

Page i

INTEGRATED CIRCUITS, SILICON MONOLITHIC,

CMOS 4 x 4 MULTIPORT REGISTER,

WITH 3-STATE OUTPUTS,

BASED ON TYPE 40208B

ESCC Detail Specification No. 9301/009

ISSUE 1 October 2002

Document Custodian: European Space Agency - see https://escies.org

LEGAL DISCLAIMER AND COPYRIGHT

European Space Agency, Copyright © 2002. All rights reserved.

The European Space Agency disclaims any liability or responsibility, to any person or entity, with respect to any loss or damage caused, or alleged to be caused, directly or indirectly by the use and application of this ESCC publication.

This publication, without the prior permission of the European Space Ageny and provided that it is not used for a commercial purpose, may be:

- copied in whole in any medium without alteration or modification.
- copied in part, in any medium, provided that the ESCC document identification, comprising the ESCC symbol, document number and document issue, is removed.

european space agency agence spatiale européenne

Pages 1 to 54

INTEGRATED CIRCUITS, SILICON MONOLITHIC,

CMOS 4 x 4 MULTIPORT REGISTER,

WITH 3-STATE OUTPUTS,

BASED ON TYPE 40208B

ESA/SCC Detail Specification No. 9301/009

space components coordination group

		Approved by		
lssue/Rev.	Date	SCCG Chairman	ESA Director General or his Deputy	
Issue 2	June 1993	Zwwant	t. tabp	
Revision 'A'	March 1992	Tomment	t. lab	
Revision 'B'	September 1994	Formers	AA	
Revision 'C'	April 2001	\$a_mitt	Am	

ISSUE 2

DOCUMENTATION CHANGE NOTICE

Rev. Letter	Rev. Date	Reference	CHANGE Item	Approved DCR No.
		This Issue supersed	es Issue 1 and incorporates all modifications defined in	
			1 and the following DCR's:-	
		Cover Page	: Title amended	23396
		DCN	1	None
		Para. 1.1	: First sentence amended	23396
1		Para. 1.1 Para. 1.10	: Last sentence rewritten to include ESD Class and	23385
			Minimum Critical Path Failure Voltage	22314
		Table 1(a)	: Table amended	22398
		Table 1(b)	: No. 9, package soldering temperatures changed	22314
			: Notes - Note 6 added	22314
		Figure 2(a)	: Table corrected	23247/
				23270
1		Figure 2(b)	: "CKT A" deleted from Title	22398
		Figure 2(c)	: Figure deleted in total	22398
		Figure 2(d)	: Title amended to "2(c)"	22398
			: Table corrected	23247
		Notes to Figures	: In Title and Note 1, 2(d) amended to "2(c)"	22398
		Figure 3(a)	: On both packages, "3-State" amended to "ENABLE"	23396
			: On chip carrier package: Pins 12 and 13 designations	23396
			reversed : Notation in Table and Note 1 standardised	00000
		Figure 3(b)	: Pin 11 corrected to read "R1B"	23396
{		Figure 3(c)	: Input Protection Network deleted	23396 23396
		Para. 3	: New abbreviations added	23396
		Para. 4.2.2		23390
		Para. 4.5.2	: Third sentence amended to read "2(c)"	22398
		Tables 2, 3(a), (b)	: Nos. 1 and 2, "dc" added after voltages	23396
			: Nos. 3 to 25, Test Figure amended to "4(a)"	23396
			: Nos. 26 to 39, All Other Inputs: V _{IN} amended to "15Vdc"	22814
			: Nos. 26 to 101, All Test Figures incremented by 1 letter	23396
			: Nos. 70 to 77, V _{IN} (Write Enable and Enable) corrected	23396
			to "5Vdc"	20000
			: Nos. 86 to 93, All Other Inputs: V _{IN} corrected to "5Vdc"	23396
			: Nos. 94 to 101, V _{IN} (Write/Read) corrected to "0Vdc"	23396
			: Nos. 102 to 109, Test Figure amended to "4(h)"	23396
			: Nos. 102 to 109 and 110 to 117, Characteristics	23396
			amended	
		Table 2	: Nos. 122 to 135, Limits column amended,	22398
		1	: Nos. 136 to 149, "Circuit A" deleted from first	22398
			measurement and Circuit B entry deleted in total	
			: Nos. 149 to 162, corrected to "150 to 163"	23396
			: Nos. 163 to 171, all numbers incremented by 1	23396
			: Nos. 163 and 164, now Nos. 164 and 165,	23396
			Characteristics amended	l
1			: Nos. 165 to 168, now Nos. 166 to 169, Test Figure	23396
1			amended to "4(o)"	
1			: No. 166, now No. 167, V _{DD} corrected to "5Vdc"	23396
1		Notes to Table S	: No. 171, now No. 172, "Note 7" added	22301
	1	Notes to Table 2	: Note 3 amended to read "Table 4(a)"	23396
		Figure 4(a)	: Title amended	23396
L		Figure 4(b)	: Figure deleted in total	23396

PAGE 2A

ISSUE 2

DOCUMENTATION CHANGE NOTICE

Rev. Letter	Rev. Date	CHANGE Reference Item		
		Figures 4(c), (d), (e), (f), (g), (h): Renumbered as 4(b), (c), (d), (e), (f), (g)Figure 4(c): Now 4(b), Figure amendedFigures 4(e), (f), (g), (h): Now Figures 4(d), (e), (f), (g), Input Conditions amendedFigures 4(e), (f), (g), (h): Now Figures 4(f), (g): Output circuit amendedFigures 4(g), (h): Now Figures 4(f), (g): Output circuit amendedFigures 4(h): New Figure addedFigure 4(i), (j): Input conditions specifiedFigure 4(o): Timing Waveforms correctedFigure 4(o): New Figure addedTable 4: Nos. 102 to 109 and 110 to 117, Characteristics amendedTable 5(a), (b): Titles amendedFigures 5(a), (b): Titles amendedFigure 5(c): Figure addedParas. 4.8.4 & 4.8.5: Reference to Table and Figure amended to "5(c)"Table 6: Nos. 70 to 77, "N-Channel" added to Characteristics amended	23396 22814 23396 23076 23396 23162 23396 23396 23396 23162 22814 23162 22814 23162 22814 23396 23396 23396	
'A'	March'92	P1.Cover PageP2A.DCNP6.Table 1(a): Lead Material and/or Finish amendedP15.Para. 4.2.2: Deviation deleted, "None" addedPara. 4.2.4: Deviation deleted, "None" addedP16.Para. 4.2.5: Deviation deleted, "None" addedPara. 4.4.2: Material Type and Finishes amended	None 23465 21048 22919 22919 23465	
'B'	Sept. '94	 P1. Cover Page P2A. DCN P6. Table 1(a) : Lead Material and/or Finish amended P16. Para. 4.3.2 : Weights amended Para. 4.4.2 : Lead Finish, Types amended 		
'C'	Apr. '01	P1.Cover Page:Page count increased by 1P2A.DCNP4.T of C:Appendices entry amendedP5.Para. 1.3:New sentence addedP6.Table 1(a):Variants 08 and 09 addedTable 1(b):No. 8, Maximum temperature amendedP9.Figure 2(c):In the drawing, Pin No. 28 location correctedP10.Notes to Figures:Title amendedP10A.Figure 2(d):New page addedP11.Figure 3(a):Left-hand drawing Title amended:::SO package added to the textPara.4.3.2:SO package added to the textPara.4.5.2:SO package added to the textP51.Para.4.8.6:Last sentence deleted, new text addedP54.Appendix 'A':Appendix added	221602 None 221602 221562 221562 221562 221562 221562 221562 221562 221562 221562 221562 221562 221562 221562 221562 221562 221602 221602	

		والمتحجي والمتحد		_			
	See	ESA/SCC Detail Specification		PAGE	3		
		No. 9301/009		ISSUE	2		
TABLE OF CONTENTS							
1.	GENERAL			<u>F</u>	Page 5		
1.1	Scope				5		
1.2	Component Type Varia	nts			5		
1.3	Maximum Ratings				5		
1.4	Parameter Derating Info	ormation			5		
1.5	Physical Dimensions	,			5		
1.6	Pin Assignment				5 5		
1.7	Truth Table				5		
1.8	Circuit Schematic				5 5 5		
1.9 1.10	Functional Diagram Handling Precautions				5		
1.10	Input Protection Networ	۲.			5		
					15		
2.	APPLICABLE DOCUM		INITO		15		
3. 4.	REQUIREMENTS	S, ABBREVIATIONS, SYMBOLS AND U	<u>1115</u>		15		
4.1 4.2	General	- Prodification			15 15		
4.2 4.2.1	Deviations from Generi Deviations from Specia				15		
4.2.1	Deviations from Final P				15		
4.2.2	Deviations from Burn-ir				15		
4.2.4		cation, Environmental and Endurance Tes	ts		15		
4.2.5	Deviations from Lot Ac				16		
4.3	Mechanical Requireme	•			16		
4.3.1	Dimension Check				16		
4.3.2	Weight				16		
4.4	Materials and Finishes				16		
4.4.1	Case				16		
4.4.2	Lead Material and Finis	h			16		
4.5	Marking				16		
4.5.1	General				16		
4.5.2 4.5.3	Lead Identification The SCC Component I	lumber			16 17		
4.5.3 4.5.4	Traceability Information				17		
4.6	Electrical Measuremen				17		
4.6.1		ts at Room Temperature			17		
4.6.2		ts at High and Low Temperatures			17		
4.6.3	Circuits for Electrical M				17		
4.7	Burn-in Tests				17		
4.7.1	Parameter Drift Values				17		
4.7.2	Conditions for HTRB a	nd Burn-in			17		
4.7.3	Electrical Circuits for H				17		
4.8	Environmental and En				51		
4.8.1	Electrical Measurements on Completion of Environmental Tests				51		
4.8.2	u				51 51		
4.8.3							
4.8.4	Conditions for Operatin	-			51 51		
4.8.5 4.8.6							
4.0.0		mporature otorage rest			51		

ESA/SCC Detail Specification	PAGE ISSUE	4 2
------------------------------	---------------	--------

TABLES

<u>Page</u>

1(a)	Type Variants	6
1(b)	Maximum Ratings	6
2	Electrical Measurements at Room Temperature, d.c. Parameters	18
	Electrical Measurements at Room Temperature, a.c. Parameters	22
3(a)	Electrical Measurements at High Temperature	25
3(b)	Electrical Measurements at Low Temperature	29
4	Parameter Drift Values	46
5(a)	Conditions for Burn-in High Temperature Reverse Bias, N-Channels	47
5(b)	Conditions for Burn-in High Temperature Reverse Bias, P-Channels	47
5(c)	Conditions for Burn-in Dynamic	48
6	Electrical Measurements on Completion of Environmental Tests and at Intermediate Points and on Completion of Endurance Testing	52

FIGURES

1	Not applicable	
2	Physical Dimensions	7
3(a)	Pin Assignment	11
3(b)	Truth Table	12
3(c)	Circuit Schematic	13
3(d)	Functional Diagram	14
3(e)	Input Protection Network	14
4	Circuits for Electrical Measurements	33
5(a)	Electrical Circuit for Burn-in High Temperature Reverse Bias, N-Channels	49
5(b)	Electrical Circuit for Burn-in High Temperature Reverse Bias, P-Channels	49
5(c)	Electrical Circuit for Burn-in Dynamic	50
APPE	NDICES (Applicable to specific Manufacturers only)	
'A'	Agreed Deviations for STMicroelectronics (F)	54

1. <u>GENERAL</u>

1.1 <u>SCOPE</u>

This specification details the ratings, physical and electrical characteristics, test and inspection data for a silicon monolithic CMOS 4 x 4 Multiport Register, having fully buffered 3-state outputs, based on Type 40208B. It shall be read in conjunction with ESA/SCC Generic Specification No. 9000, the requirements of which are supplemented herein.

1.2 COMPONENT TYPE VARIANTS

Variants of the basic type integrated circuits specified herein, which are also covered by this specification, are given in Table 1(a).

1.3 MAXIMUM RATINGS

The maximum ratings, which shall not be exceeded at any time during use or storage, applicable to the integrated circuits specified herein, are as scheduled in Table 1(b).

Maximum ratings shall only be exceeded during testing to the extent specified in this specification and when stipulated in Test Methods and Procedures of the applicable ESA/SCC Generic Specification.

1.4 PARAMETER DERATING INFORMATION (FIGURE 1)

Not applicable.

1.5 PHYSICAL DIMENSIONS

As per Figure 2.

1.6 PIN ASSIGNMENT

As per Figure 3(a).

- 1.7 <u>TRUTH TABLE</u> As per Figure 3(b).
- 1.8 <u>CIRCUIT SCHEMATIC</u> As per Figure 3(c).
- 1.9 FUNCTIONAL DIAGRAM

As per Figure 3(d).

1.10 HANDLING PRECAUTIONS

These devices are susceptible to damage by electrostatic discharge. Therefore, suitable precautions shall be employed for protection during all phases of manufacture, testing, packaging, shipment and any handling. These components are catagorised as Class 1 with a Minimum Critical Path Failure Voltage of 400Volts.

1.11 INPUT PROTECTION NETWORK

Double diode protection shall be incorporated into each input as shown in Figure 3(e).

6

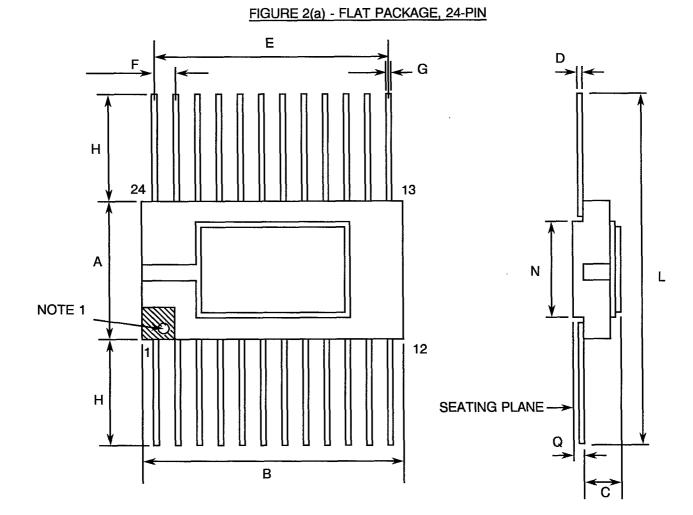
PAGE

TABLE 1(a) - TYPE VARIANTS

VARIANT	CASE	FIGURE	LEAD MATERIAL AND/OR FINISH
01	FLAT	2(a)	G2 or G8
02	FLAT	2(a)	G4
03	D.I.L.	2(b)	G2 or G8
04	D.I.L.	2(b)	G4
07	CHIP CARRIER	2(c)	2
08	SO CERAMIC	2(d)	G2
09	SO CERAMIC	2(d)	G4

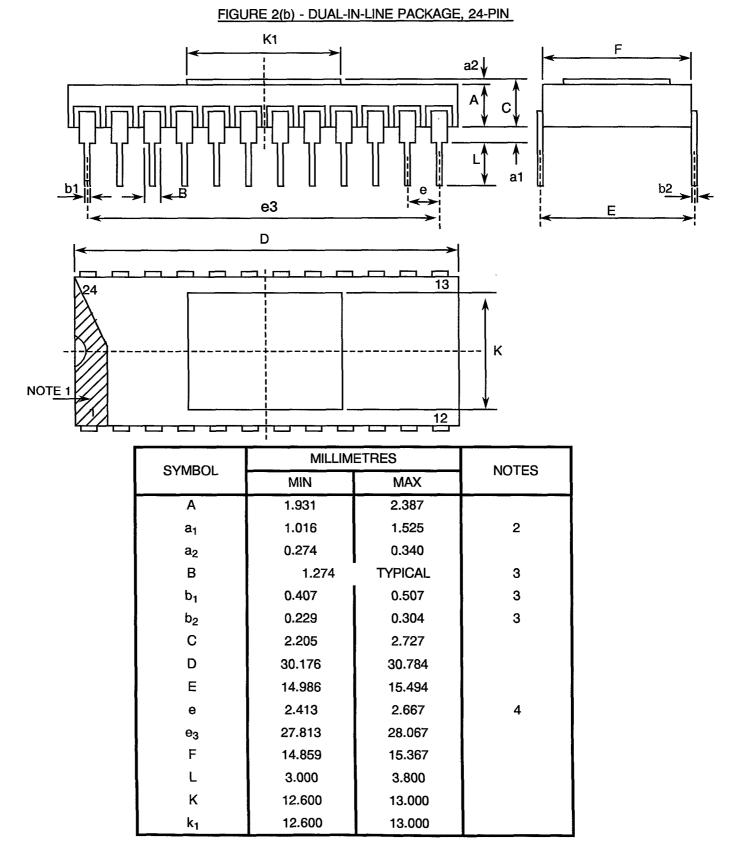
TABLE 1(b) - MAXIMUM RATINGS

NO.	CHARACTERISTICS	SYMBOL	MAXIMUM RATINGS	UNIT	REMARKS
1	Supply Voltage	V _{DD}	-0.5 to +18	V	Note 1
2	Input Voltage	V _{IN}	-0.5 to V _{DD} + 0.5	V	Note 2 Power on
3	D.C. Input Current	± I _{IN}	10	mA	-
4	D.C. Output Current	± I _O	10	mA	Note 3
5	Device Dissipation	PD	200	mWdc	Per Package
6	Output Dissipation	P _{DSO}	100	mWdc	Note 4
7	Operating Temperature Range	Т _{ор}	-55 to +125	°C	-
8	Storage Temperature Range	T _{stg}	-65 to +150	°C	-
9	Soldering Temperature For FP and DIP For CCP	T _{sol}	+ 300 + 245	°C	Note 5 Note 6


NOTES

- 1. Device is functional from +3V to +15V with reference to V_{SS}.
- V_{DD} + 0.5V should not exceed + 18V.
 The maximum output current of any single output.
- 4. The maximum power dissipation of any single output.
- 5. Duration 10 seconds maximum at a distance of not less than 1.5mm from the device body and the same lead shall not be resoldered until 3 minutes have elapsed.
- 6. Duration 30 seconds maximum and the same terminal shall not be resoldered until 3 minutes have elapsed.

ISSUE 2


FIGURE 2 - PHYSICAL DIMENSIONS

	MILLIMETRES		NOTES	
SYMBOL	MIN	MAX	NUTES	
A	10.70	11.30		
В	15.30	15.70		
С	1.45	1.90		
D	0.23	0.30		
E	13.84	14.10		
F	1.22	1.32	4	
G	0.45	0.55	3	
н	7.25	8.25		
L	25.00	28.00		
N	7.00	TYPICAL		
Q	0.45	0.55	2	

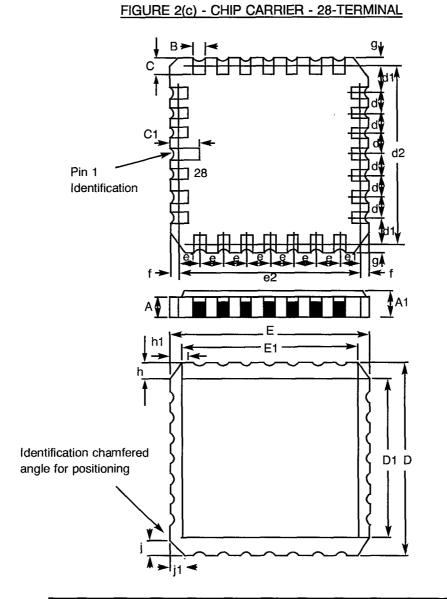


FIGURE 2 - PHYSICAL DIMENSIONS (CONTINUED)

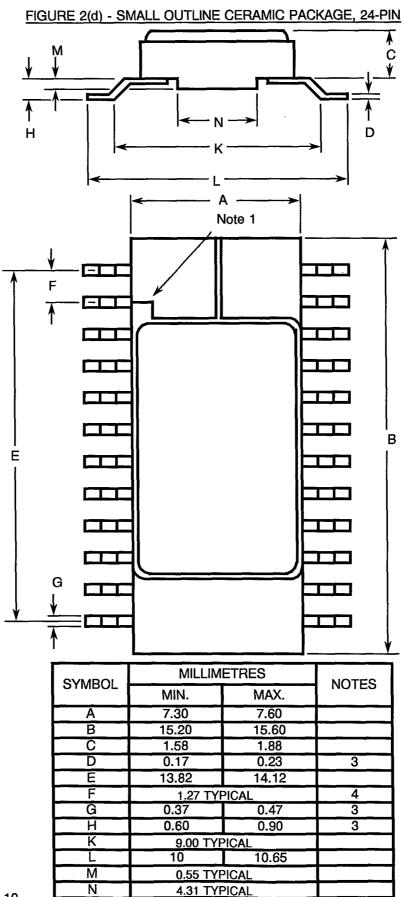
FIGURE 2 - PHYSICAL DIMENSIONS (CONTINUED)

DIMENSIONS	MILLIM	ETRES	NOTES
DIMENSIONS	MIN	MAX	NOTEO
A A1 B C C ₁	1.14 1.63 0.55 1.06 1.91	1.95 2.36 0.72 1.47 2.41	3 3
D D1 d, d1 d2 E	8.67 7.21 1.27 7.62 8.67	9.09 7.52 TYPICAL TYPICAL 9.09	4
E1 e, e1 e2	7.21 1.27 7.62	7.52 TYPICAL TYPICAL	4
f, g h, h1 j, j1	- 1.01 0.51	0.76 TYPICAL TYPICAL	6 5

FIGURE 2 - PHYSICAL DIMENSIONS (CONTINUED)

NOTES TO FIGURES 2(a) TO 2(d) INCLUSIVE

1. Index area; a notch, letter, metallised tab or dot shall be located adjacent to Pin 1 or 2 and shall be within the shaded area shown.


For chip carrier packages the index shall be as defined in Figure 2(c).

For SO packages, a dot shall also be located adjacent to Pin 1 on the bottom of the package.

- 2. The dimension shall be measured from the seating plane to the base plane.
- 3. All leads or terminals.
- 4. 24 pin packages : 22 spaces 28 terminal packages : 16 spaces
- 5. Index corner only.
- 6. Three non-index corners.

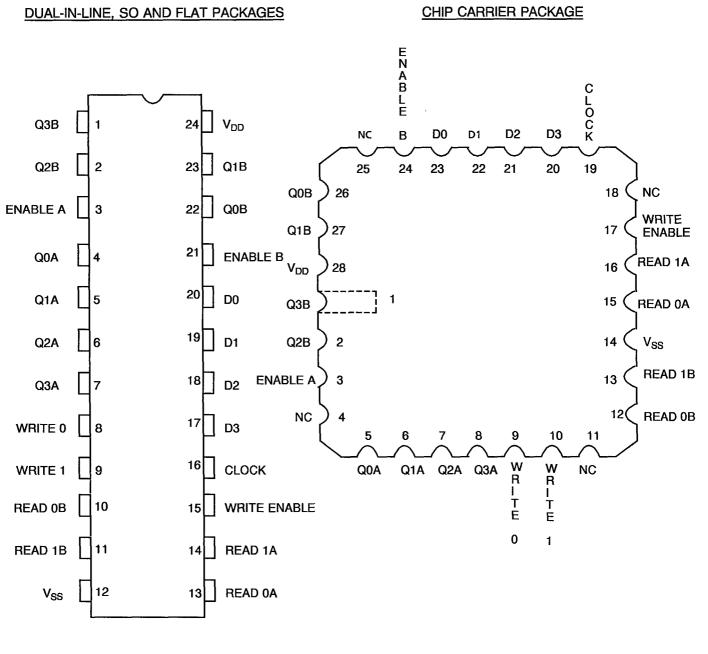


FIGURE 2 - PHYSICAL DIMENSIONS (CONTINUED)

	ESA/SCC Detail Specification No. 9301/009	Rev. 'C'	PAGE 11 ISSUE 2
--	--	----------	--------------------

FIGURE 3(a) - PIN ASSIGNMENT

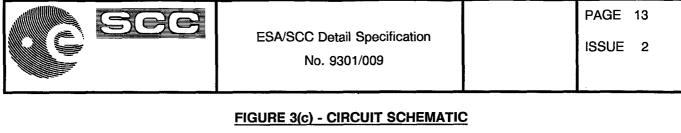
TOP VIEW

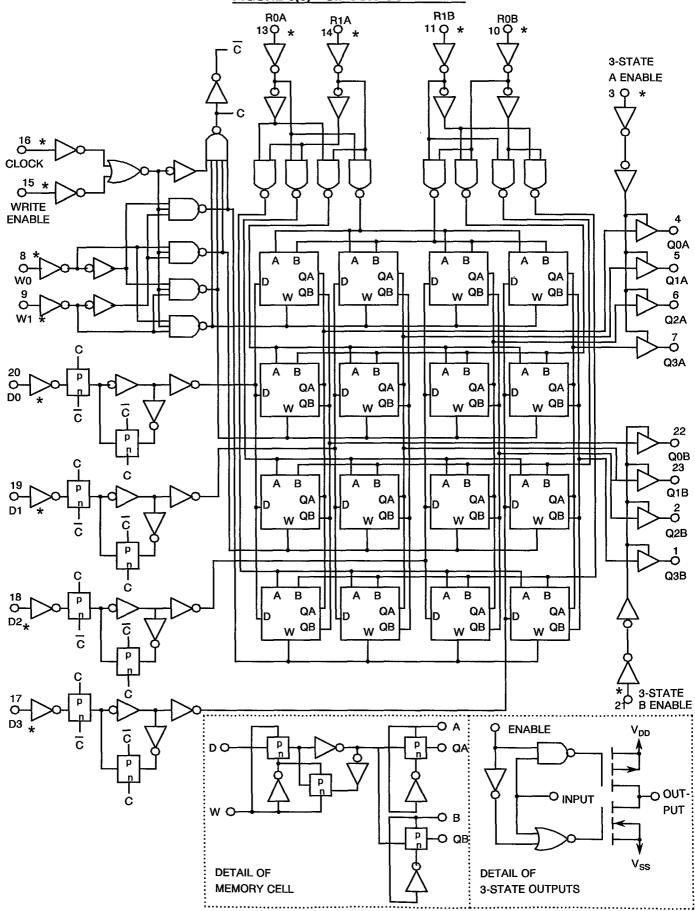
TOP VIEW

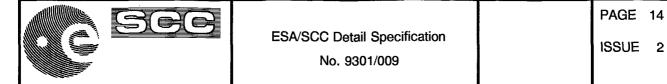
FLAT PACKAGE, SO AND DUAL-IN-LINE TO CHIP CARRIER PIN ASSIGNMENT

FLAT PACKAGE, SO AND DUAL-IN-LINE PIN OUTS	1	2	3	4	5	6	7	8	9	10	11	12
CHIP CARRIER PIN OUTS	1	2	З	5	6	7	8	9	10	12	13	14
FLAT PACKAGE, SO AND DUAL-IN-LINE PIN OUTS	13	14	15	16	17	18	19	20	21	22	23	24
CHIP CARRIER PIN OUTS	15	16	17	19	20	21	22	23	24	26	27	28

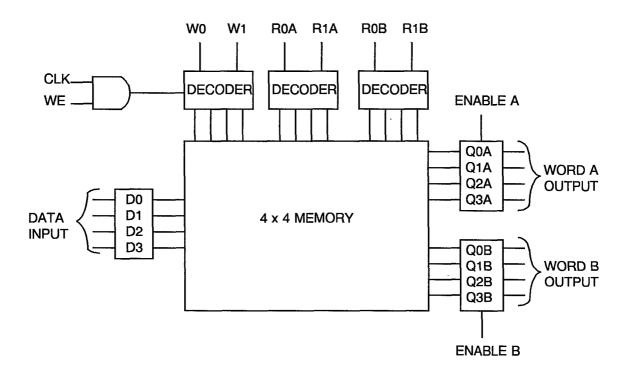
ISSUE 2


FIGURE 3(b) - TRUTH TABLE


CLOCK	WRITE ENABLE	WRITE 1	WRITE 0	READ 1A	READ 0A	READ 1B	READ 0B	ENABLE A	ENABLE B	D _n	Q _{nA}	Q _{nB}
	Н	S1	S2	S1	S2	S1	S2	н	н	Н	Н	н
	н	S1	S2	S1	S2	S1	S2	, H	н	L	L	L
х	х	х	х	х	х	х	х	L	L	х	z	z
	н	L	L	L	н	н	L	н	н	D _n to Word 0	Word 1 out	Word 2 out
	L	L	L	L	н	н	L	Н	Н	Word 0 not Altered	Word 1 out	Word 2 out
x	×	x	x	н	L	L	н	н	н	х	Word 2 out	Word 1 out
	х	x	x	х	x	x	х	Н	Н	х	NC	NC


NOTES

Logic Level Definitions: L = Low Level, H = High Level, X = Don't Care, Z = High Impedance S1 and S2 refer to input states of either H or L. 1.


2.

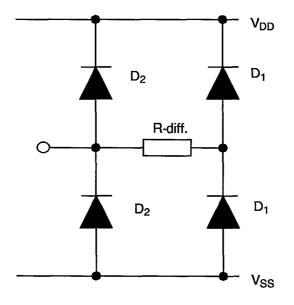


FIGURE 3(d) - FUNCTIONAL DIAGRAM

FIGURE 3(e) - INPUT PROTECTION NETWORK

PAGE 14

2. APPLICABLE DOCUMENTS

The following documents form part of this specification and shall be read in conjunction with it:-

- (a) ESA/SCC Generic Specification No. 9000 for Integrated Circuits.
- (b) MIL-STD-883, Test Methods and Procedures for Micro-electronics.

3. TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS

For the purpose of this specification, the terms, definitions, abbreviations, symbols and units specified in ESA/SCC Basic Specification No. 21300 shall apply. In addition, the following abbreviations are used:

- V_{IC} = Input Clamp Voltage
- P_{DSO} = Single Output Power Dissipation
- CKT = Circuit
- IOZ = Output Leakage Current Third State
- t_{PHZ} = Propagation Delay, High Output to High Impedance
- t_{PZH} = Propagation Delay, High Impedance to High Output
- t_{PLZ} = Propagation Delay, Low Output to High Impedance
- t_{PZL} = Propagation Delay, High Impedance to Low Output

4. **REQUIREMENTS**

4.1 <u>GENERAL</u>

The complete requirements for procurement of the integrated circuits specified herein are stated in this specification and ESA/SCC Generic Specification No. 9000 for Integrated Circuits. Deviations from the Generic Specification, applicable to this specification only, are listed in Para. 4.2.

Deviations from the applicable Generic Specification and this Detail Specification, formally agreed with specific Manufacturers on the basis that the alternative requirements are equivalant to the ESA/SCC requirement and do not affect the components' reliability, are listed in the appendices attached to this specification.

4.2 DEVIATIONS FROM GENERIC SPECIFICATION

4.2.1 Deviations from Special In-process Controls

None.

- 4.2.2 <u>Deviations from Final Production Tests (Chart II)</u> None.
- 4.2.3 Deviations from Burn-in Tests (Chart III)
 - 4.2.3.1 Deviations from High Temperature Reverse Bias (H.T.R.B.)

Prior to operating power burn-in, a high temperature reverse bias (H.T.R.B.) screen at +125°C shall be added for the N-Channel and then for the P-Channel in accordance with Tables 5(a) and 5(b) of this specification. Each exposure to H.T.R.B. shall be 72 hours and Table 4 Parameter Drift Values shall be applied at 0 and 144 hours.

4.2.4 <u>Deviations from Qualification, Environmental and Endurance Tests (Chart IV)</u> None.

4.2.5 Deviations from Lot Acceptance Tests (Chart V)

None.

4.3 MECHANICAL REQUIREMENTS

4.3.1 Dimension Check

The dimensions of the integrated circuits specified herein shall be checked. They shall conform to those shown in Figure 2.

4.3.2 Weight

The maximum weight of the integrated circuits specified herein shall be 4.25 grammes for the dual-in-line package, 1.55 grammes for the flat package, 1.1 grammes for the SO package and 0.79 grammes for the chip carrier package.

4.4 MATERIALS AND FINISHES

The materials shall be as specified herein. Where a definite material is not specified, a material which will enable the integrated circuits specified herein to meet the performance requirements of this specification shall be used. Acceptance or approval of any constituent material does not guarantee acceptance of the finished product.

4.4.1 <u>Case</u>

The case shall be hermetically sealed and have a metal body with hard glass seals or a ceramic body and the lids shall be welded, brazed or preform-soldered.

4.4.2 Lead Material and Finish

For dual-in-line and flat packages, the material shall be Type 'G' with either Type '4' or Type '2 or 8' finish in accordance with ESA/SCC Basic Specification No. 23500. For chip carrier packages the finish shall be Type '2' in accordance with ESA/SCC Basic Specification No. 23500. For SO ceramic packages, the material shall be Type 'G' with either Type '2' or Type '4' finish in accordance with ESA/SCC Basic Specification No. 23500. (See Table 1(a) for Type Variants).

4.5 <u>MARKING</u>

4.5.1 General

The marking of all components delivered to this specification shall be in accordance with the requirements of ESA/SCC Basic Specification No. 21700. Each component shall be marked in respect of:-

- (a) Lead Identification.
- (b) The SCC Component Number.
- (c) Traceability Information.

4.5.2 Lead Identification

For dual-in-line, flat and SO packages, an index shall be located at the top of the package in the position defined in Note 1 to Figure 2 or, alternatively, a tab may be used to identify Pin No. 1. The pin numbering must be read with the index or tab on the left-hand side. For chip carrier packages, the index shall be as defined by Figure 2(c).

4.5.3 The SCC Component Number

Each component shall bear the SCC Component Number which shall be constituted and marked as follows:

	<u>930100901</u>	3 T
Detail Specification Number		
Type Variant, as applicable		

Testing Level (B or C, as appropriate)-

4.5.4 <u>Traceability Information</u>

Each component shall be marked in respect of traceability information in accordance with the requirements of ESA/SCC Basic Specification No. 21700.

4.6 ELECTRICAL MEASUREMENTS

4.6.1 Electrical Measurements at Room Temperature

The parameters to be measured in respect of electrical characteristics are scheduled in Table 2. Unless otherwise specified, the measurements shall be performed at $T_{amb} = +22 \pm 3$ °C.

4.6.2 Electrical Measurements at High and Low Temperatures

The parameters to be measured at high and low temperatures are scheduled in Table 3. The measurements shall be performed at $T_{amb} = +125(+0.5)$ °C and -55(+5.0) °C respectively.

4.6.3 Circuits for Electrical Measurements

Circuits and functional test sequence for use in performing electrical measurements listed in Tables 2 and 3 of this specification are shown in Figure 4.

4.7 BURN-IN TESTS

4.7.1 Parameter Drift Values

The parameter drift values applicable to burn-in are specified in Table 4 of this specification. Unless otherwise stated, measurements shall be performed at $+22\pm3$ °C. The parameter drift values (Δ) applicable to the parameters scheduled, shall not be exceeded. In addition to these drift value requirements, the appropriate limit value specified for a given parameter in Table 2 shall not be exceeded.

4.7.2 Conditions for H.T.R.B. and Burn-in

The requirements for H.T.R.B. and Burn-in are specified in Section 7 of ESA/SCC Generic Specification No. 9000. The conditions for H.T.R.B. and Burn-in shall be as specified in Tables 5(a), 5(b) and 5(c) of this specification.

4.7.3 Electrical Circuits for H.T.R.B and Burn-in

Circuits for use in performing the H.T.R.B. and Burn-in tests are shown in Figures 5(a), 5(b) and 5(c) of this specification.

ISSUE 2

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - d.c. PARAMETERS

NO.	CHARACTERISTICS	SYMBOL	TEST METHOD	TEST	TEST CONDITIONS (PINS UNDER TEST	LIM	ITS	UNIT
NU.	CHARACTERISTICS	STMBUL	MIL-STD 883	FIG.	D/F = DIP AND FP C = CCP)	MIN	MAX	
1	Functional Test	-	-	4(a)	Verify Truth Table without Load. V _{DD} = 3Vdc, V _{SS} = 0Vdc Notes 1 and 2	-	-	-
2	Functional Test	-	-	4(a)	Verify Truth Table without Load. $V_{DD} = 15Vdc, V_{SS} = 0Vdc$ Notes 1 and 2	-	-	-
3 to 25	Quiescent Current	IDD	3005	4(a)	$V_{IL} = 0Vdc, V_{IH} = 15Vdc$ $V_{DD} = 15Vdc, V_{SS} = 0Vdc$ Note 3 (Pin D/F 24) (Pin C 28)	-	1.0	μА
26 to 39	Input Current Low Level	կլ	3009	4(b)	$\begin{array}{l} V_{\rm IN} \; (\text{Under Test}) \; = \; 0 \text{Vdc} \\ \text{All Other Inputs:} \\ V_{\rm IN} \; = \; 15 \text{Vdc} \\ V_{\rm DD} \; = \; 15 \text{Vdc}, \; V_{\rm SS} \; = \; 0 \text{Vdc} \\ (\text{Pins D/F } 3-8-9-10-11-13-14-15-16-17-18-19-20-21}) \\ (\text{Pins C } 3-9-10-12-13-15-16-17-19-20-21-22-23-24}) \end{array}$	-	-50	nA
40 to 53	Input Current High Level	կլլ	3010	4(c)	$\begin{array}{l} V_{IN} \; (\text{Under Test}) \; = \; 15 \text{Vdc} \\ \text{All Other Inputs:} \\ V_{IN} \; = \; 0 \text{Vdc} \\ V_{DD} \; = \; 15 \text{Vdc}, \; V_{SS} \; = \; 0 \text{Vdc} \\ (\text{Pins D/F } 3 - 8 - 9 - 10 - 11 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 21) \\ (\text{Pins C } 3 - 9 - 10 - 12 - 13 - 15 - 16 - 17 - 19 - 20 - 21 - 22 - 23 - 24) \end{array}$	-	50	nA
54 to 61	Output Voltage Low Level	V _{OL}	3007	4(d)	$V_{IN} \text{ (Write Enable & Enable)} = 15 \text{Vdc}$ $Clock \text{ Input from Low to}$ $High$ $All \text{ Other Inputs:}$ $V_{IN} = 0 \text{Vdc}$ $V_{OUT} = \text{ Open}$ $V_{DD} = 15 \text{Vdc}, V_{SS} = 0 \text{Vdc}$ (Pins D/F 1-2-4-5-6-7-22-23) (Pins C 1-2-5-6-7-8-26-27)	-	0.05	V

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - d.c. PARAMETERS (CONT'D)

NO.	CHARACTERISTICS	SYMBOL	TEST METHOD	TEST	TEST CONDITIONS (PINS UNDER TEST	LIM	ITS	UNIT
NO.	CHARACTERISTICS	STMBOL	MIL-STD 883	FIG.	D/F = DIP AND FP C = CCP)	MIN	МАХ	UNIT
62 to 69	Output Voltage High Level	V _{OH}	3006	4(e)	$V_{IN} (Write/Read) = 0Vdc$ Clock Input from Low to High All Other Inputs: $V_{IN} = 15Vdc$ $V_{OUT} = Open$ $V_{DD} = 15Vdc, V_{SS} = 0Vdc$ (Pins D/F 1-2-4-5-6-7-22- 23) (Pins C 1-2-5-6-7-8-26-27)	14.95		V
70 to 77	Output Drive Current N-Channel	I _{OL1}	-	4(f)	$V_{IN} \text{ (Write Enable & Enable) = 5Vdc}$ $Clock \text{ Input from Low to}$ $High$ $All \text{ Other Inputs:}$ $V_{IN} = 0Vdc$ $V_{OUT} = 0.4Vdc$ $V_{DD} = 5Vdc, V_{SS} = 0Vdc$ $Note 4$ $(Pins D/F 1-2-4-5-6-7-22-23)$ $(Pins C 1-2-5-6-7-8-26-27)$	0.51	-	mA
78 to 85	Output Drive Current N-Channel	I _{OL2}	-	4(f)	$V_{IN} \text{ (Write Enable \& Enable)} = 15 \text{Vdc}$ $Clock \text{ Input from Low to}$ $High$ $All \text{ Other Inputs:}$ $V_{IN} = 0 \text{Vdc}$ $V_{OUT} = 1.5 \text{Vdc}$ $V_{DD} = 15 \text{Vdc}, V_{SS} = 0 \text{Vdc}$ $Note 4$ $(\text{Pins D/F 1-2-4-5-6-7-22-23})$ $(\text{Pins C 1-2-5-6-7-8-26-27})$	3.4	-	mA
86 to 93	Output Drive Current P-Channel	I _{OH1}	-	4(g)	$V_{IN} (Write/Read) = 0Vdc$ Clock Input from Low to High All Other Inputs: $V_{IN} = 5Vdc$ $V_{OUT} = 4.6Vdc$ $V_{DD} = 5Vdc, V_{SS} = 0Vdc$ Note 4 (Pins D/F 1-2-4-5-6-7-22-23) (Pins C 1-2-5-6-7-8-26-27)	-0.51	-	mA

PAGE 20

ISSUE 2

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - d.c. PARAMETERS (CONT'D)

NO.	CHARACTERISTICS	SYMBOL	TEST METHOD	TEST	TEST CONDITIONS (PINS UNDER TEST	LIM	ITS	UNIT
NO.	CHARACTERISTICS	STMBOL	MIL-STD 883	FIG.	D/F = DIP AND FP C = CCP)	MIN	MAX	UNIT
94 to 101	Output Drive Current P-Channel	I _{OH2}	-	4(g)	$V_{IN} (Write/Read) = 0Vdc$ Clock Input from Low to High All Other Inputs: $V_{IN} = 15Vdc$ $V_{OUT} = 13.5Vdc$ $V_{DD} = 15Vdc, V_{SS} = 0Vdc$ Note 4 (Pins D/F 1-2-4-5-6-7-22- 23) (Pins C 1-2-5-6-7-8-26-27)	-3.4	-	mA
102 to 109	Output Leakage Current Third State (1)	l _{OZ1}	-	4(h)		-	0.4	μA
110 to 117	Output Leakage Current Third State (2)	I _{OZ2}	-	4(h)		-	-0.4	μA
118	Input Voltage Low Level (Noise Immunity) (Functional Test)	V _{IL1}	-	- 4(a)	$V_{IL} = 1.5Vdc$ $V_{IH} = 3.5Vdc$ $V_{DD} = 5 Vdc, V_{SS} = 0Vdc$ Note 5 (Pins D/F 1-2-4-5-6-7-22-	4.5	-	v
	Input Voltage High Level (Noise Immunity) (Functional Test)	V _{IH1}	-	-τ(α)	(Pins D7 1-2-4-3-0-7-22- 23) (Pins C 1-2-5-6-7-8-26-27)	-	0.5	v

ISSUE 2

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - d.c. PARAMETERS (CONT'D)

NO.	CHARACTERISTICS	SYMBOL	TEST METHOD	TEST	TEST CONDITIONS (PINS UNDER TEST	LIM	ITS	UNIT
NU.	CHARACTERISTICS	STNBUL	MIL-STD 883	FIG.	D/F = DIP AND FP C = CCP)	MIN	MAX	
119	Input Voltage Low Level (Noise Immunity) (Functional Test)	V _{IL2}	-	4(-)	$V_{IL} = 4Vdc$ $V_{IH} = 11Vdc$ $V_{DD} = 15Vdc, V_{SS} = 0Vdc$ Note 5 (Disc D/F 1 0 4 5 6 7 00	13.5	-	v
	Input Voltage High Level (Noise Immunity) (Functional Test)	V _{IH2}	-	4(a)	(Pins D/F 1-2-4-5-6-7-22- 23) (Pins C 1-2-5-6-7-8-26-27)	-	1.5	V
120	Threshold Voltage N-Channel	V _{THN}	-	4(i)	Clock Input at Ground All Other Inputs: $V_{IN} = 5Vdc$ $V_{DD} = 5Vdc, I_{SS} = -10\mu A$ (Pin D/F 12) (Pin C 14)	-0.7	-3.0	V
121	Threshold Voltage P-Channel	V _{THP}	-	4(j)	Clock Input at Ground All Other Inputs: $V_{IN} = -5Vdc$ $V_{SS} = -5Vdc$, $I_{DD} = 10\mu A$ (Pin D/F 24) (Pin C 28)	0.7	3.0	V
122 to 135	Input Clamp Voltage (to V _{SS})	V _{IC1}	-	4(k)	$\begin{split} &I_{IN} \text{ (Under Test)} = -100 \mu A \\ &V_{DD} = \text{ Open, } V_{SS} = 0 \text{Vdc} \\ &All \text{ Other Pins Open} \\ &(\text{Pins D/F 3-8-9-10-11-13-14-15-16-17-18-19-20-21}) \\ &(\text{Pins C 3-9-10-12-13-15-16-17-19-20-21-22-23-24}) \end{split}$	-	-2.0	V
136 to 149	Input Clamp Voltage (to V _{DD})	V _{IC2}	-	4(I)	$V_{IN} \text{ (Under Test)} = 6 \text{Vdc} \\ V_{SS} = \text{Open}, R = 30 \text{k} \Omega; \\ \text{(Pins D/F 3-8-9-10-11-13-14-15-16-17-18-19-20-21)} \\ \text{(Pins C 3-9-10-12-13-15-16-17-19-20-21-22-23-24)} \\ \end{array}$	3.0	-	V

ISSUE 2

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - a.c. PARAMETERS

NO.	CHARACTERISTICS	SYMBOL	TEST METHOD	TEST	TEST CONDITIONS (PINS UNDER TEST	LIM	ITS	UNIT
NO.	CHARACTERISTICS	STMBOL	MIL-STD 883	FIG.	D/F = DIP AND FP C = CCP)	MIN	MAX	UNIT
150 to 163	Input Capacitance	C _{IN}	3012	4(m)	$V_{IN}(Not under Test) = 0Vdc \\ V_{DD} = V_{SS} = 0Vdc \\ Note 6 \\ (Pins D/F 3-8-9-10-11-13-14-15-16-17-18-19-20-21) \\ (Pins C 3-9-10-12-13-15-16-17-19-20-21-22-23-24) \\ \end{cases}$	-	7.5	pF
164	Propagation Delay Low to High (Clock to Output)	₽LH	3003	4(n)	$ \begin{array}{l} V_{IN} \; (\text{Under Test}) \; = \; \text{Pulse} \\ \text{Generator} \\ V_{IH} \; = \; 5 \text{Vdc}, \; V_{IL} \; = \; 0 \text{Vdc} \\ V_{DD} \; = \; 5 \text{Vdc}, \; V_{SS} \; = \; 0 \text{Vdc} \\ \text{Notes 7 \; and 8} \\ \hline \frac{\text{Pins } D/F}{16 \; \text{to 1}} \; \frac{\text{Pins } C}{19 \; \text{to 1}} \end{array} $	-	670	ns
165	Propagation Delay High to Low (Clock to Output)	ťΡΗL	3003	4(n)	$ \begin{array}{l} V_{IN} \; (Under \; Test) \; = \; Pulse \\ Generator \\ V_{IH} \; = \; 5Vdc, \; V_{IL} \; = \; 0Vdc \\ V_{DD} \; = \; 5Vdc, \; V_{SS} \; = \; 0Vdc \\ Notes \; 7 \; and \; 8 \\ \hline \frac{Pins \; D/F}{16 \; to \; 1} \frac{Pins \; C}{19 \; to \; 1} \end{array} $	-	670	ns
166	Propagation Delay High Impedance to Low Output	^t PZL	3003	4(o)	$\begin{array}{l} V_{IN} \mbox{ (Under Test)} = \mbox{Pulse} \\ \mbox{Generator} \\ V_{IH} = 5 \mbox{Vdc}, \mbox{V}_{IL} = 0 \mbox{Vdc} \\ V_{DD} = 5 \mbox{Vdc}, \mbox{V}_{SS} = 0 \mbox{Vdc} \\ \mbox{Notes 7 and 8} \\ \mbox{Pins D/F} & \mbox{Pins C} \\ \mbox{21 to 2} & \mbox{24 to 2} \end{array}$	-	210	ns
167	Propagation Delay Low Output to High Impedance	^t PLZ	3003	4(0)	$\begin{array}{l} V_{IN} \; (Under \; Test) \; = \; Pulse \\ Generator \\ V_{IH} \; = \; 5Vdc, \; V_{IL} \; = \; 0Vdc \\ V_{DD} \; = \; 5Vdc, \; V_{SS} \; = \; 0Vdc \\ Notes \; 7 \; and \; 8 \\ \underline{Pins \; D/F} \; \; \underbrace{Pins \; C}_{21 \; to \; 2} \; \underbrace{Pins \; C}_{24 \; to \; 2} \end{array}$	-	210	ns
168	Propagation Delay High Impedance to High Output	^t PZH	3003	4(0)	$\begin{array}{l} V_{IN} \mbox{ (Under Test)} = \mbox{Pulse} \\ \mbox{Generator} \\ V_{IH} = 5 \mbox{Vdc}, \mbox{V}_{IL} = 0 \mbox{Vdc} \\ V_{DD} = 5 \mbox{Vdc}, \mbox{V}_{SS} = 0 \mbox{Vdc} \\ \mbox{Notes 7 and 8} \\ \hline \mbox{Pins D/F} & \mbox{Pins C} \\ \hline \mbox{21 to 2} & \mbox{24 to 2} \end{array}$	-	150	ns

ISSUE 2

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - a.c. PARAMETERS (CONT'D)

NO.	CHARACTERISTICS	SYMBOL	TEST METHOD	TEST	TEST CONDITIONS (PINS UNDER TEST	LIM	ITS	UNIT
NU.	CHARACTERIS 1103	STNIDUL	MIL-STD 883	FIG.	D/F = DIP AND FP C = CCP)	MIN	МАХ	UNIT
169	Propagation Delay High Output to High Impedance	tрнz	3003	4(o)	$ \begin{array}{l} V_{IN} \; (\text{Under Test}) \; = \; \text{Pulse} \\ \text{Generator} \\ V_{IH} \; = \; 5 \text{Vdc}, \; V_{IL} \; = \; 0 \text{Vdc} \\ V_{DD} \; = \; 5 \text{Vdc}, \; V_{SS} \; = \; 0 \text{Vdc} \\ \text{Notes 7 and 8} \\ \underline{\text{Pins D/F}} \; \; \underline{\text{Pins C}} \\ \underline{21 \text{ to 2}} \; \; 24 \text{ to 2} \end{array} $	-	150	ns
170	Transition Time Low to High	tтıн	3004	4(n)		-	150	ns
171	Transition Time High to Low	t _{THL}	3004	4(n)	$\begin{array}{l} V_{\text{IN}} \; (\text{Under Test}) \; = \; \text{Pulse} \\ \text{Generator} \\ V_{\text{IN}}(\text{All Other Inputs}) \\ = \; 5 \text{Vdc} \\ V_{\text{DD}} = \; 5 \text{Vdc}, \; V_{\text{SS}} \; = \; 0 \text{Vdc} \\ \text{Note 7} \\ (\text{Pin D/F 1}) \\ (\text{Pin C 1}) \end{array}$	-	150	ns
172	Maximum Clock Frequency	f _(CL)	-	-	Clock = Pulse Generator V_{DD} = 5Vdc, V_{SS} = 0Vdc Notes 7 and 9 (Pin D/F 16) (Pin C 19)	1.5	-	MHz

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE (CONT'D)

NOTES

- 1. GO-NO-GO Test, each pattern of Test Table 4(a).
 - $V_{OH} \ge V_{DD} 0.5 V dc$ $V_{OL} \le 0.5 V dc$
- 2. Maximum time to output comparator strobe 300µsec.
- 3. Test each pattern of Table 4(a).
- 4. Interchange of forcing and measuring function is permitted.
- 5. This is performed as a Functional Test in which extreme V_{IN} conditions are applied and output voltage is measured.
- Measurement performed on a sample basis LTPD 7, or less, with a Capacitance Bridge connected between each input under test and V_{SS}, only for Lots where LAT Level 2 is to be performed. (For LTPD sampling plan, see Annexe I of ESA/SCC 9000).
- 7. Measurement performed on a sample basis, LTPD 7 or less, (see Annexe I of ESA/SCC 9000).
- 8. Before commencement of test, load all stages with Low or High in accordance with Test Table 4(a) and measure propagation time at change.
- 9. A pulse, having the following conditions, shall be applied to the clock input: $V_P = 0Vdc$ to $V_{DD}Vdc$. Maximum clock frequency $f_{(CL)}$ requirement is considered met if proper output stage changes occur with the pulse repetition rate set to that given in the "Limits" column.

ISSUE 2

TABLE 3(a) - ELECTRICAL MEASUREMENTS AT HIGH TEMPERATURE, + 125(+0-5) °C

NO.	CHARACTERISTICS	SYMBOL	TEST METHOD	TEST	TEST CONDITIONS (PINS UNDER TEST	LIM	ITS	UNIT
NU.	CHARACTERISTICS	STMBUL	MIL-STD 883	FIG.	D/F = DIP AND FP C = CCP)	MIN	MAX	UNIT
1	Functional Test	-	-	4(a)	Verify Truth Table without Load. V _{DD} = 3Vdc, V _{SS} = 0Vdc Notes 1 and 2	-	-	-
2	Functional Test	-	-	4(a)	Verify Truth Table without Load. V _{DD} = 15Vdc, V _{SS} = 0Vdc Notes 1 and 2	-	-	-
3 to 25	Quiescent Current	IDD	3005	4(a)	$V_{IL} = 0Vdc, V_{IH} = 15Vdc$ $V_{DD} = 15Vdc, V_{SS} = 0Vdc$ Note 3 (Pin D/F 24) (Pin C 28)	-	30	μА
26 to 39	Input Current Low Level	կլ	3009	4(b)	$V_{IN} \text{ (Under Test)} = 0 \text{Vdc}$ All Other Inputs: $V_{IN} = 15 \text{Vdc}$ $V_{DD} = 15 \text{Vdc}, V_{SS} = 0 \text{Vdc}$ (Pins D/F 3-8-9-10-11-13- 14-15-16-17-18-19-20-21) (Pins C 3-9-10-12-13-15- 16-17-19-20-21-22-23-24)	-	-100	nA
40 to 53	Input Current High Level	цн	3010	4(c)	$\begin{array}{l} V_{IN} \; (\text{Under Test}) \; = \; 15 \text{Vdc} \\ \text{All Other Inputs:} \\ V_{IN} \; = \; 0 \text{Vdc} \\ V_{DD} \; = \; 15 \text{Vdc}, \; V_{SS} \; = \; 0 \text{Vdc} \\ (\text{Pins D/F } 3-8-9-10-11-13-14-15-16-17-18-19-20-21}) \\ (\text{Pins C } 3-9-10-12-13-15-16-17-19-20-21-22-23-24}) \end{array}$	-	100	nA
54 to 61	Output Voltage Low Level	V _{OL}	3007	4(d)	$V_{IN} \text{ (Write Enable & Enable)} = 15 \text{Vdc}$ $Clock \text{ Input from Low to}$ $High$ $All \text{ Other Inputs:}$ $V_{IN} = 0 \text{Vdc}$ $V_{OUT} = \text{Open}$ $V_{DD} = 15 \text{Vdc}, V_{SS} = 0 \text{Vdc}$ (Pins D/F 1-2-4-5-6-7-22-23) (Pins C 1-2-5-6-7-8-26-27)	-	0.05	V

ISSUE 2

TABLE 3(a) - ELECTRICAL MEASUREMENTS AT HIGH TEMPERATURE, + 125(+0-5) °C (CONT'D)

	CHARACTERISTICS	SYMBOL	TEST METHOD	TEST	TEST CONDITIONS (PINS UNDER TEST	LIM	ITS	UNIT
NO.	CHARACTERISTICS	STINDUL	MIL-STD 883	FIG.	D/F = DIP AND FP C = CCP)	MIN	MAX	UNIT
62 to 69	Output Voltage High Level	V _{OH}	3006	4(e)	$V_{IN} (Write/Read) = 0Vdc$ Clock Input from Low to High All Other Inputs: $V_{IN} = 15Vdc$ $V_{OUT} = Open$ $V_{DD} = 15Vdc, V_{SS} = 0Vdc$ (Pins D/F 1-2-4-5-6-7-22- 23) (Pins C 1-2-5-6-7-8-26-27)	14.95	-	V
70 to 77	Output Drive Current N-Channel	I _{OL1}	-	4(f)	V_{IN} (Write Enable & Enable) = 5Vdc Clock Input from Low to High All Other Inputs: $V_{IN} = 0Vdc$ $V_{OUT} = 0.4Vdc$ $V_{DD} = 5Vdc, V_{SS} = 0Vdc$ Note 4 (Pins D/F 1-2-4-5-6-7-22- 23) (Pins C 1-2-5-6-7-8-26-27)	0.36	-	mA
78 to 85	Output Drive Current N-Channel	I _{OL2}	-	4(f)	$V_{IN} \text{ (Write Enable & Enable) = 15Vdc}$ Clock Input from Low to High All Other Inputs: $V_{IN} = 0Vdc$ $V_{OUT} = 1.5Vdc$ $V_{DD} = 15Vdc, V_{SS} = 0Vdc$ Note 4 (Pins D/F 1-2-4-5-6-7-22-23) (Pins C 1-2-5-6-7-8-26-27)	2.4	-	mA
86 to 93	Output Drive Current P-Channel	I _{OH1}	-	4(g)	$V_{IN} (Write/Read) = 0Vdc$ Clock Input from Low to High All Other Inputs: $V_{IN} = 5Vdc$ $V_{OUT} = 4.6Vdc$ $V_{DD} = 5Vdc, V_{SS} = 0Vdc$ Note 4 (Pins D/F 1-2-4-5-6-7-22-23) (Pins C 1-2-5-6-7-8-26-27)	-0.36	-	mA

ISSUE 2

TABLE 3(a) - ELECTRICAL MEASUREMENTS AT HIGH TEMPERATURE, + 125(+0-5) °C (CONT'D)

NO.	CHARACTERISTICS	SYMBOL	TEST METHOD	TEST	TEST CONDITIONS (PINS UNDER TEST	LIM	ITS	UNIT
NO.	CHARACTERISTICS	STIVIBUL	MIL-STD 883	FIG.	D/F = DIP AND FP C = CCP)	MIN	MAX	
94 to 101	Output Drive Current P-Channel	I _{OH2}	-	4(g)	$V_{IN} (Write/Read) = 0Vdc$ Clock Input from Low to High All Other Inputs: $V_{IN} = 15Vdc$ $V_{OUT} = 13.5Vdc$ $V_{DD} = 15Vdc, V_{SS} = 0Vdc$ Note 4 (Pins D/F 1-2-4-5-6-7-22- 23) (Pins C 1-2-5-6-7-8-26-27)	-2.4	-	mA
102 to 109	Output Leakage Current Third State (1)	l _{OZ1}	-	4(h)		-	12	μА
110 to 117	Output Leakage Current Third State (2)	I _{OZ2}	-	4(h)		-	-12	μA
118	Input Voltage Low Level (Noise Immunity) (Functional Test)	V _{IL1}	-	4(a)	$V_{IL} = 1.5Vdc$ $V_{IH} = 3.5Vdc$ $V_{DD} = 5 Vdc, V_{SS} = 0Vdc$ Note 5 (Pins D/F 1-2-4-5-6-7-22-	4.5	-	v
	Input Voltage High Level (Noise Immunity) (Functional Test)	V _{IH1}	-	.(u)	(Pins C 1-2-5-6-7-8-26-27)	-	0.5	

ISSUE 2

TABLE 3(a) - ELECTRICAL MEASUREMENTS AT HIGH TEMPERATURE, + 125(+0-5) °C (CONT'D)

NO.	CHARACTERISTICS	SYMBOL	TEST METHOD MIL-STD 883	test Fig.	TEST CONDITIONS (PINS UNDER TEST D/F = DIP AND FP C = CCP)	LIMITS		UNIT
NO.						MIN	МАХ	UNIT
119	Input Voltage Low Level (Noise Immunity) (Functional Test)	V _{IL2}	-	4(2)	$V_{IL} = 4Vdc$ $V_{IH} = 11Vdc$ $V_{DD} = 15Vdc, V_{SS} = 0Vdc$ Note 5	13.5	-	v
	Input Voltage High Level (Noise Immunity) (Functional Test)	V _{IH2}	-	4(a)	(Pins D/F 1-2-4-5-6-7-22- 23) (Pins C 1-2-5-6-7-8-26-27)	-	1.5	v
120	Threshold Voltage N-Channel	V _{THN}	-	4(i)	Clock Input at Ground All Other Inputs: $V_{IN} = 5Vdc$ $V_{DD} = 5Vdc, I_{SS} = -10\mu A$ (Pin D/F 12) (Pin C 14)	-0.3	-3.5	V
121	Threshold Voltage P-Channel	V _{THP}	-	4(j)	Clock Input at Ground All Other Inputs: $V_{IN} = -5Vdc$ $V_{SS} = -5Vdc$, $I_{DD} = 10\mu A$ (Pin D/F 24) (Pin C 28)	0.3	3.5	V

ISSUE 2

TABLE 3(b) - ELECTRICAL MEASUREMENTS AT LOW TEMPERATURE, -55(+5-0) °C

NO.	CHARACTERISTICS	SYMBOL	TEST METHOD MIL-STD 883	test Fig.	TEST CONDITIONS (PINS UNDER TEST D/F = DIP AND FP C = CCP)	LIMITS		UNIT
NU.						MIN	MAX	UNIT
1	Functional Test	-	-	4(a)	Verify Truth Table without Load. V _{DD} = 3Vdc, V _{SS} = 0Vdc Notes 1 and 2	-	-	-
2	Functional Test	-	-	4(a)	Verify Truth Table without Load. V _{DD} = 15Vdc, V _{SS} = 0Vdc Notes 1 and 2	-	-	-
3 to 25	Quiescent Current	IDD	3005	4(a)	$\label{eq:VIL} \begin{array}{l} V_{IL} = 0Vdc, \ V_{IH} = 15Vdc \\ V_{DD} = 15Vdc, \ V_{SS} = 0Vdc \\ Note \ 3 \\ (Pin \ D/F \ 24) \\ (Pin \ C \ 28) \end{array}$	-	1.0	μА
26 to 39	Input Current Low Level	ιL	3009	4(b)	$V_{IN} \text{ (Under Test)} = 0 \text{Vdc}$ All Other Inputs: $V_{IN} = 15 \text{Vdc}$ $V_{DD} = 15 \text{Vdc}, V_{SS} = 0 \text{Vdc}$ (Pins D/F 3-8-9-10-11-13- 14-15-16-17-18-19-20-21) (Pins C 3-9-10-12-13-15- 16-17-19-20-21-22-23-24)	-	-50	nA
40 to 53	Input Current High Level	կ	3010	4(c)	$\begin{array}{l} V_{IN} \; (\text{Under Test}) \; = \; 15 \text{Vdc} \\ \text{All Other Inputs:} \\ V_{IN} \; = \; 0 \text{Vdc} \\ V_{DD} \; = \; 15 \text{Vdc}, \; V_{SS} \; = \; 0 \text{Vdc} \\ (\text{Pins D/F } 3-8-9-10-11-13-14-15-16-17-18-19-20-21}) \\ (\text{Pins C } 3-9-10-12-13-15-16-17-19-20-21-22-23-24}) \end{array}$	-	50	nA
54 to 61	Output Voltage Low Level	V _{OL}	3007	4(d)	$V_{IN} \text{ (Write Enable & Enable)} = 15 \text{Vdc}$ $Clock \text{ Input from Low to}$ $High$ $All \text{ Other Inputs:}$ $V_{IN} = 0 \text{Vdc}$ $V_{OUT} = \text{ Open}$ $V_{DD} = 15 \text{Vdc}, \text{ V}_{SS} = 0 \text{Vdc}$ $(\text{Pins D/F 1-2-4-5-6-7-22-23})$ $(\text{Pins C 1-2-5-6-7-8-26-27})$	-	0.05	V

NOTES: See Page 24.

TABLE 3(b) - ELECTRICAL MEASUREMENTS AT LOW TEMPERATURE, -55(+5-0) °C (CONT'D)

NO.	CHARACTERISTICS	SYMBOL	TEST METHOD MIL-STD 883	test Fig.	TEST CONDITIONS (PINS UNDER TEST D/F = DIP AND FP C = CCP)	LIMITS		UNIT
NU.						MIN	МАХ	UNIT
62 to 69	Output Voltage High Level	V _{OH}	3006	4(e)	$V_{IN} (Write/Read) = 0Vdc$ $Clock Input from Low to$ $High$ $All Other Inputs:$ $V_{IN} = 15Vdc$ $V_{OUT} = Open$ $V_{DD} = 15Vdc, V_{SS} = 0Vdc$ $(Pins D/F 1-2-4-5-6-7-22-23)$ $(Pins C 1-2-5-6-7-8-26-27)$	14.95	-	V
70 to 77	Output Drive Current N-Channel	I _{OL1}	-	4(f)	$V_{IN} \text{ (Write Enable & Enable) = 5Vdc}$ $Clock Input from Low to High$ $All Other Inputs: V_{IN} = 0Vdc$ $V_{OUT} = 0.4Vdc$ $V_{DD} = 5Vdc, V_{SS} = 0Vdc$ $Note 4$ $(Pins D/F 1-2-4-5-6-7-22-23)$ $(Pins C 1-2-5-6-7-8-26-27)$	0.64	-	mA
78 to 85	Output Drive Current N-Channel	I _{OL2}	-	4(f)	$V_{IN} \text{ (Write Enable & Enable) = 15Vdc}$ $Clock Input from Low to$ $High$ $All Other Inputs:$ $V_{IN} = 0Vdc$ $V_{OUT} = 1.5Vdc$ $V_{DD} = 15Vdc, V_{SS} = 0Vdc$ $Note 4$ $(Pins D/F 1-2-4-5-6-7-22-23)$ $(Pins C 1-2-5-6-7-8-26-27)$	4.2	-	mA
86 to 93	Output Drive Current P-Channel	I _{OH1}	-	4(g)	$V_{IN} (Write/Read) = 0Vdc$ Clock Input from Low to High All Other Inputs: $V_{IN} = 5Vdc$ $V_{OUT} = 4.6Vdc$ $V_{DD} = 5Vdc, V_{SS} = 0Vdc$ Note 4 (Pins D/F 1-2-4-5-6-7-22- 23) (Pins C 1-2-5-6-7-8-26-27)	-0.64	-	mA

ISSUE 2

TABLE 3(b) - ELECTRICAL MEASUREMENTS AT LOW TEMPERATURE, -55(+5-0) °C (CONT'D)

NO.	CHARACTERISTICS	SYMBOL	TEST METHOD MIL-STD 883	test Fig.	TEST CONDITIONS (PINS UNDER TEST D/F = DIP AND FP C = CCP)	LIMITS		UNIT
NU.						MIN	MAX	
94 to 101	Output Drive Current P-Channel	I _{OH2}	-	4(g)	$V_{IN} (Write/Read) = 0Vdc$ Clock Input from Low to High All Other Inputs: $V_{IN} = 15Vdc$ $V_{OUT} = 13.5Vdc$ $V_{DD} = 15Vdc, V_{SS} = 0Vdc$ Note 4 (Pins D/F 1-2-4-5-6-7-22- 23) (Pins C 1-2-5-6-7-8-26-27)	-4.2		mA
102 to 109	Output Leakage Current Third State (1)	l _{OZ1}	-	4(h)		-	0.4	μΑ
110 to 117	Output Leakage Current Third State (2)	l _{OZ2}	-	4(h)		-	-0.4	μА
118	Input Voltage Low Level (Noise Immunity) (Functional Test)	V _{IL1}	-	- 4(a)	$V_{IL} = 1.5Vdc$ $V_{IH} = 3.5Vdc$ $V_{DD} = 5 Vdc, V_{SS} = 0Vdc$ Note 5 (Pins D/F 1-2-4-5-6-7-22-	4.5	-	v
	Input Voltage High Level (Noise Immunity) (Functional Test)	V _{IH1}	-		4(a)	(Pins C 1-2-5-6-7-8-26-27)	-	0.5

ISSUE 2

TABLE 3(b) - ELECTRICAL MEASUREMENTS AT LOW TEMPERATURE, -55(+5-0) °C (CONT'D)

NO.	CHARACTERISTICS	SYMBOL	TEST METHOD MIL-STD 883	TEST FIG.	TEST CONDITIONS (PINS UNDER TEST D/F = DIP AND FP C = CCP)	LIMITS		UNIT
NO.						MIN	MAX	UNIT
119	Input Voltage Low Level (Noise Immunity) (Functional Test)	V _{IL2}	-	4(a)	$V_{IL} = 4Vdc$ $V_{IH} = 11Vdc$ $V_{DD} = 15Vdc, V_{SS} = 0Vdc$ Note 5 (a) (Pins D/F 1-2-4-5-6-7-22-23) (Pins C 1-2-5-6-7-8-26-27)	13.5	-	v
	Input Voltage High Level (Noise Immunity) (Functional Test)	V _{IH2}	-			-	1.5	
120	Threshold Voltage N-Channel	V _{THN}	-	4(i)	Clock Input at Ground All Other Inputs: $V_{IN} = 5Vdc$ $V_{DD} = 5Vdc, I_{SS} = -10\mu A$ (Pin D/F 12) (Pin C 14)	-0.7	-3.5	V
121	Threshold Voltage P-Channel	V _{THP}	-	4(j)	Clock Input at Ground All Other Inputs: $V_{IN} = -5Vdc$ $V_{SS} = -5Vdc$, $I_{DD} = 10\mu A$ (Pin D/F 24) (Pin C 28)	0.7	3.5	V

FIGURE 4 - CIRCUITS FOR ELECTRICAL MEASUREMENTS

FIGURE 4(a) - FUNCTIONAL AND QUIESCENT CURRENT TEST TABLE

PATTERN									F	PIN	NU	MBI	ERS	;									I _{DD} TEST	D.C. 5	SUPPLY
NO.	1	2	3	4	5	6	7	8	9	10	11	13	14	15	16	17	18	19	20	21	22	23	NO.	12	24
0	Х	X	1	X	X	X	X	0	0	0	0	0	0	1	0	0	0	0	0	1	X	X		0	V _{DD}
1	0	0	1	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	1	0	0	1		
2	0	0	1	0	0	0 0	0 0	1	0 0	0	0 0	0 0	0 0	1	0 1	0 0	0 0	0 0	0 0	1 1	0 0	0 0			
3 4	0	0 0	1	0 0	0 0	0	0	0	1	0	0	0	ō	1	o	0	ō	0	ō	1	0	o	2		
5	Ō	0	1	Ö	õ	0	õ	0	1	0	Õ	Ō	0	1	1	0	0	0	0	1	0	0			
6	0	0	1	0	0	0	0	1	1	0	0	0	0	1	0	0	0	0	0	1	0	0			
7	0	0	1	0	0	0	0	1	1	0	0	0	0	1	1	0	0	0	0	1	0	0			
8	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0			
9	0	0	1	0	0	0	0	1	0	1	1	0	0	0	0	1	1	1	1	1	0	0			
10	0	0	1	0	0	0	0	1	0	0	1	1	0	0	1	1	1	1	1	1	0	0	3		
11	0	0	1	0	0	0	0	1	1	1	0	0	1	0	0	0	0	0	1	1	0	0	4		
12	0	0] ₁	0	0	0	0	1	1	0	0	1] -	0	1	0	0	0	 	1	0	0			
12a 13	0	0 0	1	0 0	0 0	0 0	0 0	0	0	0 0	0 0	1 0	י 0	0	0 0	0 0	0 0	0 0	1	1	0 0	0			
14	0	0	1	1	0	0	0	0	0	0	0	0	õ	1	1	0	0	0	1	1	1	o	5		
15	o	Ő	1	0	õ	õ	õ	0	0	1	ŏ	1	õ	1	0	0	Ő	õ	1	1	0	ō	Ŭ		
16	0	Ō	1	0	0	0	0	0	0	0	1	0	1	1	0	0	0	1	1	1	0	0			
17	0	0	1	0	0	0	0	0	0	1	1	1	1	1	0	0	0	1	1	1	0	0			
18	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	0	1	1	1	0	0			
19	0	0	1	0	0	0	0	0	0	0	1	1	0	1	0	0	0	1	1	1	0	0			
20	0	0	1	0	0	0	0	0	0	1	1	0	1	1	0	0	1	1	1	1	0	0			
21	0	0	1	0	0	0	0	0	0	0	0	1	1	1	0	0	1	1	1	1	1	1	6		
22	0	0	1	0	0	0	0	0	0	0	1	1	0	1	1	0	1	1	1	1	0	0			
23	0	0	1	0	0	0	0	0	0	1	1	0	1	1	0	0	1	1	1	1	0	0	7		
24 25	0	1 0	1	0	0 1	0 1	0 0	0 0	0 0	0	0 0	0	0	1	0 0	1	1	1	1	1	1 0	1 0			
25	0	0	1 1	0	0	0	0	0	0	1	1	0	1	1	1	1	1	1	1	1	0	0	8		
27	1	1	1	0	õ	Ö	0	õ	0	0	0	1	1	1	ò	1	1	1	1	1	1	1	Ŭ		
28	0	0	1	1	1	1	1	0	0	1	Ō	0	0	1	0	0	0	0	1	1	0	0	9		
29	0	0	1	0	0	0	0	1	0	0	1	1	0	1	0	0	0	0	1	1	0	0			
30	1	1	1	1	1	1	1	1	0	0	0	0	0	1	1	0	0	0	1	1	1	1	10		
31	0	0	1	1	0	0	0	1	0	1	0	1	0	1	0	0	0	0	1	1	1	0			ļ
32	0	0	1	0	0	0	0	1	0	0	1	0	1	1	0	0	0	1	1	1	0	0			
33	0	0	1	0	0	0	0	1	0	1	1	1	1	1	0	0	0	1	1	1	0	0			l l
34	1	1	1	1	1	1	1	1	0	0	0	0	0	1	1	0	0	1	1	1	1	1			
35	0	0	1	1	1	0	0	1	0	1	0	1	0	1	0	0	0	1	1	1	1	1	11		
36 37	0	0 0	1	0	0	0	0	1	0	0	1	0	1	1	0	0	1	1	1	1	0	0			
37	0	1	1 1	0 1	0 1	0 1	0 1	1 1	0 0	1 0	1 0	1 0	1 0	1	0 1	0 0	1 1	1	1 1	1 1	0 1	0 1			
39	0	1	1	1	1	1	0	1	0	1	0	1	0	1	0	0	1	1	1	1	1	1	12		
40	0	0	1	0	0	0	0	1	0	0	1	0	1	1	0	1	1	1	1	1	0	0			
41	0		1	Õ	0	0	0	1	0	1	1	1	1	1	0	1	1	1	1	1	Ő	Ő		↓	↓

NOTES: See Page 37.

FIGURE 4 - CIRCUITS FOR ELECTRICAL MEASUREMENTS (CONTINUED)

FIGURE 4(a) - FUNCTIONAL AND QUIESCENT CURRENT TEST TABLE (CONTINUED)

NO. 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 17 18 19 20 21 22 30 10 10 1 0 1 0 1	PATTERN										PIN	NU	MBI	ERS	;					<u>.</u>				IDD	D.C. :	SUPI	PLY
43 1		1	2	3	4	5	6	7	8	9	10	11	13	14	15	16	17	18	19	20	21	22	23		12	2	4
44 0 0 1 0 0 1 0 1	42	1	1	1	1	1	1	1	1	0	0	0	0	0	1	1	1	1	1	1	1	1	1		0	V	DD
45 0 0 1	43	1	1	1	1	1	1	1	1	0	1	0	1	0	1	0	1	[,] 1	1	1	1	1	1		1 1		1
46 1	44	0	0	1	0	0	0	0	1	0	0	1	0	1	1	0	0	0	0	1	1	0	0				
47 1	45	0	0	1	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	1	1	0	0	13			
48 0 0 1 1 0 1 0 1	46	1	1	1	1	1	1	1	0	1	0	0	0	0	1	1	0	0	0	1	1	1	1	14			
49 0 0 1	47	1	1	1	1	1	1	1	0	1	1	0	1	0	1	0	0	0	0	1	1	1	1				
50 1	48	0	0	1	1	0	0	0	0	1	0	1	0	1	1	0	0	0	1	1	1	1	0				
51 1 1 1 1 0 1 0 1 0 1 0 1	49	0	0	1	0	0	0	0	0	1	1	1	1	1	1	0	0	0	1	1	1	Ò	0				
52 0 0 1 1 0 1 0 1	50	1	1	1	1	1	1	1	0	1	0	0	0	0	1	1	0	0	1	1	1	1	1				
53 0 0 1	51	1	1	1	1	1	1	1	0	1	1	0	1	0	1	0	0	0	1	1	1	1	1	15			
64 1	52	0	0	1	1	1	0	0	0	1	0	1	0	1	1	0	0	1	1	1	1	1	1				
55 1	53	0	0	1	0	0	0	0	0	1	1	1	1	1	1	0	0	1	1	1	1	0	0				
56 0 1 1 1 0 1 0 1	54	1	1	1	1	1	1	1	0	1	0	0	0	0	1	1	0	1	1	1	1	1	1		1 1		
57 0 0 1 0 1	55	1	1	1	1	1	1	1	0	1	1	0	1	0	1	0	0	1	1	1	1	1	1				
58 1	56	0	1	1	1	1	1	0	0	1	0	1	0	1	1	0	1	1	1	1	1	1	1	16			
59 1	57	0	0	1	0	0	0	0	0	1	1	1	1	1	1	0	1	1	1	1	1	0	0				
60 1 1 1 1 1 1 1 0 1 0 1	58	1	1	1	1	1	1	1	0	1	0	0	0	0	1	1	1	1	1	1	1	1	1	Ì			
61 0 0 1	59	1	1	1	1	1	1	1	0	1	1	0	1	0	1	0	1	1	1	1	1	1	1				
62 1	60	1	1	1	1	1	1	1	0	1	0	1	0	1	1	0	0	0	0	1	1	1	1	Į			
63 1	61	0	0	1	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	1	1	0	0	17			
64 1	62	1	1	1	1	1	1	1	1	1	0	0	0	0	1	1	0	0	0	1	1	1	1				
65 0 0 1	63	1	1	1	1	1	1	1	1	1	1	0	1	0	1	0	0	0	0	1	1	1	1				
66 1	64	1	1	1	1	1	1	1	1	1	0	1	0	1	1	0	0	0	1	1	1	1	1				
67 1	65	0	0	1	1	0	0	0	1	1	1	1	1	1	1	0	0	0	1	1	1	1	0	18			
68 1	66	1	1	1	1	1	1	1	1	1	0	0	0	0	1	1	0	0	1	1	1	1	1				
69 0 0 1	67	1	1	1	1	1	1	1	1	1	1	0	1	0	1	0	0	0	1	1	1	1	1				
70 1	68	1	1	1	1	1	1	1	1	1	0	1	0	1	1	0	0	1	1	1	1	1	1	19			
71 1 1 1 1 1 1 1 1 0 1 0 1	69	0	0	1	1	1	0	0	1	1	1	1	1	1	1	0	0	1	1	1	1	1	1				1
72 1 1 1 1 0 1 0 1 1 0 1	70	1	1	1	1	1	1	1	1	1	0	0	0	0	1	1	0	1	1	1	1	1	1	1			
73 0 1	71	1	1	1	1	1	1	1	1	1	1	0	1	0	1	0	0	1	1	1	1	1	1	20			
74 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1	72	1	1	1	1	1	1	0	1	1	0	1	0	1	1	0	1	1	1	1	1	1	1	1			
	73	0	1	1	1	1	1	0	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1				1
	74	1	1	1	1	1	1	1	1	1	0	0	0	0	1	1	1	1	1	1	1	1	1	21			
75 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 1 1 1 1	75	1	1	1	1	1	1	1	1	1					1		1					1	1			1	↓ I

NOTES: See Page 37.

FIGURE 4 - CIRCUITS FOR ELECTRICAL MEASUREMENTS (CONTINUED)

FIGURE 4(a) - FUNCTIONAL AND QUIESCENT CURRENT TEST TABLE (CONTINUED)

PATTERN										PIN	NU	MB	ERS	3									I _{DD} TEST	D.C. S	UPPLY
NO.	1	2	3	4	5	6	7	8	9	10	11	13	14	15	16	17	18	19	20	21	22	23	NO.	12	24
76	1	1	1	1	1	1	1	1	1	0	1	0	1	1	0	0	1	1	1	1	1	1		0	V _{DD}
77	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	1	1	1	1	1	1			
78	1	1	1	1	1	1	1	1	1	0	0	0	0	1	1	0	1	1	1	1	1	1			
79	1	1	1	1	1	1	1	1	1	1	0	1	0	1	0	0	1	1	1	1	1	1			
80	1	1	1	1	1	1	1	1	1	0	1	0	1	1	0	0	0	1	1	1	1	1		1	
81	0	1	1	1	1	1	0	1	1	1	1	1	1	1	0	0	0	1	1	1	1	1			
82	1	1	1	1	1	1	1	1	1	0	0	0	0	1	1	0	0	1	1	1	1	1			
83	1	1	1	1	1	1	1	1	1	1	0	1	0	1	0	0	0	1	1	1	1	1			
84	1	1	1	1	1	1	1	1	1	0	1	0	1	1	0	0	0	0	1	1	1	1			
85	0	0	1	1	1	0	0	1	1	1	1	1	1	1	0	0	0	0	1	1	1	1		1	
86	1	1	1	1	1	1	1	1	1	0	0	0	0	1	1	0	0	0	1	1	1	1			
87	1	1	1	1	1	1	1	1	1	1	0	1	0	1	0	0	0	0	1	1	1	1			
88	1	1	1	1	1	1	1	1	1	0	1	0	1	1	0	0	0	0	0	1	1	1			
89	0	0	1	1	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	1	1	0			
90	1	1	1	1	1	1	1	1	1	0	0	0	0	1	1	0	0	0	0	1	1	1			
91	1	1	1	1	1	1	1	1	1	1	0	1	0	1	0	0	0	0	0	1	1	1			
92	1	1	1	1	1	1	1	1	1	0	1	0	1	1	0	1	1	1	0	1	1	1			
93	0	0	1	0	0	0	0	0	1	1	1	1	1	1	0	1	1	1	0	1	0	0			
94	1	1	1	1	1	1	1	0	1	0	0	0	0	1	1	1	1	1	0	1	1	1			
95	1	1	1	1	1	1	1	0	1	1	0	1	0	1	0	1	1	1	0	1	1	1			
96	1	1	1	0	1	1	1	0	1	0	1	0	1	1	0	1	1	0	0	1	0	1			
97	0	0	1	0	0	0	0	0	1	1	1	1	1	1	0	1	1	0	0	1	0	0			
98	1	1	1	1	1	1	1	0	1	0	0	0	0	1	1	1	1	0	0	1	1	1			
99	1	1	1	1	1	1	1	0	1	1	0	1	0	1	0	1	1	0	0	1	1	1			
100	1	1	1	0	0	1	1	0	1	0	1	0	1	1	0	1	0	0	0	1	0	0			
101	0	0	1	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	1	0	0			
102	1	1	1	1	1	1	1	0	1	0	0	0	0	1	1	1	0	0	0	1	1	1			
103	1	1	1	1	1	1	1	0	1	1	0	1	0	1	0	1	0	0	0	1	1	1			
104	1	0	1	0	0	0	1	0	1	0	1	0	1	1	0	0	0	0	0	1	0	0			
105	0	0	1	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	1	0	0			
106	1	1	1	1	1	1	1	0	1	0	0	0	0	1	1	0	0	0	0	1	1	1			
107	1	1	1	1	1	1	1	0	1						0				0	1	1	1		↓	↓ ↓

NOTES: See Page 37.

FIGURE 4 - CIRCUITS FOR ELECTRICAL MEASUREMENTS (CONTINUED)

FIGURE 4(a) - FUNCTIONAL AND QUIESCENT CURRENT TEST TABLE (CONTINUED)

PATTERN										PIN	NU	MB	ERS	5									IDD	D.C. 5	UPPLY
NO.		2	3	4	5	6	7	8	9	10	11	13	14	15	16	17	18	19	20	21	22	23	TEST NO.	12	24
108	0	0	1	0	0	0	0	0	1	0	1	0	1	1	0	0	1	1	1	1	0	0		0	V _{DD}
109	0	0	1	0	0	0	0	1	0	1	1	1	1	1	0	0	· 1	1	1	1	0	0			
110	1	1	1	1	1	1	1	1	0	0	0	0	0	1	1	0	1	1	1	1	1	1			
111	0	1	1	1	1	1	0	1	0	1	0	1	0	1	0	0	1	1	1	1	1	1			
112	0	0	1	0	0	0	0	1	0	0	1	0	1	1	0	0	0	1	1	1	0	0			
113	0	0	1	0	0	0	0	1	0	1	1	1	1	1	0	0	0	1	1	1	0	0			
114	1	1	1	1	1	1	1	1	0	0	0	0	0	1	1	0	0	1	1	1	1	1			
115	0	0	1	1	1	0	0	1	0	1	0	1	0	1	0	0	0	1	1	1	1	1			
116	0	0	1	0	0	0	0	1	0	0	1	0	1	1	0	0	0	0	1	1	0	0			
117	0	0	1	0	0	0	0	1	0	1	1	1	1	1	0	0	0	0	1	1	0	0			
118	1	1	1	1	1	1	1	1	0	0	0	0	0	1	1	0	0	0	1	1	1	1			
119	0	0	1	1	0	0	0	1	0	1	0	1	0	1	0	0	0	0	1	1	1	0			
120	0	0	1	0	0	0	0	1	0	0	1	0	1	1	0	0	0	0	0	1	0	0			
121	0	0	1	0	0	0	0	1	0	1	1	1	1	1	0	0	0	0	0	1	0	0			
122	1	1	1	1	1	1	1	1	0	0	0	0	0	1	1	0	0	0	0	1	1	1			
123	0	0	1	0	0	0	0	1	0	1	0	1	0	1	0	0	0	0	0	1	0	0			
124	0	0	1	0	0	0	0	1	0	0	1	0	1	1	0	1	1	1	0	1	0	0			
125	0	0	1	0	0	0	0	0	0	1	1	1	1	1	0	1	1	1	0	1	0	0			
126	1	1	1	0	1	1	1	0	0	0	0	0	0	1	1	1	1	1	0	1	0	1			
127	0	0	1	0	0	0	0	0	0	1	0	1	0	1	0	1	1	1	0	1	0	0			
128	0	0	1	0	0	0	0	0	0	0	1	0	1	1	0	1	1	0	0	1	0	0			
129	0	0	1	0	0	0	0	0	0	1	1	1	1	1	0	1	1	0	0	1	0	0			
130	1	1	1	0	0	1	1	0	0	0	0	0	0	1	1	1	1	0	0	1	0	0			
131	0	0	1	0	0	0	0	0	0	1	0	1	0	1	0	1	1	0	0	1	0	0			
132	0	0	1	0	0	0	0	0	0	0	1	0	1	1	0	1	0	0	0	1	0	0			
133	0	0	1	0	0	0	0	0	0	1	1	1	1	1	0	1	0	0	0	1	0	0			
134	1	0	1	0	0	0	1	0	0	0	0	0	0	1	1	1	0	0	0	1	0	0			
135	0	0	1	0	0	0	0	0	0	1	0	1	0	1	0	1	0	0	0	1	0	0			
136	0	0	1	0	0	0	0	0	0	0	1	0	1	1	0	0	0	0	0	1	0	0	l		
137	0	0	1	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	1	0	0			
138	0	0	1	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	1	0	0			
139	0	0	1	0	0	0	0	0	0	1	0	1	0	1	0	0	0	0	0	1	0	0			
140	0	0	1	0	0	0	0	0	0	0	1	0	1	1	0	1	1	1	1	1	0	0		↓	V

FIGURE 4 - CIRCUITS FOR ELECTRICAL MEASUREMENTS (CONTINUED)

FIGURE 4(a) - FUNCTIONAL AND QUIESCENT CURRENT TEST TABLE (CONTINUED)

PATTERN									ſ	PIN	NU	MB	ERS	3					<u>.</u>			-		D.C. \$	SUPPLY
NO.	1	2	3	4	5	6	7	8	9	10	11	13	14	15	16	17	18	19	20	21	22	23	TEST NO.	12	24
141	0	0	1	0	0	0	0	0	0	1	1	1	1	1	0	1	1	1	1	1	0	0		0	V _{DD}
142	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	[.] 1	1	1	1	0	0			
143	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	0			
144	1	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1			
145	1	1	1	1	1	1	1	0	0	0	0	0	0	0	1	0	0	0	0	1	1	1			
146	0	0	1	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	1	0	0			
147	z	Ζ	0	Ζ	Ζ	Z	Ζ	0	0	0	0	0	0	1	0	1	1	1	1	0	Ζ	Ζ	22		
148	Z	Ζ	0	Ζ	Ζ	Z	Ζ	0	0	0	0	0	0	1	1	1	1	1	1	0	Ż	Z	23		
149	1	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1			

NOTES

1. Figure 4(a) illustrates one series of test patterns. Any other pattern series must be agreed with the Qualifying Space Agency and shall be included as an Appendix.

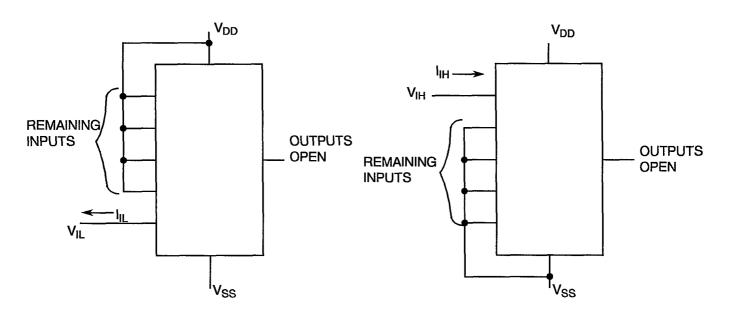
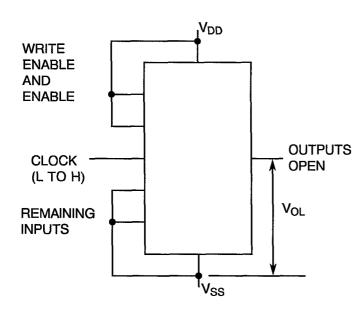
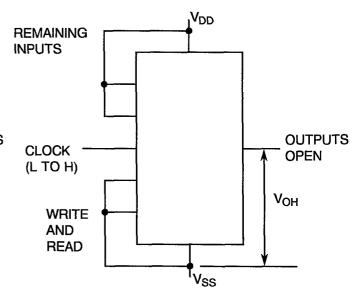

2. Logic Level Definitions: $1 = V_{IH} = V_{DD}$, $0 = V_{IL} = V_{SS}$, Z = High Impedance.

FIGURE 4 - CIRCUITS FOR ELECTRICAL MEASUREMENTS (CONTINUED)

FIGURE 4(b) - LOW LEVEL INPUT CURRENT

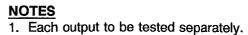
FIGURE 4(c) - HIGH LEVEL INPUT CURRENT


NOTES


1. Each input to be tested separately.

NOTES 1. Each input to be tested separately.

FIGURE 4(d) - LOW LEVEL OUTPUT VOLTAGE


FIGURE 4(e) - HIGH LEVEL OUTPUT VOLTAGE

NOTES

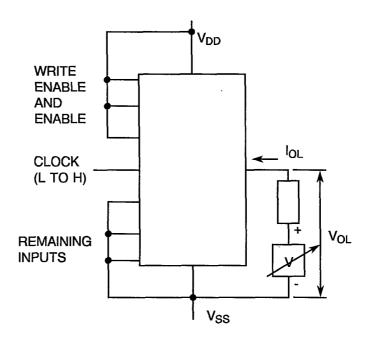
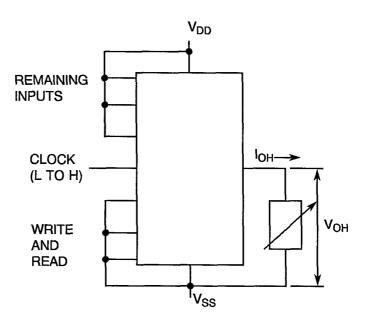

1. Each output to be tested separately.

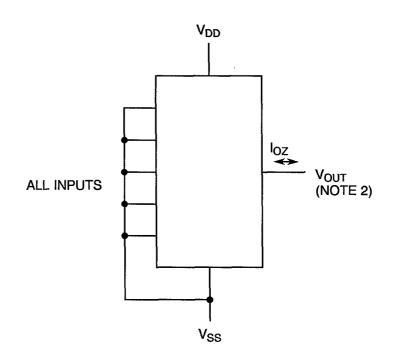
FIGURE 4 - CIRCUITS FOR ELECTRICAL MEASUREMENTS (CONTINUED)



NOTES

1. Each output to be tested separately.

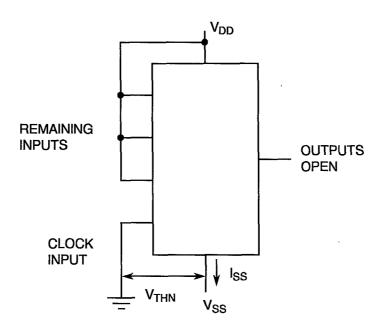
FIGURE 4(g) - HIGH LEVEL OUTPUT CURRENT


NOTES

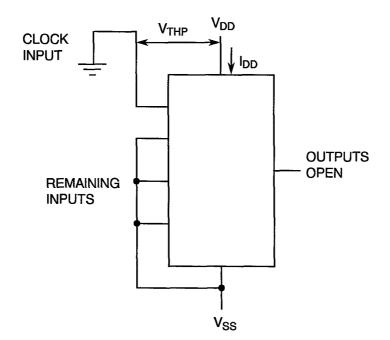
1. Each output to be tested separately.

FIGURE 4 - CIRCUITS FOR ELECTRICAL MEASUREMENTS (CONTINUED)

FIGURE 4(h) - OUTPUT LEAKAGE CURRENT THIRD STATE


NOTES

- 1. Each output to be tested separately.
- 2. I_{OZ} is measured with the following output conditions:
 - (i) Output under test connected to V_{DD} . Remaining outputs open. (ii) Output under test connected to V_{SS} . Remaining outputs open.



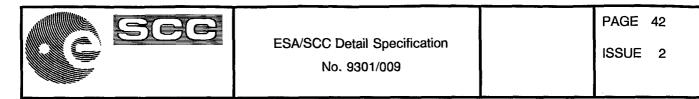

FIGURE 4 - CIRCUITS FOR ELECTRICAL MEASUREMENTS (CONTINUED)

FIGURE 4(i) - THRESHOLD VOLTAGE N-CHANNEL

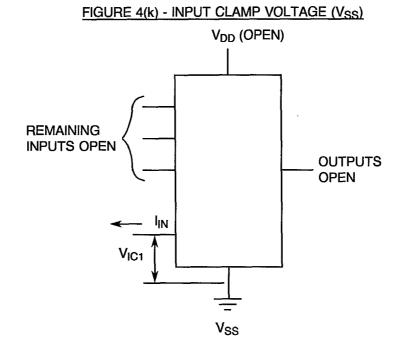
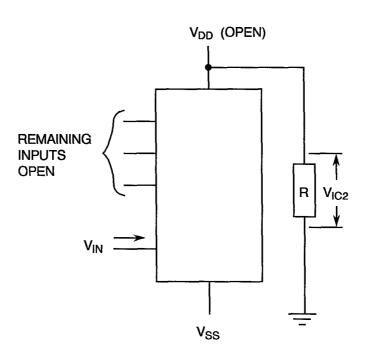


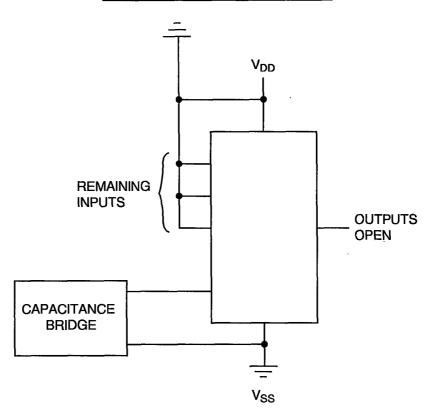
FIGURE 4(j) - THRESHOLD VOLTAGE P-CHANNEL


FIGURE 4 - CIRCUITS FOR ELECTRICAL MEASUREMENTS (CONTINUED)

NOTES

1. Each input to be tested separately.

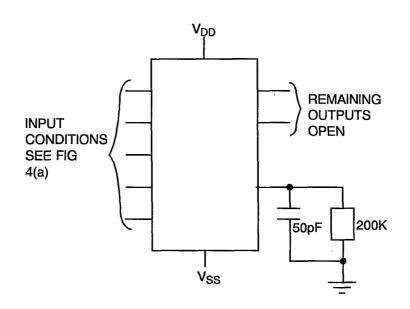
FIGURE 4(I) - INPUT CLAMP VOLTAGE (VDD)


NOTES

1. Each input to be tested separately.

FIGURE 4 - CIRCUITS FOR ELECTRICAL MEASUREMENTS (CONTINUED)

FIGURE 4(m) - INPUT CAPACITANCE


NOTES

- 1. Each input to be tested separately.
- 2. f = 100kHz to 1MHz

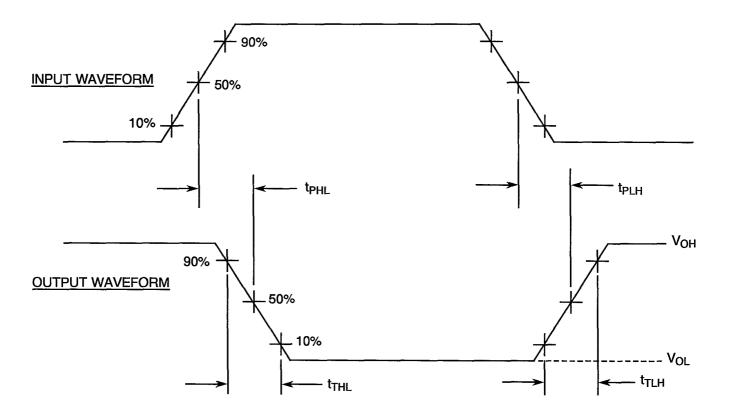
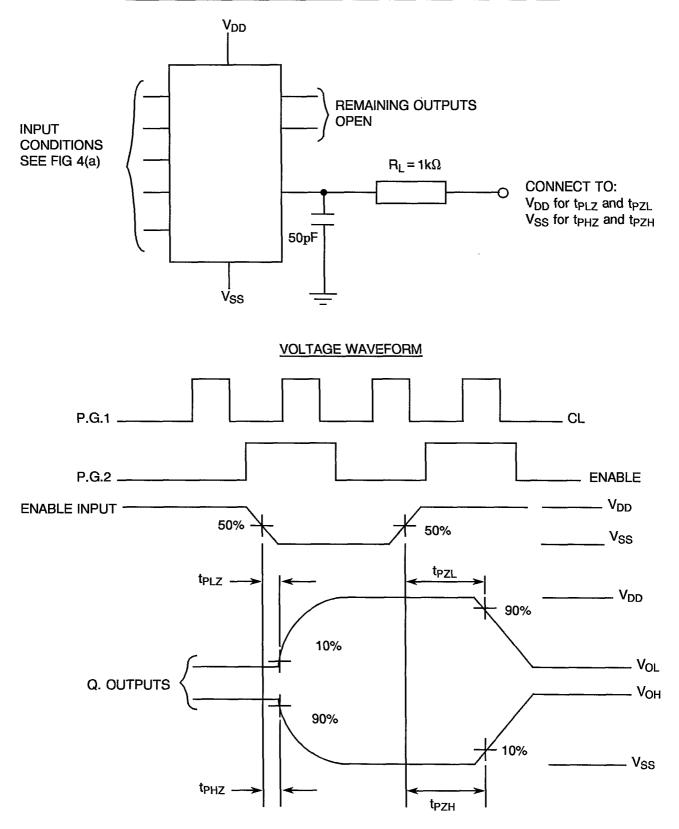


FIGURE 4 - CIRCUITS FOR ELECTRICAL MEASUREMENTS (CONTINUED)

FIGURE 4(n) - PROPAGATION DELAY AND TRANSITION TIME

VOLTAGE WAVEFORMS



NOTES 1. Pulse Generator - $V_P = 0$ to V_{DD} , t_r and $t_f \leq 15$ ns, f = 500kHz.

FIGURE 4 - CIRCUITS FOR ELECTRICAL MEASUREMENTS (CONTINUED)

FIGURE 4(0) - PROPAGATION DELAY OUTPUT TO HIGH IMPEDANCE

<u>NOTES</u> 1. Pulse Generator - V_P = 0 to V_{DD} , t_r and $t_f \leq 15$ ns, f = 500kHz.

TABLE 4 - PARAMETER DRIFT VALUES

NO.	CHARACTERISTICS	SYMBOL	SPEC. AND/OR TEST METHOD	TEST CONDITIONS	CHANGE LIMITS (Δ)	UNIT
3 to 25	Quiescent Current	IDD	As per Table 2	As per Table 2	± 150	nA
70 to 77	Output Drive Current N-Channel	I _{OL1}	As per Table 2	As per Table 2	± 15 (1)	%
86 to 93	Output Drive Current P-Channel	^I OH1	As per Table 2	As per Table 2	± 15 (1)	%
102 to 109	Output Leakage Current Third State (1)	loz1	As per Table 2	As per Table 2	±60	nA
110 to 117	Output Leakage Current Third State (2)	l _{OZ2}	As per Table 2	As per Table 2	± 60	nA
120	Threshold Voltage N-Channel	V _{THN}	As per Table 2	As per Table 2	±0.3	V
121	Threshold Voltage P-Channel	V _{THP}	As per Table 2	As per Table 2	±0.3	V

NOTES 1. Percentage of limit value if voltage is the measurement function.

TABLE 5(a) - CONDITIONS FOR BURN-IN HIGH TEMPERATURE REVERSE BIAS, N-CHANNELS

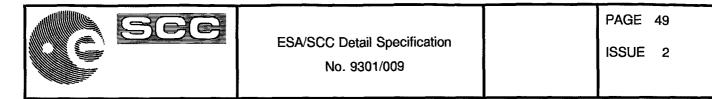
NO.		CHARACTERISTICS	SYMBOL	CONDITION	UNIT
1	Ambient T	emperature	T _{amb}	+ 125(+ 0-5)	°C
2	Outputs -	(Pins D/F 1-2-4-5-6-7-22-23) (Pins C 1-2-5-6-7-8-26-27)	V _{OUT}	Open	-
3	Inputs -	(Pins D/F 3-9-11-13-15-17-19-21) (Pins C 3-10-13-15-17-20-22-24)	V _{IN}	V _{DD}	Vdc
4	Inputs -	(Pins D/F 8-10-14-16-18-20) (Pins C 9-12-16-19-21-23)	V _{IN}	Ground	Vdc
5	Positive So (Pin D/F 2- (Pin C 28)		V _{DD}	15	Vdc
6	Negative S (Pin D/F 1) (Pin C 14)	•	V _{SS}	Ground	Vdc

<u>NOTES</u> 1. Input Load = Protection Resistor = $2k\Omega$ minimum to $47k\Omega$ maximum.

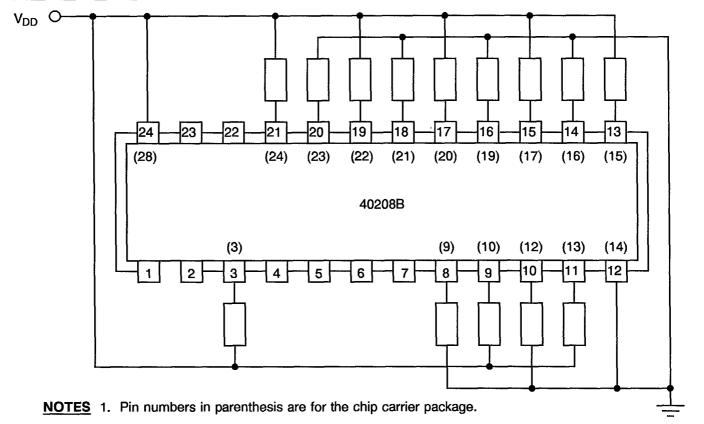
TABLE 5(b) - CONDITIONS FOR BURN-IN HIGH TEMPERATURE REVERSE BIAS, P-CHANNELS

NO.		CHARACTERISTICS	SYMBOL	CONDITION	UNIT
1	Ambient Te	emperature	T _{amb}	+ 125(+ 0-5)	°C
2	Outputs -	(Pins D/F 1-2-4-5-6-7-22-23) (Pins C 1-2-5-6-7-8-26-27)	V _{OUT}	Open	-
3	Inputs -	(Pins D/F 3-9-11-13-15-17-19-21) (Pins C 3-10-13-15-17-20-22-24)	V _{IN}	Ground	Vdc
4	inputs -	(Pins D/F 8-10-14-16-18-20) (Pins C 9-12-16-19-21-23)	V _{IN}	V _{DD}	Vdc
5	Positive Su (Pin D/F 24 (Pin C 28)		V _{DD}	15	Vdc
6	Negative S (Pin D/F 12 (Pin C 14)	•	V _{SS}	Ground	Vdc

<u>NOTES</u> 1. Input Load = Protection Resistor = $2k\Omega$ minimum to $47k\Omega$ maximum.



ISSUE 2


TABLE 5(c) - CONDITIONS FOR BURN-IN DYNAMIC

NO.	CHARACTERISTICS	SYMBOL	CONDITION	UNIT
1	Ambient Temperature	T _{amb}	+ 125(+ 0-5)	°C
2	Outputs - (Pins D/F 1-2-4-5-6-7-22-23) (Pins C 1-2-5-6-7-8-26-27)	Vout	V _{DD/2}	Vdc
3	Inputs - (Pins D/F 3-15-21) (Pins C 3-17-24)	V _{IN}	V _{DD}	Vdc
4	Inputs - (Pins D/F 8-10-14-16-19-20) (Pins C 9-12-16-19-22-23)	V _{IN}	V _{GEN1}	Vac
5	Inputs - (Pins D/F 9-11-13-17-18) (Pins C 10-13-15-20-21)	V _{IN}	V _{GEN2}	Vac
6	Pulse Voltage	V _{GEN}	0 to V _{DD}	Vac
7	Pulse Frequency Square Wave	f GEN1 GEN2	50k, 50% Duty Cycle 25k, 50% Duty Cycle	Hz
8	Positive Supply Voltage (Pin D/F 24) (Pin C 28)	V _{DD}	15	Vdc
9	Negative Supply Voltage (Pin D/F 12) (Pin C 14)	V _{SS}	Ground	Vdc

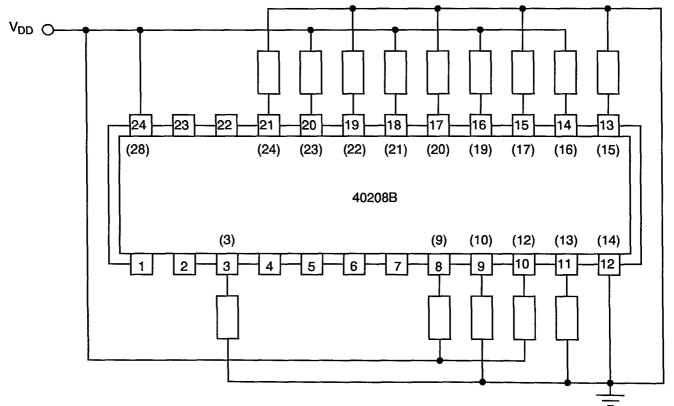
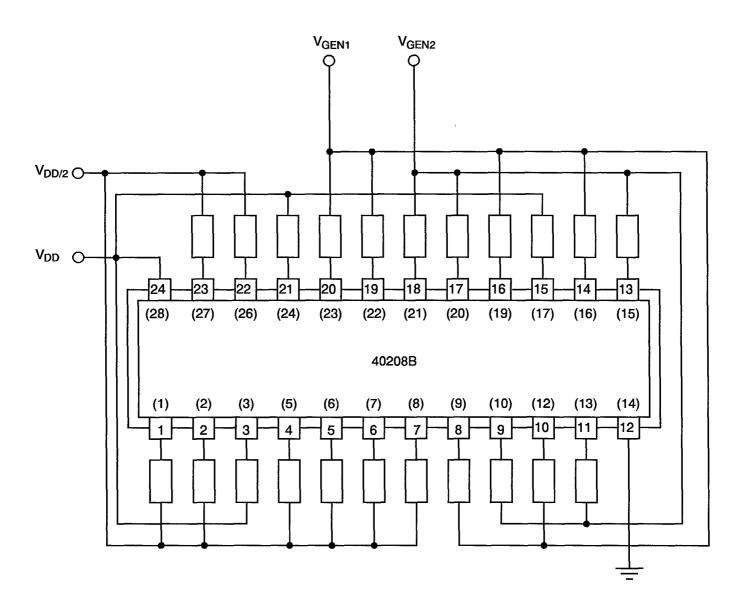

<u>NOTES</u> 1. Input Load = Output Load = $2k\Omega$ minimum to $47k\Omega$ maximum.

FIGURE 5(a) - ELECTRICAL CIRCUIT FOR BURN-IN HIGH TEMPERATURE REVERSE BIAS, N-CHANNELS


FIGURE 5(b) - ELECTRICAL CIRCUIT FOR BURN-IN HIGH TEMPERATURE REVERSE BIAS, P-CHANNELS

NOTES 1. Pin numbers in parenthesis are for the chip carrier package.

FIGURE 5(c) - ELECTRICAL CIRCUIT FOR BURN-IN DYNAMIC

NOTES 1. Pin numbers in parenthesis are for the chip carrier package.

4.8 ENVIRONMENTAL AND ENDURANCE TESTS

4.8.1 Electrical Measurements on Completion of Environmental Tests

The parameters to be measured on completion of environmental tests are scheduled in Table 6. Unless otherwise stated, the measurements shall be performed at $T_{amb} = +22 \pm 3$ °C.

4.8.2 Electrical Measurements at Intermediate Points during Endurance Tests

The parameters to be measured at intermediate points during endurance tests are as scheduled in Table 6 of this specification.

4.8.3 <u>Electrical Measurements on Completion of Endurance Tests</u>

The parameters to be measured on completion of endurance testing are as scheduled in Table 6 of this specification. Unless otherwise stated, the measurements shall be performed at $T_{amb} = +22 \pm 3$ °C.

4.8.4 Conditions for Operating Life Test

The requirements for operating life testing are specified in Section 9 of ESA/SCC Generic Specification No. 9000. The conditions for operating life testing shall be as specified in Table 5(c) of this specification.

4.8.5 <u>Electrical Circuits for Operating Life Tests</u>

Circuits for use in performing the operating life tests are shown in Figure 5(c) of this specification.

4.8.6 Conditions for High Temperature Storage Test

The requirements for the high temperature storage test are specified in ESA/SCC Generic Specification No. 9000. The temperature to be applied shall be the maximum storage temperature specified in Table 1(b) of this specification.

TABLE 6 - ELECTRICAL MEASUREMENTS ON COMPLETION OF ENVIRONMENTAL TESTS AND AT INTERMEDIATE POINTS AND ON COMPLETION OF ENDURANCE TESTING

			SPEC. AND/OR	TEST	CHANGE			
NO.	CHARACTERISTICS	SYMBOL	TEST METHOD	CONDITIONS	LIMITS (Δ)	MIN	МАХ	UNIT
1	Functional Test	-	As per Table 2	As per Table 2	-	-	-	-
3 to 25	Quiescent Current	I _{DD}	As per Table 2	As per Table 2	± 150	-	-	nA
26 to 39	Input Current Low Level	ΙIL	As per Table 2	As per Table 2	-	-	-50	nA
40 to 53	Input Current High Level	lін	As per Table 2	As per Table 2	-	1	50	nA
54 to 61	Output Voltage Low Level	V _{OL}	As per Table 2	As per Table 2	-	-	0.05	ν
62 to 69	Output Voltage High Level	V _{OH}	As per Table 2	As per Table 2	-	14.95	-	V
70 to 77	Output Drive Current N-Channel	l _{OL1}	As per Table 2	As per Table 2	±15 (1)	-	-	%
78 to 85	Output Drive Current N-Channel	I _{OL2}	As per Table 2	As per Table 2	± 15 (1)	-	-	%
86 to 93	Output Drive Current P-Channel	I _{OH1}	As per Table 2	As per Table 2	± 15 (1)	-	-	%
94 to 101	Output Drive Current P-Channel	I _{OH2}	As per Table 2	As per Table 2	± 15 (1)	_	-	%
102 to 109	Output Leakage Current Third State (1)	l _{OZ1}	As per Table 2	As per Table 2	± 60	-	-	nA
110 to 117	Output Leakage Current Third State (2)	loz2	As per Table 2	As per Table 2	± 60	-	-	nA

NOTES 1.	Percentage of	ilimit value if voltage	is the measurement function.

ISSUE 2

TABLE 6 - ELECTRICAL MEASUREMENTS ON COMPLETION OF ENVIRONMENTAL TESTS AND AT INTERMEDIATE POINTS AND ON COMPLETION OF ENDURANCE TESTING (CONTINUED)

	CHARACTERISTICS	SYMBOL	SPEC. AND/OR	TEST	CHANGE LIMITS			UNIT
NO.	CHARACTERISTICS	STNDUL	TEST METHOD	CONDITIONS	(Δ)	MIN	MAX	UNIT
118	Input Voltage Low Level (Noise Immunity) (Functional Test)	V _{IL1}	As per Table 2	As per Table 2	-	4.5	-	v
110	Input Voltage High Level (Noise Immunity) (Functional Test)	V _{IH1}	As per Table 2	As per Table 2	-	-	0.5	v
120	Threshold Voltage N-Channel	V _{THN}	As per Table 2	As per Table 2	±0.3	-	-	V
121	Threshold Voltage P-Channel	V _{THP}	As per Table 2	As per Table 2	±0.3	-	-	V

-

APPENDIX 'A'

Page 1 of 1

AGREED DEVIATIONS FOR STMICROELECTRONICS (F)

ITEMS AFFECTED	DESCRIPTION OF DEVIATION
Para. 4.2.3	Para. 9.23, High Temperature Reverse Bias Burn-in: The temperature limits of MIL-STD-883, Para. 4.5.8(c) may be used.
	Para. 9.24, Power Burn-in: The temperature limits of MIL-STD-883, Para. 4.5.8(c) may be used.
Para. 4.2.4	Para. 9.21.1, Operating Life during Qualification Testing: The temperature limits of MIL-STD-883, Para. 4.5.8(c) may be used.
Para. 4.2.5	Para. 9.21.2, Operating Life during Lot Acceptance Testing: The temperature limits of MIL-STD-883, Para. 4.5.8(c) may be used.