

Page i

TRANSISTORS, HIGH POWER, NPN BASED ON TYPE SDT 79823 ESCC Detail Specification No. 5203/036

ISSUE 1 October 2002

ESCC Detail Specification

PAGE	ii
ISSUE	1

LEGAL DISCLAIMER AND COPYRIGHT

European Space Agency, Copyright © 2002. All rights reserved.

The European Space Agency disclaims any liability or responsibility, to any person or entity, with respect to any loss or damage caused, or allleged to be caused, directly or indirectly by the use and application of this ESCC publication.

This publication, without the prior permission of the European Space Ageny and provided that it is not used for a commercial purpose, may be:

- copied in whole in any medium without alteration or modification.
- copied in part, in any medium, provided that the ESCC document identification, comprising the ESCC symbol, document number and document issue, is removed.

european space agency agence spatiale européenne

Pages 1 to 18

TRANSISTORS, HIGH POWER, NPN, BASED ON TYPE SDT 79823

ESA/SCC Detail Specification No. 5203/036

space components coordination group

lssue/Rev.		Approved by		
	Date	SCCG Chairman	ESA Director General or his Deputy	
Issue 1	March 1982	-	1 -0 /	
Revision 'A'	February 1992	Pomomens	1. lest	

Rev. 'A'

PAGE 2

ISSUE 1

DOCUMENTATION CHANGE NOTICE

	DOCUMENTATION CHANGE NOTICE						
Rev. Letter	Rev. Date	Reference	CHANGE Item	Approved DCR No.			
		DCR 21016 for ada	rates all modifications agreed on the basis of Policy ptation to new qualification requirements and Policy DCR to Detail Specifications".				
'A'	Feb. '92	P1. Cover page P2. DCN P5. Para. 2 P6. Table 1(a)	 : MIL-STD-1276 deleted, "ESA/SCC Basic Spec. No. 23500" added : "Lead Material and/or Finish" column added 	None None 21025 21025			
		P9. Para. 4.2.2 Para. 4.2.3 Para. 4.2.4	 : Bond Strength and Die Shear Test deviations deleted : PIND deviation deleted : H.T.R.B. deviation deleted : Bond Strength and Die Shear Test deviations deleted 	23499 21043 23499 23499			
		P10. Para. 4.4.2 P15. Table 3	: Paragraph amended: Sampling Note deleted	21025 21047			
			been transferred from hardcopy to electronic format. The d but minor differences in presentation exist.				

PAGE 3

ISSUE 1

TABLE OF CONTENTS

1.	GENERAL	Page 5
1.1	Scope	5
1.2	Component Type Variants	5
1.3	Maximum Ratings	5
1.4	Parameter Derating Information and Safe Operating Area	5
1.5	Physical Dimensions	5
1.6	Functional Diagram	5
2.	APPLICABLE DOCUMENTS	5
3.	TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS	9
4.	REQUIREMENTS	9
4.1	General	9
4.2	Deviations from Generic Specification	9
4.2.1	Deviations from Special In-process Controls	9
4.2.2	Deviations from Final Production Tests (Chart II)	9
4.2.3	Deviations from Burn-in and Electrical Measurements (Chart III)	9
4.2.4	Deviations from Qualification Tests (Chart IV)	9
4.2.5	Deviations from Lot Acceptance Tests (Chart V)	9
4.3	Mechanical Requirements	10
4.3.1	Dimension Check	10
4.3.2	Weight	10
4.3.3	Terminal Strength	10
4.4	Materials and Finishes	10
4.4.1	Case	10
4.4.2	Lead Material and Finish	10
4.5	Marking	10
4.5.1	General	10
4.5.2	Lead Identification	11
4.5.3	The SCC Component Number	11
4.5.4	Traceability Information	11
4.5.5	Marking of Small Components	11

PAGE 4

		<u>Page</u>
4.6	Electrical Measurements	11
4.6.1	Electrical Measurements at Room Temperature	11
4.6.2	Electrical Measurements at High and Low Temperatures	11
4.6.3	Circuits for Electrical Measurements	11
4.7	Burn-in Tests	12
4.7.1	Parameter Drift Values	12
4.7.2	Conditions for Burn-in	12
4.7.3	Electrical Circuits for Burn-in	12
4.7.4	Conditions and Electrical Circuits for High Temperature Reverse Bias	12
4.8	Environmental and Endurance Tests	17
4.8.1	Electrical Measurements on Completion of Environmental Tests	17
4.8.2	Electrical Measurements at Intermediate Points and on Completion of Endurance Tests	17
4.8.3	Conditions for Operating Life Tests (Part of Endurance Testing)	17
4.8.4	Electrical Circuits for Operating Life Tests	17
4.8.5	Conditions for High Temperature Storage Test (Part of Endurance Testing)	17
TABLES	<u>i</u>	
1(a)	Type Variants	6
1(b)	Maximum Ratings	6
2	Electrical Measurements at Room Temperature - d.c. Parameters	13
	Electrical Measurements at Room Temperature - a.c. Parameters	14
3	Electrical Measurements at High and Low Temperatures	15
4	Parameter Drift Values	15
5	Conditions for Burn-in and High Temperature Reverse Bias	16
6	Electrical Measurements at Intermediate Points and on Completion of Endurance Testing	18
FIGURE	<u>s</u>	
1	Parameter Derating Information and Safe Operating Area	7
2	Physical Dimensions	8
3	Functional Diagram	8
4	Test Circuits	N/A
5	Electrical Circuits for Burn-in and H.T.R.B.	16

APPENDICES (Applicable to specific Manufacturers only)

None.

Rev. 'A'

PAGE 5

ISSUE 1

1. GENERAL

1.1 SCOPE

This specification details the ratings, physical and electrical characteristics, test and inspection data for a Transistor, High Power, NPN, based on Type SDT 79823.

It shall be read in conjunction with ESA/SCC Generic Specification No. 5000, the requirements of which are supplemented herein.

1.2 COMPONENT TYPE VARIANTS

See Table 1(a).

1.3 MAXIMUM RATINGS

The maximum ratings, which shall not be exceeded at any time during use or storage, applicable to the transistors specified herein, are scheduled in Table 1(b).

1.4 PARAMETER DERATING INFORMATION AND SAFE OPERATING AREA

The derating information applicable to the transistors specified herein is shown in Figure 1.

1.5 PHYSICAL DIMENSIONS

The physical dimensions of the transistors specified herein are shown in Figure 2.

1.6 FUNCTIONAL DIAGRAM

The functional diagram showing lead identification, of the transistors specified herein, is shown in Figure 3.

2. APPLICABLE DOCUMENTS

The following documents form part of this specification and shall be read in conjunction with it:-

- (a) ESA/SCC Generic Specification No. 5000 for Discrete Semiconductor Components.
- (b) MIL-STD-750, Test Methods and Procedures for Semiconductor Devices.
- (c) ESA/SCC Basic Specification No. 23500, Requirements for Lead Materials and Finishes for Components for Space Application.
- (d) MIL-STD-105, Sampling Procedures and Tables for Inspection by Attributes.

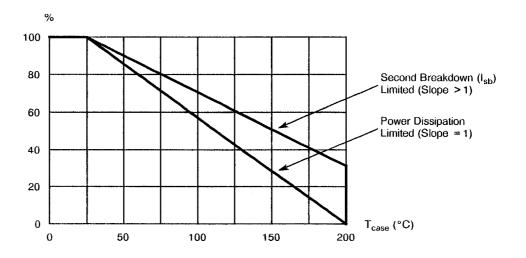
Rev. 'A'

PAGE 6

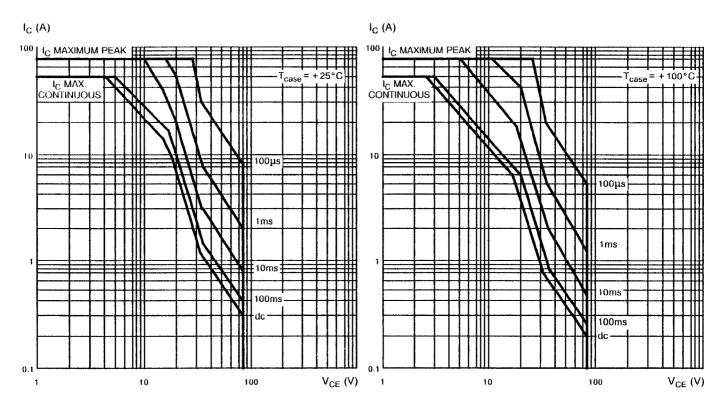
ISSUE 1

TABLE 1(a) - TYPE VARIANTS

VARIANT	BASED ON TYPE	CASE	FIGURE	LEAD MATERIAL AND FINISH
01	SDT 79823	TO-228 AB	2	H2


TABLE 1(b) - MAXIMUM RATINGS

No.	CHARACTERISTICS	SYMBOL	MAXIMUM RATINGS	UNIT	REMARKS
1	Collector-Base Voltage	V _{CBO}	100	V	
2	Collector-Emitter Voltage	V_{CEO}	80	V	
3	Emitter-Base Voltage	V_{EBO}	8.0	٧	
4	Collector Current	I _{C(PK)}	50	Α	Peak value
5	Base Current	l _B	5.0	Α	
6	Power Dissipation (see Figure 1)	P _{tot}	100	W	T _{case} = +100°C
7	Operating Temperature Range	T _{op}	-65 to +200	°C	T _{amb}
8	Storage Temperature Range	T _{stg}	-65 to +200	°C	
9	Soldering Temperature	T _{sol}	+ 265	°C	Time: ≤10s Distance from case ≥1.5mm

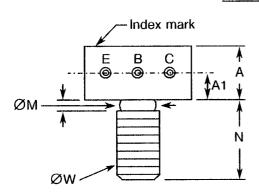


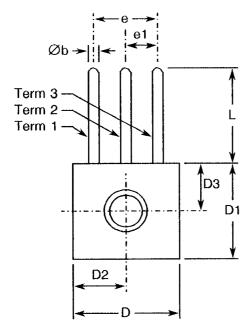
PAGE 7

FIGURE 1 - PARAMETER DERATING INFORMATION AND SAFE OPERATING AREA

Derating Curve for Forward-Biased Safe Area Plots

Forward-Biased Safe Area

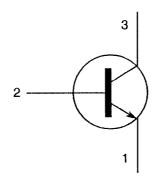

Forward-Biased Safe Area



PAGE 8

ISSUE 1

FIGURE 2 - PHYSICAL DIMENSIONS



SYMBOL	INC	HES	MILLIMETRES		
STIVIBUL	MIN.	MAX.	MIN.	MAX.	
Α	0.320	0.370	8.13	9.39	
A1	0.200	0.230	5.08	5.84	
Øb	0.035	0.045	0.89	1.14	
D	0.625	0.675	15.88	17.14	
D1	0.575	0.625	14.61	15.87	
D2	0.313	0.338	7.95	8.58	
D3	0.288	0.312	7.32	7.92	
е	0.365	0.385	9.28	9.77	
e1	0.182	0.192	4.63	4.87	
L	0.475	0.525	12.07	13.33	
Øм	0.223	0.249	5.67	6.32	
N	0.395	0.445	10.04	11.30	
N1	-	0.089	-	2.26	
ØW	1 -28 U	NF-2A	1 -28 U	NF-2A	

NOTES

- 1. Term 1 Emitter.
 - Term 2 Base.
 - Term 3 Collector.

FIGURE 3 - FUNCTIONAL DIAGRAM

- 1. Emitter.
- 2. Base.
- 3. Collector.

NOTES

1. Package isolated from connections 1, 2 and 3.

Rev. 'A'

PAGE 9

ISSUE 1

3. TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS

For the purpose of this specification, the terms, definitions, abbreviations, symbols and units specified in ESA/SCC Basic Specification No. 21300 shall apply. In addition, the following abbreviations are used:-

 $R_{TH(J-C)}$ = Thermal Resistance Junction to Case.

R_{INS} = Isolation Resistance.

I_{S/B} = Forward Bias Secondary Breakdown Current.

4. **REQUIREMENTS**

4.1 GENERAL

The complete requirements for procurement of the transistors specified herein are stated in this specification and ESA/SCC Generic Specification No. 5000. Deviations from the Generic Specification, applicable to this specification only, are listed in Para. 4.2.

Deviations from the applicable Generic Specification and this Detail Specification, formally agreed with specific Manufacturers on the basis that the alternative requirements are equivalent to the ESA/SCC requirements and do not affect the components' reliability, are listed in the appendices attached to this specification.

4.2 DEVIATIONS FROM GENERIC SPECIFICATION

4.2.1 <u>Deviations from Special In-process Controls</u>

None.

4.2.2 <u>Deviations from Final Production Tests (Chart II)</u>

None.

4.2.3 Deviations from Burn-in and Electrical Measurements (Chart III)

None.

4.2.4 Deviations from Qualification Tests (Chart IV)

None.

4.2.5 Deviations from Lot Acceptance Tests (Chart V)

None.

Rev. 'A'

PAGE 10

ISSUE 1

4.3 MECHANICAL REQUIREMENTS

4.3.1 Dimension Check

The dimensions of the transistors specified herein shall be checked. They shall conform to those shown in Figure 2.

4.3.2 Weight

The maximum weight of the transistors specified herein shall be 20 grammes.

4.3.3 <u>Terminal Strength</u>

The requirements for terminal strength testing are specified in Section 9 of ESA/SCC Generic Specification No. 5000. The test conditions shall be as follows:-

Test Condition:

'A' (Tension).

Applied Force:

66.75 Newtons (15 lb.f).

Duration:

15 seconds.

4.4 MATERIALS AND FINISHES

The materials and finishes shall be as specified herein. Where a definite material is not specified, a material which will enable the transistors specified herein to meet the performance requirements of this specification shall be used. Acceptance or approval of any constituent material does not guarantee acceptance of the finished product.

4.4.1 <u>Case</u>

Metal case, hermetically sealed, gold-plated as per MIL-C-45204, Type II, Grade 'C' or 'D' (optional), Class 0, 200-hour tensile load test waived.

4.4.2 Lead Material and Finish

The lead material shall be Type 'H' with Type '2' finish in accordance with the requirements of ESA/SCC Basic Specification No. 23500. (See Table 1(a) for Type Variants).

4.5 MARKING

4.5.1 General

The marking of all components delivered to this specification shall be in accordance with the requirements of ESA/SCC Basic Specification No. 21700. Each component shall be marked in respect of:-

- (a) Lead Identification.
- (b) The SCC Component Number.
- (c) Traceability Information.

PAGE 11

ISSUE

4.5.2 <u>Lead Identification</u>

Lead identification shall be as shown in Figures 2 and 3.

4.5.3 The SCC Component Number

Each component shall bear the SCC Component Number which shall be constituted and marked as follows:-

	<u>5203036011</u>	=
Detail Specification Number		
Type Variant		I
Testing Level (B or C, as applicable)		

4.5.4 <u>Traceability Information</u>

Each component shall be marked in respect of traceability information in accordance with the requirements of ESA/SCC Basic Specification No. 21700.

4.5.5 Marking of Small Components

When it is considered that the component is too small to accommodate the marking as specified above, as much as space permits shall be marked. The order of precedence shall be as follows:-

- (a) Lead Identification.
- (b) The SCC Component Number.
- (c) Traceability Information.

The marking information in full shall accompany each component in its primary package.

4.6 <u>ELECTRICAL MEASUREMENTS</u>

4.6.1 <u>Electrical Measurements at Room Temperature</u>

The parameters to be measured at room temperature are scheduled in Table 2. The measurements shall be performed at T_{amb} = +22 ±3 °C.

4.6.2 Electrical Measurements at High and Low Temperatures

The parameters to be measured at high and low temperatures are scheduled in Table 3.

4.6.3 <u>Circuits for Electrical Measurements</u>

Circuits for use in performing the electrical measurements listed in Tables 2 and 3 of this specification are shown in Figure 4.

PAGE 12

ISSUE 1

4.7 BURN-IN TESTS

4.7.1 Parameter Drift Values

The parameter drift values applicable to burn-in are specified in Table 4 of this specification. Unless otherwise stated, measurements shall be performed at T_{amb} = +22±3 °C. The parameter drift values (Δ) applicable to the parameters scheduled shall not be exceeded. In addition to these drift value requirements, the appropriate limit value specified for a given parameter in Table 2 shall not be exceeded.

4.7.2 Conditions for Burn-in

The requirements for burn-in are specified in Section 7 of ESA/SCC Generic Specification No. 5000. The conditions for burn-in shall be as specified in Table 5 of this specification.

4.7.3 <u>Electrical Circuits for Burn-in</u>

Circuits for use in performing the burn-in tests are shown in Figure 5 of this specification.

4.7.4 <u>Conditions and Electrical Circuits for High Temperature Reverse Bias</u>

The requirements for the high temperature reverse bias test are specified in Section 7 of ESA/SCC Generic Specification No. 5000. The conditions shall be as specified in Table 5, the electrical circuits to be used are shown in Figure 5 of this specification.

PAGE 13

ISSUE 1

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - d.c. PARAMETERS

			MIL-STD-750		LIM	IITS	
No.	CHARACTERISTICS	SYMBOL	TEST METHOD	TEST CONDITIONS	MIN	MAX	UNIT
1	Collector-Emitter Voltage	V _{CER}	3030	$I_C = 10$ mA, $R_{BE} = 1.0$ k Ω	100	-	V
2	Collector-Emitter Voltage	V _{CEO}	3030	I _C = 100mA, I _B = 0A Note 1	80	-	V
3	Emitter-Base Breakdown Voltage	BV _{EBO}	3026	l _E = 10µA	8.0	-	٧
4	Collector Cut-off Current	Ісво	3036	$V_{CB} = 60V, I_E = 0A$	<u>.</u>	500	nA
5	Collector Cut-off Current	ICER	3041	$V_{CE} = 50V$, $R_{BE} = 1.0k\Omega$. •	2.0	μА
6	Collector Cut-off Current	I _{CEX}	3041	V _{CE} = 80V, V _{EB} = 0.5V	-	10	μΑ
7	Emitter Cut-off Current	l _{EBO}	3061	$V_{EB} = 6.0V, I_C = 0A$	-	1.0	μА
8	Base-Emitter Saturation Voltage	V _{BEsat1}	3066	$I_C = 1.0A$, $I_B = 50mA$	-	0.9	٧
9	Saturation Voltage	V _{BEsat2}		I _C = 10A, I _B = 500mA Note 1	_	1.3	
10	Collector-Emitter	V _{CEsat1}	3071	I _C = 1.0A, I _B = 50mA	-	0.08	٧
11	Saturation Voltage	V _{CEsat2}		I _C = 10A, I _B = 500mA	-	0.5	
12		V _{CEsat3}		I _C = 25A, I _B = 2.5A Note 1	-	1.0	
13	Static Forward Current Transfer	h _{FE1}	3076	$V_{CE} = 0.5V$, $I_{C} = 1.0A$	55	165	-
14	Ratio	h _{FE2}		$V_{CE} = 0.5V, I_{C} = 5.0A$	40	150	
15	(Common Emitter)	h _{FE3}		$V_{CE} = 1.0V, I_{C} = 10A$	30	120	
16		h _{FE4}		$V_{CE} = 5.0V$, $I_{C} = 5.0A$ Note 1	30	-	
17	Thermal Resistance Junction to Case	R _{TH(J-C)}	3151	V _{CE} = 15V, I _C = 4.0A pw = 1.0s Note 2	-	1.0	°C/W
18	Isolation Resistance	R _{INS}	1016	V _{CB} = V _{CE} = V _{BE} = 0V 500V applied Notes 2 and 3	200	-	МΩ
19	Forward Bias Secondary Breakdown Current	I _{S/B}	-	V _{CE} = 50V, t = 10ms 5 pulses Note 2	2.0	-	Α

NOTES: See Page 14.

PAGE 14

ISSUE 1

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - a.c. PARAMETERS

No	CHARACTERISTICS	SYMBOL	MIL-STD-750	TEST CONDITIONS	LIM	ITS	LINIT
No.	CHARACTERISTICS	STIVIBUL	TEST METHOD	(NOTE 2)	MIN	MAX	UNIT
20	Dynamic Forward Current Transfer Ratio	h _{fe}	3206	$V_{CE} = 10V$ $I_C = 1.0A$ $f = 10MHz$	2.0	-	-
21	Output Capacitance	C _{obo}	3236	V _{CB} = 10V f = 1.0MHz	-	700	pF
22	Delay Time	t _d	-	$V_{CC} = 20V$ $R_L = 200\Omega$ $I_C = 10A$ $I_{B1} = 0A$ $I_{B2} = 500mA$	-	150	ns
23	Rise Time	t _r	-	$V_{CC} = 20V$ $R_L = 200\Omega$ $I_C = 10A$ $I_{B1} = -I_{B2} = 500mA$	-	500	ns
24	Storage Time	t _s	-	$V_{CC} = 20V$ $R_L = 200\Omega$ $I_C = 10A$ $I_{B1} = -I_{B2} = 500mA$	-	1500	ns
25	Fall Time	t _f	-	$V_{CC} = 20V$ $R_L = 200\Omega$ $I_C = 10A$ $I_{B1} = -I_{B2} = 500mA$	-	300	ns

NOTES

- 1. Pulsed measurement, $t_p = 300\mu s$, Duty Cycle $\leq 2.0\%$.
- 2. If more than 32 units have to be measured, the measurements shall be made on a sample basis in accordance with Para. 7.4.2 of ESA/SCC Generic Specification No. 5000, LTPD 7.
- 3. Isolation resistance is measured between emitter, base and collector terminals, connected together, and case.

FIGURE 4 - TEST CIRCUITS

Not applicable.

Rev. 'A'

PAGE 15

ISSUE 1

TABLE 3 - ELECTRICAL MEASUREMENTS AT HIGH AND LOW TEMPERATURES

No.	CHARACTERISTICS	TERISTICS SYMBOL MIL-STD-750 TEST CONDITIONS		TEST CONDITIONS	LIM	ITS	UNIT
INO.	CHARACTERISTICS	STIVIBUL	TEST METHOD	TEST CONDITIONS	MIN	MAX	UNIT
1	Collector Cut-off Current	I _{CER}	3041	$V_{CE} = 50V, R_{BE} = 1.0k\Omega$ $T_{amb} = +100$ °C	-	50	μΑ
2	Base-Emitter Saturation Voltage	V _{BEsat2}	3066	I _C = 10A, I _B = 500mA T _{amb} = -55°C, Note 1	-	1.5	V
3	Collector-Emitter Saturation Voltage	V _{CEsat1}	3071	I _C = 1.0A, I _B = 50mA T _{amb} = +100°C, Note 1	-	0.12	V
4		V _{CEsat1}		I _C = 1.0A, I _B = 50mA T _{amb} = -55°C, Note 1	+	0.07	:
5		V _{CEsat2}		I _C = 10A, I _B = 500mA T _{amb} = +100°C, Note 1	-	0.6	
6		V _{CEsat2}		I _C = 10A, I _B = 500mA T _{amb} = -55°C, Note 1	-	0.4	
7	Static Forward Transfer Ratio	h _{FE1}	3076	$V_{CE} = 0.5V$, $I_{C} = 1.0A$ $T_{amb} = -55$ °C, Note 1	40	-	-
8	(Common Emitter)	h _{FE2}		$V_{CE} = 0.5V$, $I_{C} = 5.0A$ $T_{amb} = -55^{\circ}C$, Note 1	20	-	
9		h _{FE3}		V _{CE} = 1.0V, I _C = 10A T _{amb} = -55°C, Note 1	15	-	

NOTES

TABLE 4 - PARAMETER DRIFT VALUES

No.	CHARACTERISTICS	SYMBOL	MIL-STD-750 TEST METHOD	TEST CONDITIONS	CHANGE LIMITS (Δ)	UNIT
1	Collector Cut-off Current	Ісво	3036	V _{CB} = 60V	±50 or +50, -100	nA %
2	Collector-Emitter Saturation Voltage 2	V _{CE(SAT)2}	3071	I _C = 10A I _B = 500mA	± 50	mV
3	Base-Emitter Saturation Voltage 2	V _{BE(SAT)2}	3066	I _C = 10A I _B = 500mA	± 130	mV
4	Static Forward Current Transfer Ratio 4	h _{FE4}	3076	V _{CE} = 5.0V I _C = 5.0A	± 15	%

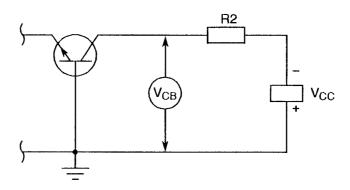
^{1.} Pulse measurement: Pulse Length ≤ 300 µs, Duty Cycle ≤ 2.0%.

PAGE 16

ISSUE 1

TABLE 5 - CONDITIONS FOR BURN-IN AND HIGH TEMPERATURE REVERSE BIAS

CONDITIONS FOR HIGH TEMPERATURE REVERSE BIAS


No.	CHARACTERISTICS	SYMBOL CONDITIONS		UNIT
1	Case Temperature	T _{case}	+ 150	°C
2	Collector-Base Voltage	V _{CB}	80	٧
3	Duration	t	96	Hrs

CONDITIONS FOR BURN-IN

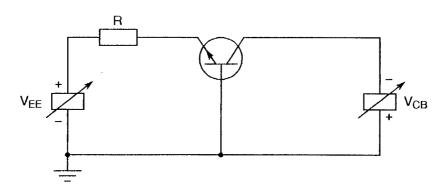

No.	CHARACTERISTICS	SYMBOL	CONDITIONS	UNIT
1	Case Temperature	T _{case}	+ 100	°C
2	Collector-Emitter Voltage	V _{CE}	10	٧
3	Power Dissipation	P _{tot}	100	W

FIGURE 5 - ELECTRICAL CIRCUITS FOR BURN-IN AND HIGH TEMPERATURE REVERSE BIAS

ELECTRICAL CIRCUIT FOR HIGH TEMPERATURE REVERSE BIAS

ELECTRICAL CIRCUIT FOR BURN-IN

PAGE 17

ISSUE 1

4.8 <u>ENVIRONMENTAL AND ENDURANCE TESTS (CHARTS IV AND V OF ESA/SCC GENERIC SPECIFICATION NO. 5000)</u>

4.8.1 <u>Electrical Measurements on Completion of Environmental Tests</u>

The parameters to be measured on completion of environmental tests are scheduled in Table 2. The measurements shall be performed at $T_{amb} = +22 \pm 3$ °C.

4.8.2 <u>Electrical Measurements at Intermediate Points and on Completion of Endurance Tests</u>

The parameters to be measured at intermediate points and on completion of endurance testing are scheduled in Table 6 of this specification.

4.8.3 Conditions for Operating Life Tests (Part of Endurance Testing)

The requirements for operating life testing are specified in Section 9 of ESA/SCC Generic Specification No. 5000. The conditions for operating life testing shall be the same as specified in Table 5 for the burn-in test.

4.8.4 Electrical Circuits for Operating Life Tests

The circuit to be used for performing the operating life tests shall be the same as that shown in Figure 5 for burn-in.

4.8.5 Conditions for High Temperature Storage Test (Part of Endurance Testing)

The requirements for the high temperature storage test are specified in ESA/SCC Generic Specification No. 5000. The temperature to be applied shall be the maximum storage temperature specified in Table 1(b) of this specification.

PAGE 18

ISSUE 1

TABLE 6 - ELECTRICAL MEASUREMENTS AT INTERMEDIATE POINTS AND ON COMPLETION OF ENDURANCE TESTING

No.	CHARACTERISTICS	SYMBOL	MIL-STD-750 TEST METHOD	TEST CONDITIONS	LIMITS		UNIT
					MIN.	MAX.	UNIT
1	Collector Cut-off Current	Ісво	3041	V _{CB} = 60V	-	500	nA
2	Static Forward Current Transfer Ratio 4	h _{FE4}	3076	V _{CE} = 5.0V I _C = 5.0A Note 1	30	-	-
3	Collector Saturation Voltage 2	V _{CEsat2}	3071	I _C = 10A I _B = 0.5A Note 1	-	0.5	V
4	Base-Emitter Saturation Voltage 2	V _{BEsat2}	3066	I _C = 10A I _B = 0.5A Note 1	-	1.3	V

NOTES

1. Pulsed measurement: Pulse Length ≤300μs, Duty Cycle ≤2.0%.