	1	1	0			
123	1	1	1	1	1	1	0	1	1	1	1	1	1	0			
124	0	1	1	1	1	1	0	0	1	1	1	1	1	0			
125	0	1	0	0	0	0	1	0	1	0	0	0	0	1	<u> </u>	/	¥

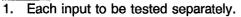
NOTES

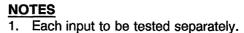
- 1. Figure 4(a) illustrates one series of Test Patterns. Any other pattern series must be agreed with the Qualifying Space Agency and shall be included as an Appendix.
- 2. Logic Level Definitions: $1 = V_{IH} = V_{DD}$, $0 = V_{IL} = V_{SS}$.

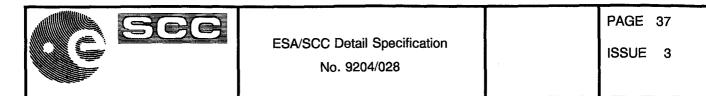
FIGURE 4 - CIRCUITS FOR ELECTRICAL MEASUREMENTS (CONTINUED)

FIGURE 4(b) - QUIESCENT CURRENT

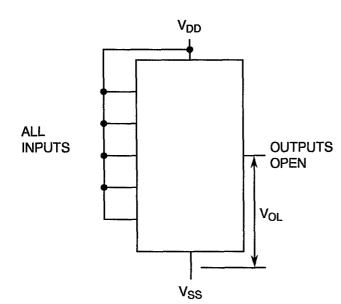





FIGURE 4(c) - INPUT CURRENT LOW LEVEL


FIGURE 4(d) - INPUT CURRENT HIGH LEVEL



NOTES



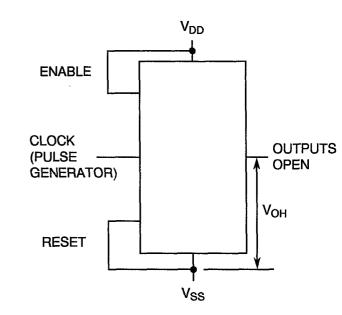
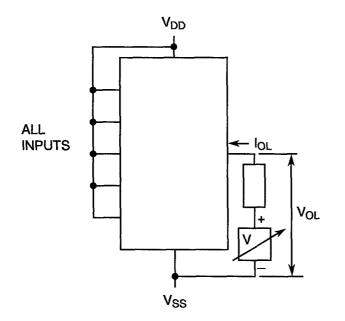
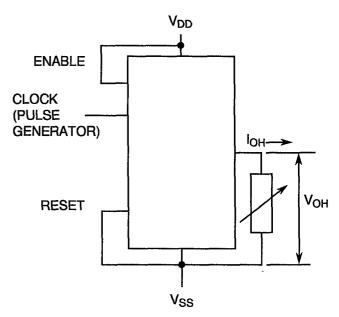


FIGURE 4 - CIRCUITS FOR ELECTRICAL MEASUREMENTS (CONTINUED)

FIGURE 4(e) - LOW LEVEL OUTPUT VOLTAGE

NOTES

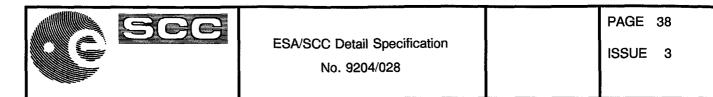

1. Each output to be tested separately.


NOTES

1. Each output to be tested separately.

FIGURE 4(g) - LOW LEVEL OUTPUT CURRENT

FIGURE 4(h) - HIGH LEVEL OUTPUT CURRENT



NOTES

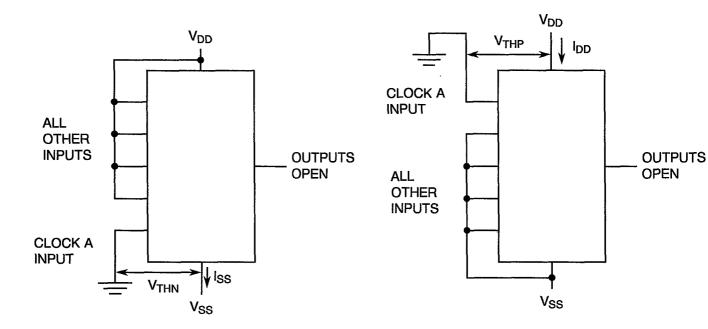
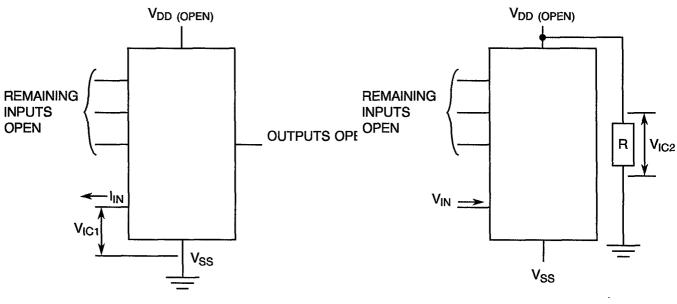
1. Each output to be tested separately.

NOTES

1. Each output to be tested separately.

FIGURE 4 - CIRCUITS FOR ELECTRICAL MEASUREMENTS (CONTINUED)

FIGURE 4(i) - THRESHOLD VOLTAGE N-CHANNEL FIGURE 4(j) - THRESHOLD VOLTAGE P-CHANNEL

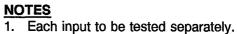

FIGURE 4(k) - INPUT CLAMP VOLTAGE (VSS)

FIGURE 4(I) - INPUT CLAMP VOLTAGE (VDD)

NOTES

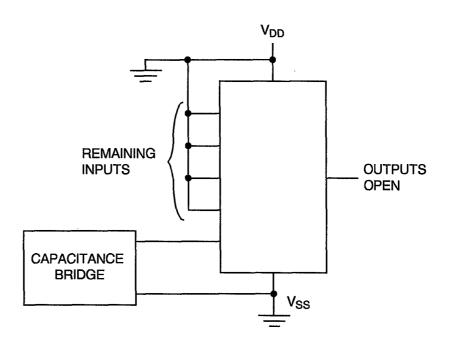
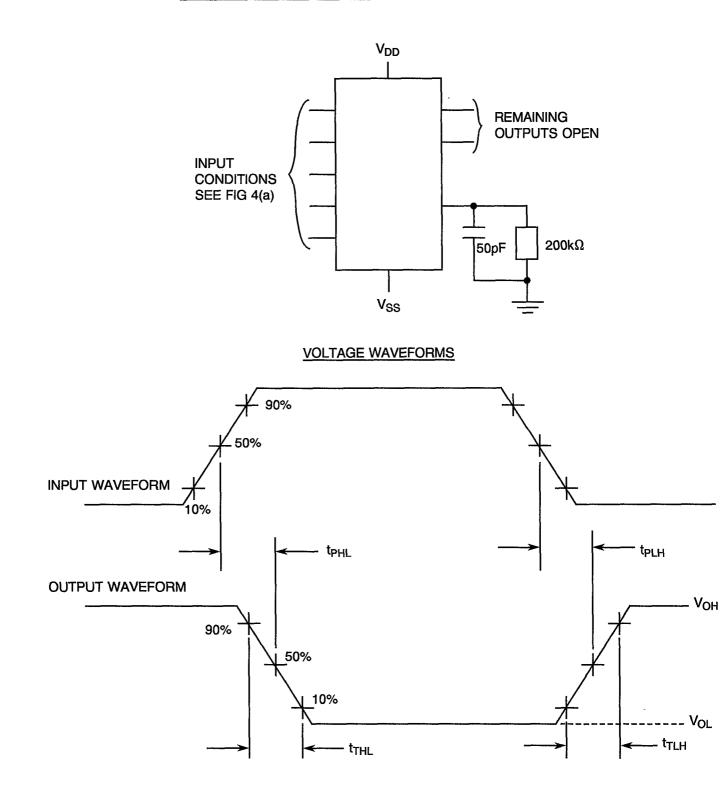

1. Each input to be tested separately.

FIGURE 4 - CIRCUITS FOR ELECTRICAL MEASUREMENTS (CONTINUED)

FIGURE 4(m) - INPUT CAPACITANCE


NOTES

- 1. Each input to be tested separately.
- 2. f = 100 kHz to 1MHz.

FIGURE 4 - CIRCUITS FOR ELECTRICAL MEASUREMENTS (CONTINUED)

FIGURE 4(n) - PROPAGATION DELAY AND TRANSITION TIME

NOTES

1. Pulse Generator - V_P = 0 to V_{DD} , t_r and $t_f \le 20$ ns, f = 500kHz.

TABLE 4 - PARAMETER DRIFT VALUES

NO.	CHARACTERISTICS	SYMBOL	SPEC. AND/OR TEST METHOD	TEST CONDITIONS	CHANGE LIMITS (Δ)	UNIT
3 to 4	Quiescent Current	I _{DD}	As per Table 2	As per Table 2	± 150	nA
33 to 40	Output Drive Current N-Channel	l _{OL1}	As per Table 2	As per Table 2	± 15 (1)	%
49 to 56	Output Drive Current P-Channel	Юн1	As per Table 2	As per Table 2	± 15 (1)	%
67	Threshold Voltage N-Channel	V _{THN}	As per Table 2	As per Table 2	±0.3	V
68	Threshold Voltage P-Channel	V _{THP}	As per Table 2	As per Table 2	±0.3	V

NOTES 1. Percentage of limit value if voltage is the measurement function.

TABLE 5(a) - CONDITIONS FOR BURN-IN HIGH TEMPERATURE REVERSE BIAS, N-CHANNELS

NO.	CHARACTERISTICS	SYMBOL	CONDITION	UNIT
1	Ambient Temperature	T _{amb}	amb + 125 (+ 0-5)	
2	Outputs - (Pins D/F 3-4-5-6-11-12-13-14) (Pins C 4-5-6-7-14-15-16-17)	V _{OUT}	Open	-
3	Inputs - (Pins D/F 1-2-9-10) (Pins C 1-2-11-12)	V _{IN}	Ground	Vdc
4	Inputs - (Pins D/F 7-15) (Pins C 9-19)	V _{IN}	V _{DD}	Vdc
5	Positive Supply Voltage (Pin D/F 16) (Pin C 20)	V _{DD}	15	Vdc
6	Negative Supply Voltage (Pin D/F 8) (Pin C 10)	V _{SS}	Ground	Vdc

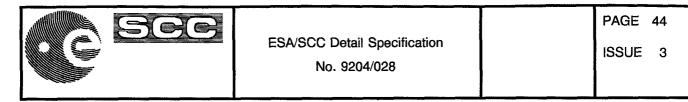
NOTES

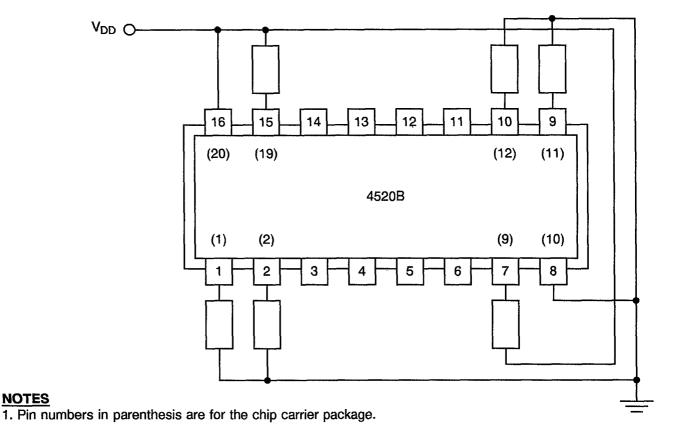
1. Input Load = Protection Resistor = $2k\Omega$ minimum to $47k\Omega$ maximum.

TABLE 5(b) - CONDITIONS FOR BURN-IN HIGH TEMPERATURE REVERSE BIAS, P-CHANNELS

NO.	CHARACTERISTICS	SYMBOL	CONDITION	UNIT
1	Ambient Temperature	T _{amb}	+ 125 (+ 0-5)	°C
2	Outputs - (Pins D/F 3-4-5-6-11-12-13-14) (Pins C 4-5-6-7-14-15-16-17)	V _{OUT}	Open	-
3	Inputs - (Pins D/F 1-2-9-10) (Pins C 1-2-11-12)	V _{IN}	V _{DD}	Vdc
4	Inputs - (Pins D/F 7-15) (Pins C 9-19)	V _{IN}	Ground	Vdc
5	Positive Supply Voltage (Pin D/F 16) (Pin C 20)	V _{DD}	15	Vdc
6	Negative Supply Voltage (Pin D/F 8) (Pin C 10)	V _{SS}	Ground	Vdc

NOTES


1. Input Load = Protection Resistor = $2k\Omega$ minimum to $47k\Omega$ maximum.


TABLE 5(c) - CONDITIONS FOR BURN-IN DYNAMIC

NO.	CHARACTERISTICS	SYMBOL	CONDITIONS	UNIT
1	Ambient Temperature	Tamb	+ 125 (+ 0-5)	°C
2	Outputs - (Pins D/F 3-4-5-6-11-12-13-14) (Pins C 4-5-6-7-14-15-16-17)	Vour	V _{DD/2}	Vdc
3	Inputs - (Pins D/F 1-9) (Pins C 1-11)	V _{IN}	V _{GEN}	Vac
4	Inputs - (Pins D/F 2-10) (Pins C 2-12)	V _{IN}	V _{GEN/2}	Vac
5	Inputs - (Pins D/F 7-15) (Pins C 9-19)	V _{IN}	Ground	Vdc
6	Pulse Voltage	V _{GEN}	0 to V _{DD}	Vac
7	Pulse Frequency Square Wave	f	50k ≤ f <1M, 50% Duty Cycle	Hz
8	Positive Supply Voltage (Pin D/F 16) (Pin C 20)	V _{DD}	15	Vdc
9	Negative Supply Voltage (Pin D/F 8) (Pin C 10)	V _{SS}	Ground	Vdc

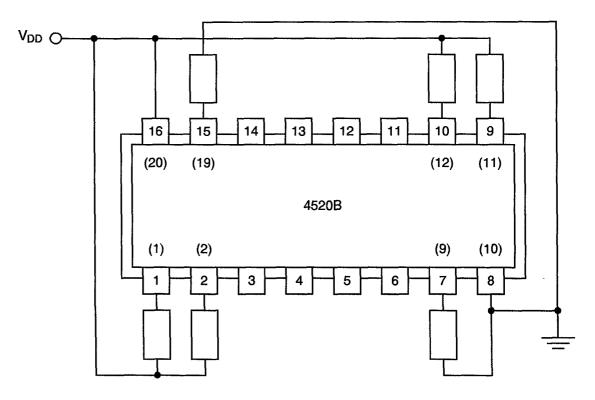

<u>NOTES</u> 1. Input Load = Output Load = $2k\Omega$ minimum to $47k\Omega$ maximum.

FIGURE 5(a) - ELECTRICAL CIRCUIT FOR BURN-IN HIGH TEMPERATURE REVERSE BIAS, N-CHANNELS

FIGURE 5(b) - ELECTRICAL CIRCUIT FOR BURN-IN HIGH TEMPERATURE REVERSE BIAS, P-CHANNELS

NOTES

NOTES

1. Pin numbers in parenthesis are for the chip carrier package.

NOTES 1. Pin numbers in parenthesis are for the chip carrier package.

4.8 <u>ENVIRONMENTAL AND ENDURANCE TESTS (CHARTS IV AND V OF ESA/SCC GENERIC</u> SPECIFICATION NO. 9000)

4.8.1 Electrical Measurements on Completion of Environmental Tests

The parameters to be measured on completion of environmental tests are scheduled in Table 6. Unless otherwise stated, the measurements shall be performed at $T_{amb} = +22 \pm 3$ °C.

4.8.2 Electrical Measurements at Intermediate Points during Endurance Tests

The parameters to be measured at intermediate points during endurance tests are as scheduled in Table 6 of this specification.

4.8.3 Electrical Measurements on Completion of Endurance Tests

The parameters to be measured on completion of endurance testing are as scheduled in Table 6 of this specification. Unless otherwise stated, the measurements shall be performed at $T_{amb} = +22 \pm 3$ °C.

4.8.4 Conditions for Operating Life Test

The requirements for operating life testing are specified in Section 9 of ESA/SCC Generic Specification No. 9000. The conditions for operating life testing shall be as specified in Table 5(c) of this specification.

4.8.5 <u>Electrical Circuits for Operating Life Tests</u>

Circuits for use in performing the operating life test are shown in Figure 5(c) of this specification.

4.8.6 Conditions for High Temperature Storage Test

The requirements for the high temperature storage test are specified in ESA/SCC Generic Specification No. 9000. The temperture to be applied shall be the maximum storage temperature specified in Table 1(b) of this specification.

TABLE 6 - ELECTRICAL MEASUREMENTS ON COMPLETION OF ENVIRONMENTAL TESTS AND AT INTERMEDIATE POINTS AND ON COMPLETION OF ENDURANCE TESTING

					CHANGE			
NO.	CHARACTERISTICS	SYMBOL	SPEC. AND/OR	TEST CONDITIONS				UNIT
			TEST METHOD		(Δ)	MIN	MAX	
1	Functional Test	-	As per Table 2	As per Table 2	-	-	-	1
3	Quiescent Current	I _{DD}	As per Table 2	As per Table 2	± 150	-	-	nA
to 4								
5	Input Current	կլ	As per Table 2	As per Table 2	-	-	-50	nA
to 10	Low Level				1			
11	Input Current	l _{iH}	As per Table 2	As per Table 2	-	-	50	nA
to 16	High Level							
17	Output Voltage	V _{OL}	As per Table 2	As per Table 2	-	-	0.05	v
to 24	Low Level							
25	Output Voltage	V _{OH}	As per Table 2	As per Table 2		14.95	_	v
to 32	High Level	VОН	As per Table 2			14.00		
33	Output Drive Current	1	As per Table 2	As per Table 2	± 15 (1)			%
to	N-Channel	IOL1	As per rable 2	AS per l'able 2	<u>1</u> 10 (1)			/0
40								
41 to	Output Drive Current N-Channel	IOL2	As per Table 2	As per Table 2	±15 (1)	-	-	%
48								
49 to	Output Drive Current P-Channel	I _{OH1}	As per Table 2	As per Table 2	± 15 (1)	-	-	%
56								
57 to	Output Drive Current P-Channel	I _{OH2}	As per Table 2	As per Table 2	± 15 (1)	-	-	%
64								
	Input Voltage	V _{IL1}			-	4.5	-	ſ
	Low Level (Noise Immunity)							
65	(Functional Test)		As per Table 2	As per Table 2			0.5	v
	Input Voltage High Level	V _{IH1}			-	-	0.5	
	(Noise Immunity) (Functional Test)							
67	Threshold Voltage	V _{THN}	As per Table 2	As per Table 2	±0.3	<u> </u>		V
L	N-Channel		ļ			ļ	L	ļ
68	Threshold Voltage P-Channel	V _{THP}	As per Table 2	As per Table 2	±0.3	-	-	V
L		<u> </u>		<u> </u>		<u> </u>	<u> </u>	1

NOTES

1. Percentage of limit value if voltage is the measurement function.

ISSUE 3

APPENDIX 'A'

Page 1 of 1

AGREED DEVIATIONS FOR STMICROELECTRONICS (F)

ITEMS AFFECTED	DESCRIPTION OF DEVIATION
Para. 4.2.3	Para. 9.23, High Temperature Reverse Bias Burn-in: The temperature limits of MIL-STD-883, Para. 4.5.8(c) may be used. Para. 9.24, Power Burn-in:
	The temperature limits of MIL-STD-883, Para. 4.5.8(c) may be used.
Para. 4.2.4	Para. 9.21.1, Operating Life during Qualification Testing: The temperature limits of MIL-STD-883, Para. 4.5.8(c) may be used.
Para. 4.2.5	Para. 9.21.2, Operating Life during Lot Acceptance Testing: The temperature limits of MIL-STD-883, Para. 4.5.8(c) may be used.