

Pages 1 to 58

# CRYSTAL UNITS IN METAL HOLDER, BASED ON TYPE T1507,

FREQUENCY RANGE 2.5 - 50MHZ

ESCC Detail Specification No. 3501/009

(Follow-up specification to ESCC Detail Specification Nos. 3501/002)

## ISSUE 4 March 2010





PAGE

ISSUE 4

#### LEGAL DISCLAIMER AND COPYRIGHT

European Space Agency, Copyright © 2010. All rights reserved.

The European Space Agency disclaims any liability or responsibility, to any person or entity, with respect to any loss or damage caused, or allleged to be caused, directly or indirectly by the use and application of this ESCC publication.

This publication, without the prior permission of the European Space Agency and provided that it is not used for a commercial purpose, may be:

- copied in whole in any medium without alteration or modification.

- copied in part, in any medium, provided that the ESCC document identification, comprising the ESCC symbol, document number and document issue, is removed.



PAGE 2

ISSUE 4

#### **DOCUMENTATION CHANGE NOTICE**

(Refer to https://escies.org for ESCC DCR content)

| Specification upissued to incorporate technical and editorial changes per D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CRs.                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | %                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \(\frac{1}{2}\)                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                  |
| and the second s | parawa dan seria dan<br>Barangan dan seria d |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                  |



PAGE 3

ISSUE 4

## **TABLE OF CONTENTS**

| ٠.                         |                                               |                                             |            |                 |          | Page |
|----------------------------|-----------------------------------------------|---------------------------------------------|------------|-----------------|----------|------|
| 1.                         | GENERAL                                       |                                             |            |                 |          | 5    |
|                            |                                               |                                             |            |                 |          | 5    |
| 1.1                        | Scope Component Type Variants                 |                                             |            |                 |          | 5    |
| 1.2                        | Maximum Ratings                               |                                             |            |                 | ,        | 5    |
| 1.3                        | <u> </u>                                      |                                             |            |                 |          | 5    |
| 1.4                        | Physical Dimensions                           |                                             |            |                 |          | 5    |
| 1.5                        | Functional Diagram                            |                                             |            | •               |          | 3    |
| 2.                         | APPLICABLE DOCUMENTS                          | W                                           |            |                 |          | 14   |
| 3.                         | TERMS, DEFINITIONS, ABBREVIATION              | IS, SYMBOLS AND                             | UNITS      |                 |          | 14   |
| 4.                         | REQUIREMENTS                                  |                                             |            |                 | -5       | 14   |
| 4.4                        | Concret                                       |                                             |            | *               |          | 14   |
| 4.1                        | General Deviations from Generic Specification |                                             |            |                 |          | 14   |
| 4.2                        | Deviations from Special In-process Contro     | le ·                                        |            |                 |          | 14   |
| 4.2.1<br>4.2.2             | Deviations from Final Production Tests        | 13                                          |            |                 | star a . | 14   |
| 4.2.3                      | Deviations from Burn-in Tests                 | cased r . 12mg - 40 ml r . 40 megrass " - v |            |                 |          | 14   |
| 4.2.3<br>4.2.4             | Deviations from Qualification Tests           |                                             |            |                 |          | 14   |
| 4.2. <del>4</del><br>4.2.5 | Deviations from Lot Acceptance Tests          |                                             |            |                 |          | 14   |
| 4.2.5                      | Mechanical Requirements                       |                                             |            |                 |          | 15   |
| 4.3.1                      | Dimension Check                               |                                             |            |                 |          | 15   |
| 4.3.2                      | Weight                                        |                                             |            |                 |          | . 15 |
| 4.3.3                      | Robustness of Terminations                    |                                             |            |                 |          | 15   |
| 4.4                        | Materials and Finishes                        |                                             |            |                 |          | 15   |
| 4.4.1                      | Case                                          |                                             | i          |                 |          | .15  |
| 4.4.2                      | Lead Material and Finish                      |                                             |            |                 |          | 15   |
| 4.5                        | Marking                                       |                                             |            |                 |          | 15   |
| 4.5.1                      | General                                       |                                             |            |                 |          | 15   |
| 4.5.2                      | The ESCC Component Number                     |                                             |            |                 |          | 15   |
| 4.5.3                      | Characteristics                               |                                             |            |                 |          | 16   |
| 4.5.4                      | Traceability Information                      |                                             |            |                 |          | 16   |
| 4.5.5                      | Manufacturer's Name, Symbol or Code           |                                             |            |                 |          | 16   |
| 4.6                        | Electrical Measurements                       |                                             |            |                 |          | 16   |
| 4.6.1                      | Electrical Measurements at Reference Te       |                                             |            |                 |          | 16   |
| 4.6.2                      | Electrical Measurements at High and Low       | Temperatures                                |            |                 |          | 16   |
| 4.6.3                      | Circuits for Electrical Measurements          |                                             |            |                 |          | 16   |
| 4.7                        | Burn-in Tests                                 |                                             |            |                 |          | 16   |
| 4.7.1                      | Parameter Drift Values                        |                                             |            |                 |          | 16   |
| 4.7.2                      | Conditions for Burn-in                        | , 44. Mai April                             |            |                 |          | 16   |
| 4.7.3                      | Electrical Circuits for Burn-in               |                                             |            |                 |          | 16   |
| 4.8                        | Environmental and Endurance Tests             |                                             |            |                 |          | 19   |
| 4.8.1                      | Measurements and Inspections on Compl         | letion of Environmer                        | ital Tests |                 | ·        | 19   |
| 4.8.2                      | Measurements and Inspections at Interme       | ediate Points and on                        | Completion | on of Endurance | e lests  | 19   |
| 483                        | Conditions for Operating Life Test            | •                                           |            |                 |          | 19   |



PAGE 4 ISSUE 4

|       |                                           |                     |                                                                                                                                                                             |                 | Page |
|-------|-------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------|
| TABLE | <u>s</u>                                  |                     |                                                                                                                                                                             |                 |      |
| 1(a)  | Type Variant Summary                      |                     |                                                                                                                                                                             |                 | 6    |
| - ()  | Type Variant Detailed Information         |                     |                                                                                                                                                                             | 8               | 23   |
| 1(b)  | Maximum Ratings                           |                     |                                                                                                                                                                             |                 | 9    |
| 1(c)  | Format for Individual Tables 1(a)         |                     |                                                                                                                                                                             |                 | 10   |
| 2     | Electrical Measurements at Reference      |                     |                                                                                                                                                                             |                 | 17   |
| 3     | Electrical Measurements at High and L     | ow Temperatures     |                                                                                                                                                                             |                 | . 18 |
| 4     | Parameter Drift Values                    |                     |                                                                                                                                                                             |                 | 18   |
| 5     | Conditions for Burn-in and Life Test      | 3 w                 |                                                                                                                                                                             |                 | - 18 |
| 6     | Measurements and Inspections on Cor       |                     |                                                                                                                                                                             |                 | 20   |
|       | at Intermediate Points and on Complete    | ion of Endurance Te | esting                                                                                                                                                                      |                 |      |
| FIGUE | RES_                                      |                     |                                                                                                                                                                             | C               |      |
| 1     | Parameter Derating Information            |                     |                                                                                                                                                                             |                 | N/A  |
| 2     | Physical Dimensions                       |                     |                                                                                                                                                                             |                 | 13   |
| 3     | Functional Diagram                        |                     |                                                                                                                                                                             |                 | 13   |
| 4     | Circuits for Electrical Measurements      |                     |                                                                                                                                                                             | 7               | N/A  |
| 5     | Electrical Circuit for Burn-in and Life T | est                 | germania (del della rigio), sensoro il solo subsidiario della diagnostica.<br>Il solo solo solo sensoro il solo solo subsidiario della solo solo solo solo solo solo solo s | இத்த வெளி<br>மே | N/A  |
| A DDE | NDICES (Applicable to specific Manufactu  | urers only)         |                                                                                                                                                                             |                 |      |
| AFFE  | TEICES (Applicable to specific Mailulacti | urors orny)         |                                                                                                                                                                             |                 |      |
| Λ     | DAVON (E)                                 |                     |                                                                                                                                                                             |                 | 58   |



PAGE

ISSUE 4

#### 1.1 SCOPE

This specification details the values, physical and electrical characteristics, test and inspection data for Crystal Units in Metal Holder, based on Type 807, Frequency Range 4.0 - 140MHz.

It shall be read in conjunction with ESCC Generic Specification No. 3501, the requirements for which are supplemented herein.

This is a follow-up specification to ESCC Detail Specification No. 3501/001. ESCC 3501/001 should also be consulted by:-

- (a) Users seeking information concerning the availability of variants additional to those listed in this specification.
- (b) Manufacturers before requesting the introduction of a new variant in accordance with the requirements of Para. 1.2 of this specification.

#### 1.2 COMPONENT TYPE VARIANTS

A list of the type variants of the crystal units specified herein, which are also covered by this specification, is given in "Table 1(a) - Type Variant Summary".

For each type variant, the full electrical and physical characteristics are given in individual Tables 1(a) - "Type Variant Detailed Information" at the end of this specification.

The contents of the individual Tables 1(a) shall be as shown in Table 1(c) and the characteristics therein listed shall relate to the design parameters of the individual crystal units, optimised for the intended application.

The specific characteristics shall be negotiated between the Manufacturer and the Orderer. The Manufacturer shall then apply to the ESCC Secretariat for a type variant number for each individual crystal unit concerned, by sending a finalised Table 1(a) which shall also be copied to the ESCC Executive.

#### 1.3 MAXIMUM RATINGS

The maximum ratings, which shall not be exceeded at any time during use or storage, applicable to the crystal units specified herein, are as scheduled in Table 1(b).

#### 1.4 PHYSICAL DIMENSIONS

The physical dimensions of the crystal units specified herein are shown in Figure 2.

#### 1.5 FUNCTIONAL DIAGRAM

The functional diagram showing lead identification of the crystal units specified herein is shown in Figure 3.

PAGE

ISSUE 4

## TABLE 1(a) - TYPE VARIANT SUMMARY

N.B. For additional information concerning type variants, see Para. 1.1.

| Variant         Resonance Frequency (MHz)         Load Capacitance (C <sub>L</sub> pF)         Reference Temp. (To °C)         Operating Temp. (To °C)         Intended Application         Lead Finish           01         4.194304         30         +30         −10 to +80         −         2           02         8.192         50         +25         −25 to +80         −         3 or 4           03         26.0         ∞         +25         −25 to +80         −         2           04         7.198         30         +25         −55 to +105         −         2           05         5.0         30         +25         −40 to +80         −         2           06         18.0         30         +25         −55 to +105         −         2           07         10.0         30         +25         −55 to +100         XO         2           08         10.0         30         +25         −55 to +100         XO         2           10         4.0         30         +25         −20 to +80         XO         2           11         10.0         30         +25         −20 to +80         XO         2           12         8.0         ∞ <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th><u>:</u></th>                                           |         |           |             |       |              |          | <u>:</u> |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|-------------|-------|--------------|----------|----------|
| 02 8.192 50 +25 -25 to +80 - 3 or 4 03 26.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Variant | Frequency | Capacitance | Temp. | Range        | 1        |          |
| 03         26.0         ∞         +25         −25 to +80         -         2           04         7.198         30         +25         −55 to +105         -         2           05         5.0         30         +25         −40 to +80         -         2           06         18.0         30         +25         −45 to +80         -         2           07         10.0         30         +25         −55 to +125         -         2           08         10.0         30         +25         −55 to +100         XO         2           09         50.0         12         +25         −55 to +100         XO         2           10         4.0         30         +25         −55 to +100         XO         2           11         10.0         30         +25         −55 to +100         XO         2           12         8.0         ∞         +25         −20 to +80         XO         2           12         8.0         ∞         +25         −20 to +80         XO         2           13         10.0         ∞         +25         −20 to +80         TCXO         2 <t< td=""><td>01</td><td>4.194304</td><td>30</td><td>+ 30</td><td>-10 to +80</td><td>•</td><td>2</td></t<>                                                                                           | 01      | 4.194304  | 30          | + 30  | -10 to +80   | •        | 2        |
| 04 7.198 30 +25 -55 to +105 - 2 05 5.0 30 +25 -40 to +80 - 2 06 18.0 30 +25 -45 to +80 - 2 07 10.0 30 +25 -55 to +125 - 2 08 10.0 30 +25 -55 to +100 XO 2 09 50.0 12 +25 -40 to +80 XO 2 11 10.0 30 +25 -55 to +100 XO 2 11 10.0 30 +25 -55 to +100 XO 2 12 8.0 ∞ +25 -55 to +100 XO 2 13 10.0 ∞ +25 -20 to +80 XO 2 14 6.4 30 +25 -20 to +80 XO 2 15 12.605 ∞ +25 -20 to +80 XO 4 15 12.605 ∞ +25 -20 to +80 XO 4 15 12.666 ∞ +25 -20 to +80 XO 2 17 12.666 ∞ +25 -20 to +80 XO 2 18 5.760 30 +25 -35 to +70 TCXO 2 19 8.602893 30 +60 -40 to +85 XO 2 21 20.0 30 +25 -30 to +70 XO 2 22 13.0 30 +25 -30 to +70 XO 2 23 10.0 30 +25 -30 to +70 XO 2 24 5.242880 30 +60 -40 to +85 XO 2 25 5.625 30 +25 -30 to +70 XO 2 28 3.494400 35 +25 -55 to +100 XO 2 30 30 +25 -55 to +100 XO 2 31 1.059300 50 +25 -55 to +100 XO 2 33 11.059300 50 +25 -55 to +100 XO 2 34 12.007125 30 +25 -55 to +100 XO 2 35 11.059300 50 +25 -55 to +100 XO 2 36 11.059300 50 +25 -55 to +100 XO 2 37 10.0 30 +25 -55 to +100 XO 2 38 11.059300 50 +25 -55 to +100 XO 2 39 38 11.059300 50 +25 -55 to +100 XO 2 30 30 +25 -55 to +100 XO 2 31 1.059300 50 +25 -55 to +100 XO 2 31 1.059300 50 +25 -55 to +100 XO 2                                                                                                     | 02      | 8.192     | 50          | + 25  | -25 to +80   | -        | 3 or 4   |
| 05 5.0 30 +25 -40 to +80 - 2  06 18.0 30 +25 -45 to +80 - 2  07 10.0 30 +25 -55 to +125 - 2  08 10.0 30 +25 -55 to +100 XO 2  09 50.0 12 +25 -20 to +80 XO 2  10 4.0 30 +25 -55 to +100 XO 2  11 10.0 30 +25 -55 to +100 XO 2  12 8.0 ∞ +25 -20 to +80 XO 2  13 10.0 ∞ +25 -20 to +80 XO 2  14 6.4 30 +25 -20 to +80 XO 2  15 12.605 ∞ +25 -20 to +80 TCXO 2  16 7.0 30 +25 -20 to +80 TCXO 2  17 12.665 ∞ +25 -20 to +60 TCXO 2  18 5.760 30 +25 -35 to +70 TCXO 2  19 8.602893 30 +25 -35 to +70 TCXO 2  19 8.602893 30 +60 -40 to +85 XO 2  21 20.0 30 +25 -30 to +80 XO 2  22 13.0 30 +25 -30 to +70 XO 2  22 13.0 30 +25 -30 to +70 XO 2  23 10.0 30 +25 -30 to +70 XO 2  24 5.242880 30 +25 -30 to +70 XO 2  25 5.625 30 +25 -40 to +85 XO 2  26 11.250 30 +25 -55 to +100 XO 2  27 8.0 ∞ +25 -55 to +100 XO 2  28 3.494400 35 +25 -55 to +100 XO 2  30 3.072 30 +25 -55 to +100 XO 2  31 1.059300 50 +25 -40 to +80 XO 2  33 11.059300 50 +25 -55 to +100 XO 2  34 12.007125 30 +25 -40 to +80 XO 2  35 11.059300 50 +25 -55 to +100 XO 2  36 31 1.059300 50 +25 -55 to +100 XO 2  37 36 11.059300 50 +25 -55 to +100 XO 2  38 311.059300 50 +25 -55 to +100 XO 2  39 36 11.059300 50 +25 -55 to +100 XO 2                                                                                  | 03      | 26.0      | 8           | + 25  | -25 to +80   |          | 2        |
| 06 18.0 30 +25 -45 to +80 - 2  07 10.0 30 +25 -55 to +125 - 2  08 10.0 30 +25 -55 to +100 XO 2  09 50.0 12 +25 -20 to +80 XO 2  10 4.0 30 +25 -55 to +100 XO 2  11 10.0 30 +25 -55 to +100 XO 2  12 8.0 ∞ +25 -55 to +100 XO 2  13 10.0 ∞ +25 -20 to +80 XO 2  14 6.4 30 +25 -20 to +80 XO 2  15 12.605 ∞ +25 -20 to +80 XO 4  15 12.605 ∞ +25 -20 to +80 XO 4  16 7.0 30 +25 -35 to +70 TCXO 2  17 12.665 ∞ +25 -20 to +80 TCXO 2  18 5.760 30 +25 -35 to +70 TCXO 2  19 8.602893 30 +60 -40 to +90 XO 2  21 20.0 30 +25 -30 to +70 XO 2  21 20.0 30 +25 -30 to +80 XO 2  22 13.0 30 +25 -30 to +70 XO 2  23 10.0 30 +25 -55 to +100 XO 2  24 5.242880 30 +25 -55 to +100 XO 2  27 8.0 ∞ +25 -50 to +100 XO 2  28 3.494400 35 +25 -50 to +100 XO 2  30 3.072 30 +25 -55 to +100 XO 2  31 1.059300 50 +25 -55 to +100 XO 2  33 11.059300 50 +25 -55 to +100 XO 2  34 12.007125 30 +25 -55 to +100 XO 2  35 11.059300 50 +25 -55 to +100 XO 2  36 11.059300 50 +25 -55 to +100 XO 2  37 11.059300 50 +25 -55 to +100 XO 2  38 11.059300 50 +25 -55 to +100 XO 2  39 38 31 1.059300 50 +25 -55 to +100 XO 2  30 3.072 30 +25 -55 to +100 XO 2  31 1.059300 50 +25 -55 to +100 XO 2  33 11.059300 50 +25 -55 to +100 XO 2  34 12.007125 30 +25 -55 to +100 XO 2  35 11.059300 50 +25 -55 to +100 XO 2 | 04      | 7.198     | 30          | + 25  | -55 to +105  | -        | 2        |
| 07         10.0         30         +25         −55 to +125         −         2           08         10.0         30         +25         −55 to +100         XO         2           09         50.0         12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 05      | 5.0       | 30          | + 25  | -40 to +80   | -        | 2        |
| 08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 06      | 18.0      | 30          | + 25  | -45 to +80   | <b>.</b> | 2        |
| 09         50.0         12         +25         −20 to +80         VCXO         2           10         4.0         30         +25         −40 to +80         XO         2           11         10.0         30         +25         −55 to +100         XO         2           12         8.0         ∞         +25         −20 to +80         XO         2           13         10.0         ∞         +25         −20 to +80         TCXO         2           14         6.4         30         +25         −45 to +80         XO         4           15         12.605         ∞         +25         −20 to +60         TCXO         2           16         7.0         30         +25         −35 to +70         TCXO         2           17         12.665         ∞         +25         −20 to +80         TCXO         2           18         5.760         30         +25         −20 to +80         TCXO         2           19         8.602893         30         +25         −20 to +80         XO         2           20         15.104893 <td>07</td> <td>10.0</td> <td>30</td> <td>+ 25</td> <td>-55 to +125</td> <td>-</td> <td>2</td>                                                                                                                                               | 07      | 10.0      | 30          | + 25  | -55 to +125  | -        | 2        |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 08      | 10.0      | 30          | + 25  | -55 to +100  | XO       | 2        |
| 11         10.0         30         +25         −55 to +100         XO         2           12         8.0         ∞         +25         −20 to +80         XO         2           13         10.0         ∞         +25         −20 to +80         TCXO         2           14         6.4         30         +25         −45 to +80         XO         4           15         12.605         ∞         +25         −20 to +60         TCXO         2           16         7.0         30         +25         −35 to +70         TCXO         2           17         12.665         ∞         +25         −20 to +80         TCXO         2           18         5.760         30         +25         −40 to +90         XO         2           19         8.602893         30         +60         −40 to +85         XO         2           20         15.104893         ∞         +25         −20 to +80         XO         2           21         20.0         30         +25         −30 to +70         XO         2           22         13.0         30         +25         −30 to +70         XO         2                                                                                                                                                                                   | .09     | 50.0      | 12.         | + 25  | -20 to +80   | VCXO     | , 2      |
| 12     8.0     ∞     +25     -20 to +80     XO     2       13     10.0     ∞     +25     -20 to +80     TCXO     2       14     6.4     30     +25     -45 to +80     XO     4       15     12.605     ∞     +25     -20 to +60     TCXO     2       16     7.0     30     +25     -35 to +70     TCXO     2       17     12.665     ∞     +25     -20 to +80     TCXO     2       18     5.760     30     +25     -40 to +90     XO     2       19     8.602893     30     +60     -40 to +85     XO     2       20     15.104893     ∞     +25     -20 to +80     XO     2       21     20.0     30     +25     -30 to +70     XO     2       22     13.0     30     +25     -30 to +70     XO     2       22     13.0     30     +25     -55 to +100     XO     2       23     10.0     30     +25     -55 to +100     XO     2       24     5.242880     30     +60     -40 to +85     XO     2       25     5.625     30     +25     -50 to +100     <                                                                                                                                                                                                                                                                                                                                        | 10      | 4.0       | 30          | + 25  | -40 to +80   | XO       | 2        |
| 13       10.0       ∞       +25       -20 to +80       TCXO       2         14       6.4       30       +25       -45 to +80       XO       4         15       12.605       ∞       +25       -20 to +60       TCXO       2         16       7.0       30       +25       -35 to +70       TCXO       2         17       12.665       ∞       +25       -20 to +80       TCXO       2         18       5.760       30       +25       -40 to +90       XO       2         19       8.602893       30       +60       -40 to +85       XO       2         20       15.104893       ∞       +25       -20 to +80       XO       2         21       20.0       30       +25       -30 to +70       XO       2         22       13.0       30       +25       -40 to +80       XO       2         23       10.0       30       +25       -55 to +100       XO       2         24       5.242880       30       +60       -40 to +85       XO       2         25       5.625       30       +25       -50 to +100       XO       2     <                                                                                                                                                                                                                                                                | 11      | 10.0      | 30          | + 25  | -55 to +100  | XO       | 2        |
| 14       6.4       30       +25       -45 to +80       XO       4         15       12.605       ∞       +25       -20 to +60       TCXO       2         16       7.0       30       +25       -35 to +70       TCXO       2         17       12.665       ∞       +25       -20 to +80       TCXO       2         18       5.760       30       +25       -40 to +90       XO       2         19       8.602893       30       +60       -40 to +85       XO       2         20       15.104893       ∞       +25       -20 to +80       XO       2         21       20.0       30       +25       -30 to +70       XO       2         22       13.0       30       +25       -30 to +70       XO       2         22       13.0       30       +25       -40 to +80       XO       2         23       10.0       30       +25       -55 to +100       XO       2         24       5.242880       30       +60       -40 to +85       XO       2         25       5.625       30       +25       -50 to +100       XO       2 </td <td>12</td> <td>8.0</td> <td>00</td> <td>+ 25</td> <td>-20 to +80</td> <td>XO</td> <td>2</td>                                                                                                                                                                    | 12      | 8.0       | 00          | + 25  | -20 to +80   | XO       | 2        |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13      | 10.0      | ∞           | + 25  | -20 to +80   | TCXO     | 2        |
| 16         7.0         30         +25         -35 to +70         TCXO         2           17         12.665         \$\infty\$         +25         -20 to +80         TCXO         2           18         5.760         30         +25         -40 to +90         XO         2           19         8.602893         30         +60         -40 to +85         XO         2           20         15.104893         \$\infty\$         +25         -20 to +80         XO         2           21         20.0         30         +25         -30 to +70         XO         2           21         20.0         30         +25         -30 to +70         XO         2           22         13.0         30         +25         -40 to +80         XO         2           23         10.0         30         +25         -55 to +100         XO         2           24         5.242880         30         +60         -40 to +85         XO         2           25         5.625         30         +25         -50 to +100         XO         2           26         11.250         30         +25         -30 to +70         XO         <                                                                                                                                                          | 14      | 6.4       | 30          | + 25  | -45 to +80   | XO       | 4        |
| 17     12.665     ∞     +25     -20 to +80     TCXO     2       18     5.760     30     +25     -40 to +90     XO     2       19     8.602893     30     +60     -40 to +85     XO     2       20     15.104893     ∞     +25     -20 to +80     XO     2       21     20.0     30     +25     -30 to +70     XO     2       22     13.0     30     +25     -40 to +80     XO     2       23     10.0     30     +25     -55 to +100     XO     2       24     5.242880     30     +60     -40 to +85     XO     2       25     5.625     30     +25     -40 to +85     XO     2       26     11.250     30     +25     -50 to +100     XO     2       27     8.0     ∞     +25     -30 to +70     XO     2       28     3.494400     35     +25     -55 to +100     XO     2       29     3.832     30     +25     -40 to +80     XO     2       30     3.072     30     +25     -40 to +80     XO     2       31     4.0     30     +25     -55 to +100                                                                                                                                                                                                                                                                                                                                          | 15      | 12.605    | ∞           | + 25  | -20 to +60   | TCXO     | 2        |
| 18     5.760     30     +25     -40 to +90     XO     2       19     8.602893     30     +60     -40 to +85     XO     2       20     15.104893     ∞     +25     -20 to +80     XO     2       21     20.0     30     +25     -30 to +70     XO     2       22     13.0     30     +25     -40 to +80     XO     2       23     10.0     30     +25     -55 to +100     XO     2       24     5.242880     30     +60     -40 to +85     XO     2       25     5.625     30     +25     -50 to +100     XO     2       26     11.250     30     +25     -50 to +100     XO     2       27     8.0     ∞     +25     -30 to +70     XO     2       28     3.494400     35     +25     -55 to +100     XO     2       29     3.832     30     +25     -40 to +80     XO     2       30     3.072     30     +25     -40 to +80     XO     2       31     4.0     30     +25     -55 to +125     XO     2       32     16.0     30     +25     -55 to +100                                                                                                                                                                                                                                                                                                                                           | 16      | 7.0       | 30          | + 25  | -35 to +70   | TCXO     | 2        |
| 19 8.602893 30 +60 -40 to +85 XO 2 20 15.104893 ∞ +25 -20 to +80 XO 2 21 20.0 30 +25 -30 to +70 XO 2 22 13.0 30 +25 -40 to +80 XO 2 23 10.0 30 +25 -55 to +100 XO 2 24 5.242880 30 +60 -40 to +85 XO 2 25 5.625 30 +25 -40 to +85 XO 2 26 11.250 30 +25 -50 to +100 XO 2 27 8.0 ∞ +25 -30 to +70 XO 2 28 3.494400 35 +25 -50 to +100 XO 2 29 3.832 30 +25 -55 to +100 XO 2 30 3.072 30 +25 -55 to +100 XO 2 31 4.0 30 +25 -40 to +80 XO 2 31 4.0 30 +25 -40 to +80 XO 2 32 16.0 30 +25 -55 to +125 XO 2 33 11.059200 30 +25 -55 to +100 XO 2 34 12.007125 30 +25 -55 to +100 XO 2 35 11.059300 50 +25 -55 to +100 XO 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17      | 12.665    | 00          | + 25  | -20 to +80   | TCXO     | 2        |
| 20       15.104893       ∞       +25       -20 to +80       XO       2         21       20.0       30       +25       -30 to +70       XO       2         22       13.0       30       +25       -40 to +80       XO       2         23       10.0       30       +25       -55 to +100       XO       2         24       5.242880       30       +60       -40 to +85       XO       2         25       5.625       30       +25       -40 to +85       XO       2         26       11.250       30       +25       -50 to +100       XO       2         27       8.0       ∞       +25       -30 to +70       XO       2         28       3.494400       35       +25       -55 to +100       XO       2         29       3.832       30       +25       -40 to +80       XO       2         30       3.072       30       +25       -40 to +80       XO       2         31       4.0       30       +25       -55 to +125       XO       2         32       16.0       30       +25       -55 to +100       XO       2                                                                                                                                                                                                                                                                          | 18      | 5.760     | 30          | + 25  | - 40 to + 90 | XO       | 2        |
| 21       20.0       30       +25       -30 to +70       XO       2         22       13.0       30       +25       -40 to +80       XO       2         23       10.0       30       +25       -55 to +100       XO       2         24       5.242880       30       +60       -40 to +85       XO       2         25       5.625       30       +25       -40 to +85       XO       2         26       11.250       30       +25       -50 to +100       XO       2         27       8.0       ∞       +25       -30 to +70       XO       2         28       3.494400       35       +25       -55 to +100       XO       2         29       3.832       30       +25       -40 to +80       XO       2         30       3.072       30       +25       -40 to +80       XO       2         31       4.0       30       +25       -55 to +125       XO       2         32       16.0       30       +25       -55 to +100       XO       2         33       11.059200       30       +25       -55 to +100       XO       2 <td>19</td> <td>8.602893</td> <td>30</td> <td>+60</td> <td>-40 to +85</td> <td>XO</td> <td>2</td>                                                                                                                                                                      | 19      | 8.602893  | 30          | +60   | -40 to +85   | XO       | 2        |
| 22     13.0     30     +25     -40 to +80     XO     2       23     10.0     30     +25     -55 to +100     XO     2       24     5.242880     30     +60     -40 to +85     XO     2       25     5.625     30     +25     -40 to +85     XO     2       26     11.250     30     +25     -50 to +100     XO     2       27     8.0     ∞     +25     -30 to +70     XO     2       28     3.494400     35     +25     -55 to +100     XO     2       29     3.832     30     +25     -40 to +80     XO     2       30     3.072     30     +25     -40 to +80     XO     2       31     4.0     30     +25     -40 to +80     XO     2       32     16.0     30     +25     -55 to +125     XO     2       33     11.059200     30     +25     -55 to +100     XO     2       34     12.007125     30     +25     -55 to +100     XO     2       35     11.059300     50     +25     -55 to +100     XO     2                                                                                                                                                                                                                                                                                                                                                                                    | 20      | 15.104893 |             | + 25  | -20 to +80   | XO       | 2        |
| 23     10.0     30     +25     -55 to +100     XO     2       24     5.242880     30     +60     -40 to +85     XO     2       25     5.625     30     +25     -40 to +85     XO     2       26     11.250     30     +25     -50 to +100     XO     2       27     8.0     ∞     +25     -30 to +70     XO     2       28     3.494400     35     +25     -55 to +100     XO     2       29     3.832     30     +25     -40 to +80     XO     2       30     3.072     30     +25     -40 to +80     XO     2       31     4.0     30     +25     -40 to +80     XO     2       32     16.0     30     +25     -55 to +125     XO     2       33     11.059200     30     +25     -55 to +100     XO     2       34     12.007125     30     +25     -55 to +100     XO     2       35     11.059300     50     +25     -55 to +100     XO     2                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 21      | 20.0      | 30          | + 25  | -30 to +70   | XO       | 2        |
| 24     5.242880     30     +60     -40 to +85     XO     2       25     5.625     30     +25     -40 to +85     XO     2       26     11.250     30     +25     -50 to +100     XO     2       27     8.0     ∞     +25     -30 to +70     XO     2       28     3.494400     35     +25     -55 to +100     XO     2       29     3.832     30     +25     -40 to +80     XO     2       30     3.072     30     +25     -40 to +80     XO     2       31     4.0     30     +25     -40 to +80     XO     2       32     16.0     30     +25     -55 to +125     XO     2       33     11.059200     30     +25     -55 to +100     XO     2       34     12.007125     30     +25     -40 to +90     TCXO     2       35     11.059300     50     +25     -55 to +100     XO     2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22      | 13.0      | 30          | + 25  | -40 to +80   | XO       | 2        |
| 25     5.625     30     +25     -40 to +85     XO     2       26     11.250     30     +25     -50 to +100     XO     2       27     8.0     ∞     +25     -30 to +70     XO     2       28     3.494400     35     +25     -55 to +100     XO     2       29     3.832     30     +25     -40 to +80     XO     2       30     3.072     30     +25     -40 to +80     XO     2       31     4.0     30     +25     -40 to +80     XO     2       32     16.0     30     +25     -55 to +125     XO     2       33     11.059200     30     +25     -55 to +100     XO     2       34     12.007125     30     +25     -40 to +90     TCXO     2       35     11.059300     50     +25     -55 to +100     XO     2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 23      | 10.0      | 30          | + 25  | -55 to +100  | XO       | 2        |
| 26     11.250     30     +25     −50 to +100     XO     2       27     8.0     ∞     +25     −30 to +70     XO     2       28     3.494400     35     +25     −55 to +100     XO     2       29     3.832     30     +25     −40 to +80     XO     2       30     3.072     30     +25     −40 to +80     XO     2       31     4.0     30     +25     −40 to +80     XO     2       32     16.0     30     +25     −55 to +125     XO     2       33     11.059200     30     +25     −55 to +100     XO     2       34     12.007125     30     +25     −40 to +90     TCXO     2       35     11.059300     50     +25     −55 to +100     XO     2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24      | 5.242880  | 30          | + 60  | -40 to +85   | XO       | 2        |
| 27     8.0     ∞     +25     -30 to +70     XO     2       28     3.494400     35     +25     -55 to +100     XO     2       29     3.832     30     +25     -40 to +80     XO     2       30     3.072     30     +25     -40 to +80     XO     2       31     4.0     30     +25     -40 to +80     XO     2       32     16.0     30     +25     -55 to +125     XO     2       33     11.059200     30     +25     -55 to +100     XO     2       34     12.007125     30     +25     -40 to +90     TCXO     2       35     11.059300     50     +25     -55 to +100     XO     2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25      | 5.625     | 30          | + 25  | -40 to +85   | XO       | 2        |
| 28     3.494400     35     +25     -55 to +100     XO     2       29     3.832     30     +25     -40 to +80     XO     2       30     3.072     30     +25     -40 to +80     XO     2       31     4.0     30     +25     -40 to +80     XO     2       32     16.0     30     +25     -55 to +125     XO     2       33     11.059200     30     +25     -55 to +100     XO     2       34     12.007125     30     +25     -40 to +90     TCXO     2       35     11.059300     50     +25     -55 to +100     XO     2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 26      | 11.250    | 30          | + 25  | -50 to +100  | XO       | 2        |
| 29     3.832     30     +25     -40 to +80     XO     2       30     3.072     30     +25     -40 to +80     XO     2       31     4.0     30     +25     -40 to +80     XO     2       32     16.0     30     +25     -55 to +125     XO     2       33     11.059200     30     +25     -55 to +100     XO     2       34     12.007125     30     +25     -40 to +90     TCXO     2       35     11.059300     50     +25     -55 to +100     XO     2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 27      | 8.0       | ∞ .         | + 25  | -30 to +70   | XO       | 2        |
| 30     3.072     30     +25     -40 to +80     XO     2       31     4.0     30     +25     -40 to +80     XO     2       32     16.0     30     +25     -55 to +125     XO     2       33     11.059200     30     +25     -55 to +100     XO     2       34     12.007125     30     +25     -40 to +90     TCXO     2       35     11.059300     50     +25     -55 to +100     XO     2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 28      | 3.494400  | 35          | + 25  | -55 to +100  | XO       | 2        |
| 31     4.0     30     +25     -40 to +80     XO     2       32     16.0     30     +25     -55 to +125     XO     2       33     11.059200     30     +25     -55 to +100     XO     2       34     12.007125     30     +25     -40 to +90     TCXO     2       35     11.059300     50     +25     -55 to +100     XO     2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 29      | 3.832     | 30          | + 25  | -40 to +80   | ХО       | 2        |
| 32     16.0     30     +25     -55 to +125     XO     2       33     11.059200     30     +25     -55 to +100     XO     2       34     12.007125     30     +25     -40 to +90     TCXO     2       35     11.059300     50     +25     -55 to +100     XO     2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30      | 3.072     | 30          | + 25  | -40 to +80   | ХО       | . 2      |
| 33     11.059200     30     +25     -55 to +100     XO     2       34     12.007125     30     +25     -40 to +90     TCXO     2       35     11.059300     50     +25     -55 to +100     XO     2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31      | 4.0       | 30          | + 25  | -40 to +80   | XO       | 2        |
| 34     12.007125     30     +25     -40 to +90     TCXO     2       35     11.059300     50     +25     -55 to +100     XO     2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 32      | 16.0      | 30          | + 25  | -55 to +125  | XO       | 2        |
| 35 11.059300 50 +25 -55 to +100 XO 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 33      | 11.059200 | 30          | + 25  | -55 to +100  | XO       | 2        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 34      | 12.007125 | 30          | + 25  | -40 to +90   | TCXO     | 2        |
| 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 35      | 11.059300 | 50          | + 25  | -55 to +100  | ХО       | 2        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 36      |           |             |       |              |          |          |

NOTES: See Page 8.



PAGE

ISSUE 4

## TABLE 1(a) - TYPE VARIANT SUMMARY CONTINUED

| Variant | Resonance<br>Frequency<br>(MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Load<br>Capacitance<br>(C <sub>L</sub> pF) | Reference<br>Temp.<br>(T <sub>o</sub> °C) | Operating Temp. Range (Top °C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Intended<br>Application                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Lead<br>Finish |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 37      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 38      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 39      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 40      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            | :                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 41      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            | 100                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 42      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                           | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 43      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :                                          |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 44      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 45      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 46      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 47      | Carrier Constitution at the Constitution of th | N)s. re                                    | end to 4                                  | HE SECTION OF THE SEC | The state of the s |                |
| 48      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            | e e                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 49      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 50      | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                            |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 51      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 52      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            | 1.                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 53      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 54      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 55      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                            |                                           | and the state of t |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 56      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                           | r. ji                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 57      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 58      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 59      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 60      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                           | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 61      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 62      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 63      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 64      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 65      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 66      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 67      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 68      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 69      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 70      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |
| 71      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 72      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |

NOTES: See Page 8.



PAGE 8

ISSUE 4

## TABLE 1(a) - TYPE VARIANT SUMMARY CONTINUED

| Variant | Resonance<br>Frequency<br>(MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Load<br>Capacitance<br>(C <sub>L</sub> pF) | Reference<br>Temp.<br>(T <sub>o</sub> °C)       | Operating Temp.<br>Range<br>(T <sub>op</sub> °C)    | Intended<br>Applicat.   | Lead<br>Finish |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------|-----------------------------------------------------|-------------------------|----------------|
| 73      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                                 |                                                     |                         |                |
| 74      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                                          |                                                 |                                                     |                         |                |
| 75      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            | ·                                               |                                                     |                         |                |
| 76      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                                 |                                                     |                         |                |
| 77      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                                 |                                                     |                         |                |
| 78      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                                 |                                                     |                         |                |
| 79      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                                 |                                                     |                         |                |
| 80      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                                 |                                                     |                         |                |
| 81      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                                 |                                                     |                         |                |
| 82      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                                 |                                                     |                         |                |
| 83      | and the second s |                                            | Magazini da | ক্ষাপ্ৰত কোৱাৰটিল লাভী <del>পৰি</del> ল্লাল কৰা তাল | Company of the property |                |
| 84      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                                 |                                                     | :                       |                |
| 85      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                                 |                                                     |                         |                |
| 86      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                                 |                                                     |                         |                |
| 87      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                                 |                                                     |                         | <u> </u>       |
| 88      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                                 |                                                     |                         |                |
| 89      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                                 |                                                     |                         |                |
| 90      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                                 |                                                     |                         | <u> </u>       |
| 91      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                                 | and the first and the                               |                         |                |
| 92      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                                 |                                                     |                         |                |
| 93      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                                 |                                                     |                         |                |
| 94      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                                 |                                                     |                         |                |
| 95      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                                 |                                                     |                         |                |
| 96      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                                 |                                                     |                         |                |
| 97      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                                 |                                                     |                         |                |
| 98      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                                 |                                                     |                         |                |
| 99      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                                 |                                                     |                         |                |

#### **NOTES**

1. Full electrical and physical characteristics are given in the individual Tables 1(a) at the end of this specification.



PAGE 9

ISSUE 4

#### **TABLE 1(b) - MAXIMUM RATINGS**

| No. | Characteristic                 | Symbol           | Values      | Unit | Remarks |
|-----|--------------------------------|------------------|-------------|------|---------|
| 1   | Nominal Frequency Range        | f                | 2.5 to 20   | MHz  | Note 1  |
| 2   | Drive Level Range              | Р                | 0.01 to 0.2 | mW   |         |
| 3   | Operating Temperature<br>Range | T <sub>op</sub>  |             | °C   | Note 2  |
| 4   | Storage Temperature<br>Range   | T <sub>stg</sub> | -65 to +125 | °C   | Note 3  |
| 5   | Soldering Temperature          | T <sub>sol</sub> | + 260       | °C   | Note 4  |

|   | • | _ | • | _ | 3 |
|---|---|---|---|---|---|
| • |   |   | _ |   | • |
| ٠ |   |   |   |   |   |
| 1 |   |   | _ |   |   |
| ı |   |   |   |   |   |
|   |   |   |   |   |   |

| Fundamental and<br>Overtone Order | Approx.<br>Frequency<br>Range (MHz) |
|-----------------------------------|-------------------------------------|
| Fundamental                       | 2.5 to 20                           |
| 3                                 | 10 to 30                            |
| 5                                 | 15 to 50                            |

- 2. See Table 1(a).
- 3. The duration at maximum storage temperature shall not exceed 16 hours.
- 4. Duration 10 seconds maximum at a distance of not less than 3.0mm from the device body and the same lead shall not be resoldered until 3 minutes have elapsed.



PAGE 10

ISSUE 4

# TABLE 1(c) - FORMAT FOR INDIVIDUAL TABLES 1(a) TABLE 1(a) - TYPE VARIANT DETAILED INFORMATION TYPE VARIANT NO.

| 1    |                                                                                                              |                                                | d.                                           |                            |                  | <b>1</b>                                                                                                                            |
|------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------|----------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| No.  | Characteristic                                                                                               | Symbol                                         | Lim                                          | its                        | Unit             | Remarks                                                                                                                             |
| INO. | Characteristic                                                                                               | Symbol                                         | Min.                                         | Max                        | Offic            | riomarks                                                                                                                            |
| . 1  | Resonance Frequency                                                                                          | $f_r$ or $f_L$                                 |                                              |                            | MHz              | Note 1                                                                                                                              |
| 2    | Reference Temperature                                                                                        | T <sub>o</sub>                                 |                                              |                            | °C               | Note 2                                                                                                                              |
| 3    | Overtone Order                                                                                               | -<br>-                                         |                                              |                            |                  |                                                                                                                                     |
| 4    | Load Capacitance                                                                                             | CL                                             | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1        |                            | pF               | Note 3                                                                                                                              |
| 5    | Rated Drive Level                                                                                            | Po                                             |                                              |                            | mW               | Note 4                                                                                                                              |
| 6    | Frequency Adjustment<br>Tolerance                                                                            | <u>Δ f</u>                                     |                                              |                            | 10 <sup>-6</sup> | At T <sub>o</sub> °C Note 5                                                                                                         |
| 7    | Resonance Resistance                                                                                         | R <sub>r</sub> or R <sub>L</sub>               |                                              |                            | Ω                | At To °C Note 6                                                                                                                     |
| 8    | Frequency Variation with Temperature over Top                                                                | ∆f<br>f                                        | elje<br>Seculomys och monetasis<br>Seculomys | en desertar a sector su es | 10-9             | From frequency<br>measured at T <sub>o</sub> °C<br>Note 7                                                                           |
| 9    | Resistance Variation with Temperature over Top                                                               | ΔR<br>R                                        |                                              |                            | %                | From resistance<br>measured at T <sub>o</sub> °C<br>Note 7                                                                          |
| 10   | Operating Temperature<br>Range                                                                               | T <sub>op</sub>                                |                                              |                            | °C               | ·                                                                                                                                   |
| 11   | Frequency variation with Drive Level                                                                         | <u>Δ f</u><br>f                                |                                              |                            | 10-6             | $\begin{array}{ccc} \text{From} & P_{S1} = & \text{mW} \\ & \text{to} & \\ & P_{S2} = & \text{mW} \\ & \text{Note 8} & \end{array}$ |
| 12   | Resistance variation with Drive Level                                                                        | ΔR<br>R                                        |                                              |                            | <b>%</b>         | From P <sub>S1</sub> = mW<br>to<br>P <sub>S2</sub> = mW<br>Note 8                                                                   |
| 13   | Motional Inductance                                                                                          | L <sub>1</sub>                                 |                                              |                            | mH               | Notes 9 and 10                                                                                                                      |
| 14   | Motional Capacitance                                                                                         | C <sub>1</sub>                                 |                                              |                            | fF               | Note 9                                                                                                                              |
| 15   | Static Capacitance                                                                                           | Co                                             |                                              |                            | pF               | Note 9                                                                                                                              |
| 16   | Q Factor                                                                                                     | Q                                              |                                              |                            | -                | Notes 9 and 11                                                                                                                      |
| 17   | Ratio of unwanted: Response Resistance to Resonance Resistance or Response Impedance to Resonance Resistance | R <sub>p</sub> /R<br>or<br>ıZ <sub>p</sub> i/R |                                              |                            |                  | In the frequency range: f - kHz to f + kHz                                                                                          |
| 18   | Ageing                                                                                                       | <u>Δ f</u><br>f                                |                                              |                            | 10-6             | Note 13                                                                                                                             |
| 19   | Lead Finish                                                                                                  |                                                |                                              |                            | •                |                                                                                                                                     |
| 20   | Intended Application                                                                                         |                                                |                                              |                            |                  | Note 15                                                                                                                             |
|      |                                                                                                              |                                                |                                              |                            |                  |                                                                                                                                     |

NOTES: See Pages 11 and 12.

|  | . 1 | 250000    |   |      |
|--|-----|-----------|---|------|
|  |     | , (Immun) | - |      |
|  |     |           |   |      |
|  |     | 110 miles |   | <br> |

PAGE 11

ISSUE 4

#### **NOTES TO TABLE 1(c)**

- 1. (a) If C<sub>L</sub> is not specified, Symbol and measurement shall be f<sub>r</sub>.
  - (b) If C<sub>I</sub> is specified, Symbol and measurement shall be f<sub>L</sub>.

#### 2. Reference Temperature To

- (a) For a crystal unit functioning in a non-controlled temperature environment, the reference temperature is normally +25 ±2 °C.
- (b) For a crystal unit functioning in a controlled temperature environment, the reference temperature shall normally be the mid-point of the temperature range of the controlled environment.

#### 3. Load Capacitance CL

- (a) When a crystal unit must function at its series resonance frequency, C<sub>L</sub> shall be infinite.
- (b) When a crystal must function with a load capacitance, the C<sub>L</sub> value shall be specified. The standard values of load capacitance are as follows:
- Fundamental Frequency Operation: 20pF, 30pF, 50pF and 100pF.
- Overtone Operation: 8pF, 12pF, 15pF, 20pF and 30pF.

#### N.B

The tolerance on the load capacitance shall be that value which results in a frequency change not exceeding 10% of the frequency tolerance at  $T_0$  or 1% of the nominal load capacitance, whichever is smaller.

#### 4. Rated Drive Level Po

The rated drive level shall be selected from the standard drive levels specified below:

- Preferred values: 2mW, 1mW, 0.5mW, 0.2mW, 0.1mW, 0.05mW, 0.02mW, 0.01mW, 0.001mW or 0.0001mW at ±20%.
- Non-preferred values: 10mW, 5mW and 4mW all at ±20%.

#### 5. Frequency Adjustment Tolerance

- (a) When a crystal must function at its series resonance frequency, the standard value of the adjustment tolerance shall be  $\pm 10 \times 10^{-6}$ .
- (b) When a crystal has to function with a load capacitance, the standard value of the adjustment tolerance shall also be ±10 x 10-6. However, if the load capacitance is adjustable, it is preferable to specify that the nominal frequency be obtained with a load capacitance value between the minimum and maximum value when the crystal is functioning in its fundamental mode.

#### 6. Resonance Resistance

(a) Generally, the maximum value only is specified.

(b) 
$$R_L$$
 may be calculated by  $R_L = R_r \left(1 + \frac{C_o}{C_L}\right)^2$ .



PAGE 12

ISSUE 4

#### **NOTES TO TABLE 1(c) (Continued)**

#### 7. Frequency and Resistance Variation with Temperature

These values shall be specified such that they are consistent with the operating temperature range.

#### 8. Frequency and Resistance Variation with Drive Level

These limits and the Drive Level range (PS1 to PS2) shall be specified for very special crystals only (i.e. crystals used in very high stability oscillators).

#### 9. Electrical Values

The electrical values shall be specified only when required for the correct functioning of the equipment in which the crystal is used.

#### 10. Motional Inductance L<sub>1</sub>

Because the inductance value may be restricted by other chosen parameters, the Manufacturer shall propose the value of L<sub>1</sub> in accordance with the Customer's requirements.

#### 11. 'Q' Factor

If 'R' and 'L' have been already specified, it will not be necessary to specify the minimum value of the 'Q' factor.

The maximum value of the 'Q' factor is never specified.

#### 12. Ratio of Unwanted Response Resistance to Resonance Resistance

The standard minimum value is 2, but it is possible to obtain higher values.

The frequency range within which the minimum value of the ratio is required shall also be specified.

#### 13. Ageing

Specify limits under appropriate column and ageing period under "Remarks".

#### 14. Not applicable Items

For all items where limits are not specified, "Not applicable" shall be entered in the Limits column.

#### 15. Intended Application

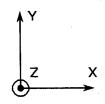
For definitions of the selected symbols to be added, see ESCC Generic Specification No. 3501, Para. 3.

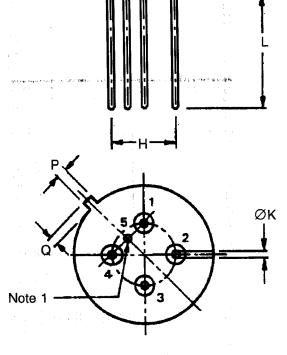


PAGE 13

ISSUE 4

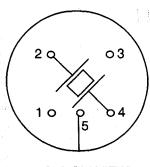
## FIGURE 1 - PARAMETER DERATING INFORMATION


Not applicable.


#### FIGURE 2 - PHYSICAL DIMENSIONS

| SYMBOL   | MILLIM | ETRES                     | REMARKS                                                                  |
|----------|--------|---------------------------|--------------------------------------------------------------------------|
| STIVIBUL | MIN.   | MAX.                      | REWIARRO                                                                 |
| ⊘A       |        | 15.75                     |                                                                          |
| С        | *****  | 6.80                      |                                                                          |
| Н        | 6.90   | 7.40                      | Pitch 7.16mm                                                             |
| ⊘K       | 0.40   | 0.48                      |                                                                          |
| L        | 12.70  | e years and specification | - 17 - 17 - 17 - 17 相 真 (2種型)<br>- 17 - 17 - 17 - 17 - 17 - 17 - 17 - 17 |
| Р        | _      | 0.90                      | Note 2                                                                   |
| Q        | _      | 0.95                      | Note 2                                                                   |

#### **NOTES**


- Lead No. 5 is grounded to case.
   The tag's position or presence is optional.





ØA

#### **FIGURE 3 - FUNCTIONAL DIAGRAM**



(BOTTOM VIEW)



PAGE 14

ISSUE 4

#### 2. APPLICABLE DOCUMENTS

The following documents form part of this specification and shall be read in conjunction with it:-

(a) ESCC Generic Specification No. 3501 for Quartz Crystal Units.

#### 3. TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS

For the purpose of this specification, the terms, definitions, abbreviations, symbols and units specified in ESCC Basic Specification No. 21300 shall apply. In addition, the following symbols are used:-

Resonance Frequency  $= f_L$ Load Resonance Frequency Reference Temperature Resonance Resistance = Ri Load Resonance Resistance Rated Drive Level Static Capacitance = CL Load Capacitance  $= C_1$ Motional Capacitance Motional Inductance  $= L_1$ Response Resistance  $= R_P$ = IZpI Response Impedance Insulation Resistance = Ri

#### 4. REQUIREMENTS

#### 4.1 GENERAL

The complete requirements for procurement of the crystal units specified herein shall be as stated in this specification and ESCC Generic Specification No. 3501 for Quartz Crystal Units. Deviations from the Generic Specification applicable to this specification only, are detailed in Para. 4.2.

Deviations from the applicable Generic Specification and this Detail Specification, formally agreed with specific Manufacturers on the basis that the alternative requirements are equivalent to the ESCC requirements and do not affect the components' reliability, are listed in the appendices attached to this specification.

#### 4.2 DEVIATIONS FROM GENERIC SPECIFICATION

#### 4.2.1 Deviations from Special In-process Controls

None.

#### 4.2.2 Deviations from Final Production Tests (Chart $\Pi$ )

None.

#### 4.2.3 <u>Deviations from Burn-in Tests (Chart III)</u>

None.

#### 4.2.4 Deviations from Qualification Tests (Chart IV)

None.

#### 4.2.5 Deviations from Lot Acceptance Tests (Chart V)

None.



PAGE 15

ISSUE 4

#### 4.3 MECHANICAL REQUIREMENTS

#### 4.3.1 Dimension Check

The dimensions of the crystal units specified herein shall be checked. They shall conform to those shown in Figure 2.

#### 4.3.2 Weight

The maximum weight of the crystal units specified herein shall be 3.0 grammes.

#### 4.3.3 Robustness of Terminations

The requirements for robustness of termination testing are specified in Section 9 of ESCC Generic Specification No. 3501.

#### 4.4 MATERIALS AND FINISHES

The materials and finishes shall be as specified herein. Where a definite material is not specified, a material which will enable the crystal units specified herein to meet the performance requirements of this specification shall be used. Acceptance or approval of any constituent material does not guarantee acceptance of the finished product.

#### 4.4.1 <u>Case</u>

#### 4.4.1.1 Cap

Copper, nickel plated or nickel and gold plated.

#### 4.4.1.2 Base

Kovar, nickel plated or nickel and gold plated.

#### 4.4.2 Lead Material and Finish

The lead material shall be Type 'D' with either Type '2' or Type '3 or 4' finish in accordance with the requirements of ESCC Basic Specification No. 23500. (See Tables 1(a) for Type Variants).

#### 4.5 MARKING

#### 4.5.1 General

The marking of all components delivered to this specification shall be in accordance with the requirements of ESCC Basic Specification No. 21700 and the following paragraphs. When the component is too small to accommodate all of the marking specified, as much as space permits shall be marked and the marking information, in full, shall accompany the component in its primary package.

The information to be marked and the order of precedence, shall be as follows:-

- (a) The ESCC Component Number.
- (b) Characteristics.
- (c) Traceability Information.

#### 4.5.2 The ESCC Component Number

Each component shall bear the SCC Component Number, which shall be constituted and marked as follows:-

| Detail Specification Number     |           |
|---------------------------------|-----------|
| Type Variant (see Table 1(a))   |           |
| Testing Level (B or C, as appli | icable) — |



PAGE 16

ISSUE 4

#### 4.5.3 Characteristics

The resonance frequency of the crystal units shall be clearly specified in MHz. Where necessary, it shall be specified to 6 decimal places.

#### 4.5.4 Traceability Information

Each component shall be marked in respect of traceability information in accordance with the requirements of ESCC Basic Specification No. 21700.

#### 4.5.5 Manufacturer's Name, Symbol or Code

The Manufacturer's marking shall be in accordance with the requirements of ESCC Basic Specification No. 21700.

#### 4.6 <u>ELECTRICAL MEASUREMENTS</u>

#### 4.6.1 <u>Electrical Measurements at Reference Temperature</u>

The parameters to be measured in respect of electrical characteristics are scheduled in Table 2. The measurements shall be performed at the temperatures specified in the individual Tables 1(a), Item 2.

#### 4.6.2 <u>Electrical Measurements at High and Low Temperatures</u>

The parameters to be measured at high and low temperatures are scheduled in Table 3. These measurements shall only be performed if values are specified in Table 1(a) Items 8 and/or 9.

#### 4.6.3 Circuits for Electrical Measurements (Figure 4)

Not applicable.

#### 4.7 BURN-IN TESTS

#### 4.7.1 Parameter Drift Values

The parameter drift values applicable to burn-in are specified in Table 4 of this specification. Unless otherwise stated, measurements shall be performed at  $T_{amb} = T_0 \pm 2$  °C. The parameter drift values (Delta) applicable to the scheduled parameters shall not be exceeded. In addition to these drift value requirements for a given parameter, the appropriate limit value specified in Table 2 shall not be exceeded.

#### 4.7.2 Conditions for Burn-in

The requirements for burn-in are specified in Section 7 of ESCC Generic Specification No. 3501. The conditions for burn-in shall be as specified in Table 5 of this specification.

#### 4.7.3 Electrical Circuits for Burn-in (Figure 5)

Not applicable.



PAGE 17

ISSUE 4

## TABLE 2 - ELECTRICAL MEASUREMENTS AT REFERENCE TEMPERATURE

| No. | Characteristics                                                                                                            | Symbol                                                                                                 | ESCC 3501<br>Test Method | Limits                            | Unit |
|-----|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------|------|
| 1   | Resonance frequency<br>at reference temperature<br>and rated drive level<br>- with C <sub>O</sub><br>- with C <sub>I</sub> | f <sub>r</sub> (T <sub>o</sub> , P <sub>o</sub> )<br>f <sub>L</sub> (T <sub>o</sub> , P <sub>o</sub> ) | Para. 9.2.1.1            | Table 1(a),<br>Item 1<br>± Item 6 | MHz  |
| 2   | Resonance resistance at reference temperature and rated drive level - with C <sub>O</sub> - with C <sub>L</sub>            | R <sub>r</sub> (T <sub>o</sub> , P <sub>o</sub> )<br>R <sub>L</sub> (T <sub>o</sub> , P <sub>o</sub> ) | Para. 9.2.1.1            | Table 1(a),<br>Item 7             | Ω    |
| 3   | Frequency variation with Drive Level                                                                                       | $\frac{\Delta f}{f}$ (T <sub>o</sub> , $\Delta$ P)                                                     | Para. 9.2.1.1            | Table 1(a),<br>Item 11            | 10-6 |
| 4   | Resistance variation with Drive Level                                                                                      | <u>Δ R</u> (T <sub>o</sub> , ΔP)                                                                       | Para. 9.2.1.1            | Table 1(a),<br>Item 12            | %    |
| 5   | Motional Inductance                                                                                                        | L <sub>1</sub>                                                                                         | Para. 9.2.1.3            | Table 1(a),<br>Item 13            | mH   |
| 6   | Static Capacitance                                                                                                         | Co                                                                                                     | Para. 9.2.1.4            | Table 1(a),<br>Item 15            | pF   |
| 7   | Unwanted response                                                                                                          | R <sub>P</sub> /R<br>or<br>IZ <sub>P</sub> I/R                                                         | Para. 9.2.1.5            | Table 1(a),<br>Item 17            | -    |
| 8   | Insulation Resistance                                                                                                      | Ri                                                                                                     | Para. 9.2.1.6            | 500 Min.                          | МΩ   |



PAGE 18

ISSUE 4

## TABLE 3 - ELECTRICAL MEASUREMENTS AT HIGH AND LOW TEMPERATURES

| No. | Characteristics                                | Symbol                    | ESCC 3501<br>Test Method | Limits               | Unit |
|-----|------------------------------------------------|---------------------------|--------------------------|----------------------|------|
| 9   | Frequency variation with Temperature over Top  | Δ f (ΔT, P <sub>o</sub> ) | Para. 9.2.1.2            | Table 1(a)<br>Item 8 | 10-6 |
| 10  | Resistance variation with Temperature over Top | Δ R (ΔT, P <sub>o</sub> ) | Para. 9.2.1.2            | Table 1(a) Item 9    | %    |

#### FIGURE 4 - CIRCUITS FOR ELECTRICAL MEASUREMENTS

Not applicable.

#### **TABLE 4 - PARAMETER DRIFT VALUES**

| No. | Characteristics            | Symbol     | Spec. and/or<br>Test Method | Test<br>Conditions | Change<br>Limits<br>(Δ) | Unit |
|-----|----------------------------|------------|-----------------------------|--------------------|-------------------------|------|
| 1   | Resonance frequency drift  | <u>Δ f</u> | As per Table 2              | As per Table 2     | ± 2.0                   | 10-6 |
| 2   | Resonance resistance drift | AR<br>R    | As per Table 2              | As per Table 2     | ± 10<br>or (1)<br>± 1.0 | %    |

**NOTES** 1. Whichever is the highest value.

#### **TABLE 5 - CONDITIONS FOR BURN-IN AND LIFE TEST**

| No. | Characteristics     | Symbol           | Condition | Unit |
|-----|---------------------|------------------|-----------|------|
| 1   | Ambient Temperature | T <sub>amb</sub> | +85 ±5    | °C   |

#### FIGURE 5 - ELECTRICAL CIRCUIT FOR BURN-IN AND LIFE TEST

Not applicable.



PAGE 19

ISSUE 4

4.8 <u>ENVIRONMENTAL AND ENDURANCE TESTS (CHARTS IV AND V OF ESCC GENERIC SPECIFICATION NO. 3501)</u>

#### 4.8.1 Measurements and Inspections on Completion of Environmental Tests

The parameters to be measured and inspections to be performed on completion of environmental tests are scheduled in Table 6. Unless otherwise stated, the measurements shall be performed at  $T_{amb} = T_0 \pm 2$  °C.

4.8.2 Measurements and Inspections at Intermediate Points and on Completion of Endurance Tests

The parameters to be measured and inspections to be performed at intermediate points and on completion of endurance tests are scheduled in Table 6. Unless otherwise stated, the measurements shall be performed at  $T_{amb} = T_0 \pm 2$  °C.

4.8.3 Conditions for Operating Life Test (Part of Endurance Testing)

The requirements for the operating life test are specified in Section 9 of ESCC Generic Specification No. 3501. The test shall be performed as a high temperature storage test and the temperature to be applied shall be the maximum operating temperature specified in the individual Tables 1(a) given in this specification.



PAGE 20 ISSUE 4

## TABLE 6 - MEASUREMENTS AND INSPECTIONS ON COMPLETION OF ENVIRONMENTAL TESTS AND AT INTERMEDIATE POINTS AND ON COMPLETION OF ENDURANCE TESTING

|          |                                                  | the state of the s | 14                                                                                                                                    |                                                             |                                           | 1.                                                   | f <sub>0</sub> − δ0              |                            |
|----------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------|------------------------------------------------------|----------------------------------|----------------------------|
|          | ESCC GENERIC SP                                  | EC. NO. 3501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MEASUREMENTS AN                                                                                                                       | ID INSPECTIONS                                              |                                           | LIM                                                  | тѕ                               |                            |
| NO.      | ENVIRONMENTAL AND ENDURANCE TESTS (1)            | TEST METHOD<br>AND CONDITIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IDENTIFICATION                                                                                                                        | CONDITIONS                                                  | SYMBOL                                    | Min.                                                 | Max.                             | UNIT                       |
| 01       | Electrical Measurements at Reference Temperature | Para. 9.2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Electrical<br>Measurements                                                                                                            | Table 2                                                     |                                           | Table                                                | 1(a)                             |                            |
| <b>2</b> | Shock                                            | Para. 9.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Initial Measurements Resonance Frequency Resonance Resistance Final Measurements Resonance Frequency Drift Resonance Resistance Drift | Table 2 Item 1 Table 2 Item 2 Table 2 Item 1 Table 2 Item 2 | f<br>R<br><u>Δf</u><br>f<br>ΔR<br>R<br>ΔR | Table 2<br>Table 2<br>-1.0<br>-1.0<br>or (2)<br>-1.0 | + 1.0<br>+ 1.0<br>+ 1.0<br>+ 1.0 | 10 <sup>-6</sup><br>%<br>Ω |
| 03       | Vibration                                        | Para. 9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Initial Measurements Resonance Frequency Resonance Resistance Final Measurements Resonance Frequency                                  | Table 2 Item 1 Table 2 Item 2 Table 2 Item 1                | f<br>R                                    |                                                      | 2 Item 1<br>2 Item 2<br>+ 1.0    | 10-6                       |
|          |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Drift Resonance Resistance Drift                                                                                                      | Table 2 Item 2                                              | <u>Δ f</u><br>f<br><u>Δ R</u><br>R<br>ΔR  | -10<br>or (2)<br>-1.0                                | + 10<br>+ 1.0                    | %<br>Ω                     |
| 04       | Seal Test                                        | Para. 9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Fine Leak<br>Gross Leak                                                                                                               | Para. 9.5.1<br>Para. 9.5.2                                  |                                           |                                                      | . 9.5.1<br>. 9.5.2               |                            |
| 05       | Permanence of Marking                            | Para. 9.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Final Measurements<br>Visual Examination                                                                                              | No corrosion or obliteration of marking                     |                                           |                                                      | - 144 (1)<br>-<br>144            | -                          |
| 06       | External Visual Inspection                       | Para. 9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Final Measurements Visual Inspection                                                                                                  | ESCC No. 20500                                              | <u>-</u>                                  | -                                                    | -<br>-                           | -                          |
| 07       | Solderability                                    | Para. 9.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                       | -                                                           | -                                         | _                                                    | -                                |                            |
|          | I                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                       |                                                             |                                           |                                                      |                                  |                            |

- 1. The tests in this table refer to either Chart IV or V, and shall be used as applicable.
- 2. Whichever is the highest value.



PAGE 21

ISSUE 3

## TABLE 6 - MEASUREMENTS AND INSPECTIONS ON COMPLETION OF ENVIRONMENTAL TESTS AND AT INTERMEDIATE POINTS AND ON COMPLETION OF ENDURANCE TESTING (Cont.)

|     | ESCC GENERIC SP                                                                                                 | EC. NO. 3501                                | MEASUREMENTS AN                          | D INSPECTIONS                        |                      | LIM       | TS         |                     |     |
|-----|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------|--------------------------------------|----------------------|-----------|------------|---------------------|-----|
| NO. | ENVIRONMENTAL AND ENDURANCE TESTS (1)                                                                           | TEST METHOD<br>AND CONDITIONS               | IDENTIFICATION                           | CONDITIONS                           | SYMBOL               | Min.      | Max.       | UNIT                |     |
|     | Climatic Sequence                                                                                               | Para. 9.14                                  | ¥.                                       |                                      |                      |           |            |                     |     |
| 08  | Dry Heat                                                                                                        | Para. 9.14.1                                | Initial Measurements                     | Table 2 Item 1                       |                      | Table 2   | Utom 4     |                     | 1   |
|     |                                                                                                                 | : 1                                         | Resonance Frequency Resonance Resistance | Table 2 Item 2                       | l f<br>R             |           | Item 2     |                     | l   |
|     |                                                                                                                 | * .                                         | Final Measurements                       | Table 2 Herri 2                      |                      | 1 4010 2  | . 116111 2 |                     | ١   |
|     |                                                                                                                 | •                                           | Resonance Frequency Drift                | Table 2 Item 1                       | ∆ f<br>f             | - 2.0     | +2.0       | 10-6                |     |
|     |                                                                                                                 |                                             | Resonance Resistance                     | Table 2 Item 2                       | ΔR                   | -10       | +10        | %                   | ı   |
| ,   |                                                                                                                 |                                             | Drift                                    |                                      | R                    | or (2)    |            |                     | ١   |
|     |                                                                                                                 |                                             |                                          |                                      | ΔR                   | -1.0      | +1.0       | Ω                   | 1   |
| 09  | Cold                                                                                                            | Para. 9.14.3                                | Initial Measurements                     |                                      |                      | •         |            |                     | ۱   |
|     |                                                                                                                 |                                             | Resonance Frequency                      | Table 2 Item 1                       | f                    |           | 0.14.1.3   |                     | ļ   |
|     | and the first of the second | Andrea Andreas Carlos Carlos Company (1994) | Resonance Resistance                     | Table 2 Item 2                       | Real                 | Final Mea | surements  | ita a sanaje s<br>S | 1   |
|     |                                                                                                                 |                                             | Final Measurements                       | Table Olton 1                        | 1 , .                | -2.0      | + 2.0      | 10-6                | ١   |
|     |                                                                                                                 |                                             | Resonance Frequency<br>Drift             | Table 2 Item 1                       | $\frac{\Delta f}{f}$ |           | T 2.0      | 10.0                | 1   |
|     | ·                                                                                                               |                                             | Resonance Resistance                     | Table 2 Item 2                       | ΔR                   | -10       | + 10       | %                   | ١   |
|     |                                                                                                                 | ,                                           | Drift                                    |                                      | R                    | or (2)    |            | '                   | ł   |
|     |                                                                                                                 |                                             |                                          |                                      | ΔR                   | - 1.0     | + 1.0      | Ω                   | ١   |
| 10  | Damp Heat (Acclerated)                                                                                          | Para. 9.14.4                                | Initial Measurements                     |                                      | 1                    |           | l          |                     | Ì   |
| 1   | Remaining Cycles                                                                                                |                                             | Resonance Frequency                      | Table 2 Item 1                       | f                    | 1         | 9.14.3.2   |                     | l   |
| . 1 |                                                                                                                 |                                             | Resonance Resistance                     | Table 2 Item 2                       | R                    | Final Mea | asurements | }                   | Ì   |
|     |                                                                                                                 |                                             | Final Measurements                       | Table 2 Item 1                       | 1 1                  | -2.0      | + 2.0      | 10-6                | ı   |
|     |                                                                                                                 |                                             | Resonance Frequency Drift                | 1 able 2 item i                      | $\frac{\Delta f}{f}$ | 2.0       | 1 2.0      | 10 5                | 1   |
|     |                                                                                                                 |                                             | Resonance Resistance                     | Table 2 Item 2                       | <u>Δ R</u>           | -10       | +10        | %                   | ١   |
| 1   |                                                                                                                 |                                             | Drift                                    |                                      |                      | or (2)    |            |                     | ļ   |
| l   |                                                                                                                 |                                             | w .                                      |                                      | ΔR                   | 1.0       | + 1.0      | Ω                   | Ì   |
|     |                                                                                                                 |                                             | Insulation Resistance                    | Table 2 Item 8                       | Ri                   | 500       | -          | MΩ                  | ╛   |
| 11  | Rapid Change of                                                                                                 | Para. 9.15                                  | Initial Measurements                     |                                      |                      |           |            |                     |     |
|     | Temperature                                                                                                     |                                             | Resonance Frequency                      | Table 2 Item 1                       | f                    | Para.     | 9.14.4.2   |                     | ١   |
| 1   |                                                                                                                 | 100                                         | Resonance Resistance                     |                                      | R                    | Final Me  | asurements |                     | -   |
|     |                                                                                                                 | 1000                                        | Final Measurements                       | After minimum                        |                      | :         |            |                     | 1   |
|     |                                                                                                                 |                                             |                                          | Recovery of 2 hour<br>Table 2 Item 1 |                      | -2.0      | + 2.0      | 10-6                |     |
| 1   |                                                                                                                 | : 1                                         | Resonance Frequency<br>Drift             | I AUIC Z HEIII I                     | $\frac{\Delta f}{f}$ | -2.0      | 1 2.0      | 10.0                |     |
|     | +                                                                                                               |                                             | Resonance Resistance                     | Table 2 Item 2                       | ΔR                   | -10       | +10        | %                   | ١   |
|     |                                                                                                                 |                                             | Drift                                    |                                      | R                    | or (2)    |            |                     | -   |
|     |                                                                                                                 |                                             |                                          |                                      | ΔR                   | - 1.0     | + 1.0      | Ω                   | ١   |
| 12  | Robustness of                                                                                                   | Para. 9.16                                  | Tensile Strength                         | Gen. 3501                            |                      |           |            | Ī                   | ٦   |
| '-  | Terminations                                                                                                    | 1 4 4 5 1 6                                 | 1. Shore Guorigan                        | Para. 9.16.1                         |                      |           |            |                     | - [ |
|     |                                                                                                                 |                                             | Visual Examination                       | No visible damage                    | e                    |           |            |                     |     |
|     |                                                                                                                 | :                                           | Bending                                  | Gen. 3501                            |                      |           |            |                     |     |
|     |                                                                                                                 |                                             | Ver all management                       | Para. 9.16.2                         | _                    |           |            |                     | ļ   |
|     |                                                                                                                 |                                             | Visual Examination                       | No visible damag                     | е                    |           | ,          |                     | 1   |

- 1. The tests in this table refer to either Chart IV or V, and shall be used as applicable.
- 2. Whichever is the highest value.



PAGE 22

ISSUE 3

## TABLE 6 - MEASUREMENTS AND INSPECTIONS ON COMPLETION OF ENVIRONMENTAL TESTS AND AT INTERMEDIATE POINTS AND ON COMPLETION OF ENDURANCE TESTING (Cont.)

|     | ESCC GENERIC SP                                                                      |                                                                                      |                                                                       | SPECTIONS                     |                       | LIMITS                |       |        |
|-----|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------|-----------------------|-----------------------|-------|--------|
| NO. | ENVIRONMENTAL AND ENDURANCE TESTS (1)                                                |                                                                                      |                                                                       | CONDITIONS                    | SYMBOL                | <b>M</b> in.          | Max.  | UNIT   |
| 13  | Life Test                                                                            | Para. 9.17                                                                           | Initial Measurements Resonance Frequency Resonance Resistance         | Table 2 Item 1 Table 2 Item 2 | f<br>R                | Table 2<br>Table 2    |       |        |
|     |                                                                                      |                                                                                      | Intermediate Measurements<br>Resonance Frequency<br>Drift             | Table 2 Item 1                | <u>Δ f</u>            | - 2.0                 | + 2.0 | 10-6   |
|     |                                                                                      |                                                                                      | Resonance Resistance<br>Drift                                         | Table 2 Item 2                | <u>Δ R</u><br>R<br>ΔR | -10<br>or (2)<br>-1.0 | +10   | %<br>Ω |
|     |                                                                                      |                                                                                      | Intermediate Measurements (Chart IV) and Final Measurements (Chart V) | At 1000 hours                 |                       |                       |       |        |
|     | garagas de la bida e e e como code gada sobre e en distra elemente e e comercia e co | இது இது நிருந்தின் இது நிருந்தின் நிருந்தின் இது | Resonance Frequency  Drift                                            | Table 2 Item 1                | Δ <u>·f</u>           | - 2.5                 | +2.5  | 10-6   |
|     |                                                                                      |                                                                                      | Resonance Resitance<br>Drift                                          | Table 2 Item 2                | ∆R<br>R               | -10<br>or (2)         | +10   | %      |
|     | i jangangan sere                                                                     |                                                                                      | Final Measurements (Chart IV)                                         | At 2000 hours                 | ΔR                    | -1.0                  | +1.0  | Ω      |
|     |                                                                                      | 10 10 10 10 10 10 10 10 10 10 10 10 10 1                                             | Resonance Frequency Drift                                             | Table 2 Item 1                | $\frac{\Delta f}{f}$  | -3.0                  | +3.0  | 10-6   |
|     |                                                                                      |                                                                                      | Resonance Resistance<br>Drift                                         | Table 2 Item 2                | ΔR<br>R               | -10<br>or (2)         | +10   | %      |
|     |                                                                                      |                                                                                      |                                                                       |                               | ΔR                    | -1.0                  | +1.0  | Ω      |

- 1. The tests in this table refer to either Chart IV or V, and shall be used as applicable.
- 2. Whichever is the highest value.

PAGE 23

ISSUE 3

## TABLE 1(a) - TYPE VARIANT DETAILED INFORMATION

| No.                  | Characteristics                                                                                              | Symbol               | Lim<br>Min. | its<br>Max. | Unit                                     | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------|--------------------------------------------------------------------------------------------------------------|----------------------|-------------|-------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                    | Resonance Frequency                                                                                          | - f <sub>L</sub>     | 4.194       |             | MHz                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2                    | Reference Temperature                                                                                        | T <sub>o</sub>       | + 28        | + 32        |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3                    | Overtone Order                                                                                               | -                    | Fundar      |             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4                    | Load Capacitance                                                                                             | CL                   |             | 30          | pF                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5                    | Rated Drive Level                                                                                            | Po                   | 0.          | 1           | mW                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6                    | Frequency Adjustment<br>Tolerance                                                                            | $\frac{\Delta f}{f}$ | -10         | + 10        | 10-6                                     | At T <sub>o</sub> °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 7                    | Resonance Resistance                                                                                         | $R_{L}$              | <u>.</u>    | 10          | Ω                                        | Over T <sub>op</sub> °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 8                    | Frequency Variation with Temperature                                                                         | ∆ f<br>f             | -10         | + 10        | 10 <sup>-6</sup>                         | From frequency<br>measured at T <sub>o</sub> °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| and the state of the | over Top                                                                                                     |                      |             |             | Malia saga tan innegéter menéréri nyint. | Same tale address and a same transfer and a sa |
| 9                    | Resistance Variation with Temperature                                                                        | ΔR<br>R              | -20         | +20<br>r    | %                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      | over T <sub>op</sub>                                                                                         |                      | -2.0        | + 2.0       | Ω                                        | If R ≤ 10Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 10                   | Operating Temperature Range                                                                                  | T <sub>op</sub>      | -10         | + 80        | °C                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11                   | Frequency Variation with Drive Level                                                                         | $\frac{\Delta f}{f}$ | Not ap      | olicable    | 10 <sup>-6</sup>                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12                   | Resistance Variation with Drive Level                                                                        | ΔR<br>R              | Not ap      | plicable    | %                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13                   | Motional Inductance                                                                                          | L <sub>1</sub>       | Not ap      | plicable    | mH                                       | . · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 14                   | Motional Capacitance                                                                                         | C <sub>1</sub>       | Not ap      | plicable    | fF                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15                   | Static Capacitance                                                                                           | Co                   | 0           | 4.0         | pF                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 16                   | Q Factor                                                                                                     | Q                    | 200 000     | -           | -                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 17                   | Ratio of Unwanted: Response Resistance to Resonance Resistance or Response Impedance to Resonance Resistance | Rp/R<br>or<br>IZpI/R | 2:1         | -<br>-      |                                          | In the frequency range: fL -200kHz to fL +200kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 18                   | Ageing                                                                                                       | Δf                   | -10         | +10         | 10-6                                     | 5 years after Burn-in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 19                   | Lead Finish                                                                                                  | <u>'</u>             | Tvr         | e 2         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20                   | Intended Application                                                                                         |                      | +           | plicable    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

PAGE 24

ISSUE 3

## TABLE 1(a) - TYPE VARIANT DETAILED INFORMATION

| No.      | Characteristics                                                                                              | Symbol                                         | Lim<br>Min. | nits<br>Max. | Unit        | Remarks                                                                     |
|----------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------|--------------|-------------|-----------------------------------------------------------------------------|
| 1        | Resonance Frequency                                                                                          | fL                                             | 8.1         | 8.192        |             |                                                                             |
| 2        | Reference Temperature                                                                                        | T <sub>o</sub>                                 | + 23        | + 27         | °C          |                                                                             |
| 3        | Overtone Order                                                                                               | -<br>-                                         | Fundar      | nental       | in april on |                                                                             |
| 4        | Load Capacitance                                                                                             | CL                                             | 5           | 0            | рF          |                                                                             |
| 5        | Rated Drive Level                                                                                            | P <sub>o</sub>                                 | 0.          | 1            | mW          |                                                                             |
| 6        | Frequency Adjustment<br>Tolerance                                                                            | $\frac{\Delta f}{f}$                           | -10         | + 10         | 10-6        | At To °C                                                                    |
| 7        | Resonance Resistance                                                                                         | $R_{L}$                                        | -           | 13           | Ω           | At T <sub>o</sub> °C                                                        |
| <b>8</b> | Frequency Variation with Temperature over Top                                                                | <u>Δ f</u><br>f                                | -15         | + 15         | 10-6        | From frequency<br>measured at T <sub>o</sub> °C                             |
| 9        | Resistance Variation with Temperature over Top                                                               | ΔR<br>R                                        | Not ar      | pplicable    | %           |                                                                             |
| 10       | Operating Temperature Range                                                                                  | T <sub>op</sub>                                | -25         | +80          | °C          |                                                                             |
| 11       | Frequency Variation with Drive Level                                                                         | $\frac{\Delta f}{f}$                           | Not ap      | plicable     | 10-6        |                                                                             |
| 12       | Resistance Variation with Drive Level                                                                        | <u>Δ R</u><br>R                                | Not ap      | plicable     | %           |                                                                             |
| 13       | Motional Inductance                                                                                          | L <sub>1</sub>                                 | 36.5        | 49.5         | mH          |                                                                             |
| 14       | Motional Capacitance                                                                                         | C <sub>1</sub>                                 | Not ap      | plicable     | fF          |                                                                             |
| 15       | Static Capacitance                                                                                           | C <sub>o</sub>                                 | 0           | 4.0          | pF          | ٠.                                                                          |
| 16       | Q Factor                                                                                                     | Q                                              | 50 000      | +            |             |                                                                             |
| 17       | Ratio of Unwanted: Response Resistance to Resonance Resistance or Response Impedance to Resonance Resistance | R <sub>p</sub> /R<br>or<br>IZ <sub>p</sub> I/R | 3:1         |              |             | In the frequency range:  f <sub>L</sub> -100kHz  to  f <sub>L</sub> +100kHz |
| 18       | Ageing                                                                                                       | $\frac{\Delta f}{f}$                           | -30         | +30          | 10-6        |                                                                             |
| 19       | Lead Finish                                                                                                  | - N                                            | Туре        | '3 or 4'     |             |                                                                             |
| 20       | Intended Application                                                                                         |                                                | Not ap      | plicable     |             |                                                                             |

ISSUE 3

## TABLE 1(a) - TYPE VARIANT DETAILED INFORMATION

| No. | Characteristics                                                                                              | Symbol                                         | Lim<br>Min.     | its<br>Max.      | Unit             | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----|--------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------|------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | Resonance Frequency                                                                                          | f <sub>r</sub>                                 | 26              | .0               | MHz              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2   | Reference Temperature                                                                                        | To                                             | + 20            | + 30             | °C               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3   | Overtone Order                                                                                               | <del>.</del>                                   | . 3             | 3                | -                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4   | Load Capacitance                                                                                             | CŁ                                             | α               | o .              | pF               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5   | Rated Drive Level                                                                                            | Po                                             | 0.              | 1                | mW               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6   | Frequency Adjustment<br>Tolerance                                                                            | $\frac{\Delta f}{f}$                           | -10             | + 10             | 10-6             | At T <sub>o</sub> °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 7   | Resonance Resistance                                                                                         | R <sub>r</sub>                                 | -               | 40               | Ω                | At T <sub>o</sub> °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8   | Frequency Variation with Temperature over Top                                                                | ∆ f<br>f                                       | 0<br>-10<br>-10 | + 10<br>+ 10<br> | 10-6             | From T -20 to +10 °C<br>From T +10 to +50 °C<br>From T +50 to +80 °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 9   | Resistance Variation with Temperature over Top                                                               | ΔR<br>R                                        | -20             | +20              | %                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10  | Operating Temperature<br>Range                                                                               | T <sub>op</sub>                                | -25             | +80              | °C               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11  | Frequency Variation with Drive Level                                                                         | $\frac{\Delta f}{f}$                           | 0.5             | 0.5              | 10-6             | From P <sub>S1</sub> = 0mW<br>to<br>P <sub>S2</sub> = 0.1mW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 12  | Resistance Variation with Drive Level                                                                        | ΔR<br>R                                        | -10             | + 10             | <b>%</b><br>     | From $P_{S1} = 0$ mW<br>to<br>$P_{S2} = 0.1$ mW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13  | Motional Inductance                                                                                          | L <sub>1</sub>                                 | 20              | -                | mH               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 14  | Motional Capacitance                                                                                         | C <sub>1</sub>                                 | Not ap          | plicable         | fF               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15  | Static Capacitance                                                                                           | Co                                             | 0               | 7.0              | pF               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 16  | Q Factor                                                                                                     | Q                                              | 100 000         | -                | -                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 17  | Ratio of Unwanted: Response Resistance to Resonance Resistance or Response Impedance to Resonance Resistance | R <sub>p</sub> /R<br>or<br>IZ <sub>p</sub> I/R | 10:1            | _                |                  | In the frequency range:  f <sub>r</sub> -2600kHz  to  f <sub>r</sub> +2600kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 18  | Ageing                                                                                                       | $\frac{\Delta}{f}$                             | -2.0            | +2.0             | 10 <sup>-6</sup> | 10 years after Burn-in and ageing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 19  | Lead Finish                                                                                                  |                                                | Ту              | pe 2             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20  | Intended Application                                                                                         |                                                | Not ap          | plicable         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |                                                                                                              |                                                |                 |                  |                  | and the second s |

PAGE 26

ISSUE 3

## TABLE 1(a) - TYPE VARIANT DETAILED INFORMATION

| No. | Characteristics                                                                                              | Symbol                                         | Lim<br>Min. | nits<br>Max. | Unit | Remarks                                             |
|-----|--------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------|--------------|------|-----------------------------------------------------|
| 1   | Resonance Frequency                                                                                          | fL                                             | 7.1         | 98           | MHz  |                                                     |
| 2   | Reference Temperature                                                                                        | To                                             | + 23        | + 27         | °C   |                                                     |
| 3   | Overtone Order                                                                                               | - , <b>-</b>                                   | Fundar      | mental       | -    |                                                     |
| 4   | Load Capacitance                                                                                             | CL                                             | 29.7        | 30.3         | pF   |                                                     |
| 5   | Rated Drive Level                                                                                            | Po                                             | 0.          | 1            | mW   |                                                     |
| 6   | Frequency Adjustment<br>Tolerance                                                                            | $\frac{\Delta f}{f}$                           | -50         | + 50         | 10-6 | At T <sub>o</sub> °C                                |
| 7   | Resonance Resistance                                                                                         | RL                                             | -           | 30           | Ω    | At T <sub>o</sub> °C                                |
| 8   | Frequency Variation with Temperature over Top                                                                | ∆ f<br>f                                       | -50         | + 50         | 10-6 | From frequency measured at T <sub>o</sub> °C        |
| 9   | Resistance Variation with Temperature over Top                                                               | ΔR<br>R                                        | Not ap      | olicable     | %    |                                                     |
| 10  | Operating Temperature Range                                                                                  | T <sub>op</sub>                                | -55         | + 105        | °C   |                                                     |
| 11  | Frequency Variation with Drive Level                                                                         | <u>∆ f</u>                                     | Not ap      | plicable     | 10-6 |                                                     |
| 12  | Resistance Variation with Drive Level                                                                        | ΔR<br>R                                        | Not ap      | plicable     | %    |                                                     |
| 13  | Motional Inductance                                                                                          | L <sub>1</sub>                                 | Not ap      | plicable     | mH   |                                                     |
| 14  | Motional Capacitance                                                                                         | C <sub>1</sub>                                 | Not ap      | plicable     | fF   |                                                     |
| 15  | Static Capacitance                                                                                           | Co                                             | 0           | 7.0          | pF   |                                                     |
| 16  | Q Factor                                                                                                     | Q                                              | Not ap      | plicable     | •    |                                                     |
| 17  | Ratio of Unwanted: Response Resistance to Resonance Resistance or Response Impedance to Resonance Resistance | R <sub>p</sub> /R<br>or<br>IZ <sub>p</sub> I/R | 7:1         | <u>.</u>     |      | In the frequency range:  fL -500kHz  to  fL +500kHz |
| 18  | Ageing                                                                                                       | $\frac{\Delta f}{f}$                           | -7.5        | + 7.5        | 10-6 | Over 5 years after<br>Burn-in                       |
| 19  | Lead Finish                                                                                                  |                                                | Ту          | pe 2         |      |                                                     |
| 20  | Intended Application                                                                                         |                                                | Not ap      | plicable     |      |                                                     |

PAGE 27

ISSUE 3

## TABLE 1(a) - TYPE VARIANT DETAILED INFORMATION

|     | the second secon |                                                |                |             | ·                |                                                     |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------|-------------|------------------|-----------------------------------------------------|
| No. | Characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Symbol                                         | Lim<br>Min.    | its<br>Max. | Unit             | Remarks                                             |
| 1   | Resonance Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | fL                                             | 5.             | 0           | MHz              |                                                     |
| 2   | Reference Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | To                                             | + 23           | + 27        | °C               |                                                     |
| 3   | Overtone Order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                | Fundar         | nental      | -                |                                                     |
| 4   | Load Capacitance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C <sub>L</sub>                                 | 29.7           | 30.3        | pF               |                                                     |
| 5   | Rated Drive Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Po                                             | 0.             | 1           | mW               |                                                     |
| 6   | Frequency Adjustment<br>Tolerance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\frac{\Delta f}{f}$                           | -10            | + 10        | 10 <sup>-6</sup> | At T <sub>o</sub> °C                                |
| 7   | Resonance Resistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RL                                             |                | 100         | Ω                | At To °C                                            |
| 8   | Frequency Variation with Temperature over Top                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\frac{\Delta f}{f}$                           | -40            | + 40        | <b>10-6</b>      | From frequency measured at To °C                    |
| 9   | Resistance Variation with Temperature over Top                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ΔR<br>R                                        | Not applicable |             | %                |                                                     |
| 10  | Operating Temperature<br>Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | T <sub>op</sub>                                | -40            | +80         | °C               |                                                     |
| 11  | Frequency Variation with Drive Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\frac{\Delta f}{f}$                           | Not ap         | plicable    | 10-6             | ·                                                   |
| 12  | Resistance Variation with Drive Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ∆R<br>R                                        | Not ap         | plicable    | %                |                                                     |
| 13  | Motional Inductance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | L <sub>1</sub>                                 | Not ap         | plicable    | mH               |                                                     |
| 14  | Motional Capacitance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C <sub>1</sub>                                 | Not ap         | plicable    | fF               |                                                     |
| 15  | Static Capacitance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Co                                             | :              | 7.0         | pF               |                                                     |
| 16  | Q Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Q                                              | Not ap         | plicable    | •                |                                                     |
| 17  | Ratio of Unwanted: Response Resistance to Resonance Resistance or Response Impedance to Resonance Resistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | R <sub>p</sub> /R<br>or<br>IZ <sub>p</sub> I/R | <b>4:1</b>     |             |                  | In the frequency range:  fL -500kHz  to  fL +500kHz |
| 18  | Ageing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\frac{\Delta f}{f}$                           | Not applicable |             | 10-6             |                                                     |
| 19  | Lead Finish                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                | Ту             | ре 2        |                  | A                                                   |
| 20  | Intended Application                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                | Not ap         | plicable    |                  |                                                     |

PAGE 28

ISSUE 3

2416

## TABLE 1(a) - TYPE VARIANT DETAILED INFORMATION

| No. | Characteristics                                                                                              | Symbol                                         | Lim<br>Min.      | its<br>Max.      | Unit             | Remarks                                                  |
|-----|--------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------|------------------|------------------|----------------------------------------------------------|
| 1   | Resonance Frequency                                                                                          | fL                                             | 18.0             |                  | MHz              |                                                          |
| 2   | Reference Temperature                                                                                        | To                                             | + 23             | + 27             | °C               |                                                          |
| 3   | Overtone Order                                                                                               | -                                              | Fundar           | nental           | -                |                                                          |
| 4   | Load Capacitance                                                                                             | CL                                             | 29.7             | 30.3             | pF               |                                                          |
| 5   | Rated Drive Level                                                                                            | Po                                             | 0.               | 1                | mW               |                                                          |
| 6   | Frequency Adjustment<br>Tolerance                                                                            | ∆ f<br>f                                       | -10              | +10              | 10 <sup>-6</sup> | At T <sub>o</sub> °C                                     |
| 7   | Resonance Resistance                                                                                         | RL                                             | -                | 20               | Ω                | At T <sub>o</sub> °C                                     |
| 8   | Frequency Variation with Temperature over Top                                                                | Δf<br>f                                        | -20              | +20              | 10-6             | From frequency<br>measured at T <sub>o</sub> °C          |
| 9   | Resistance Variation with Temperature over Top                                                               | ΔR<br>R                                        | -20<br>c<br>-2.0 | +20<br>r<br>+2.0 | %                | From resistance measured at $T_0$ °C If $R \le 10\Omega$ |
| 10  | Operating Temperature<br>Range                                                                               | T <sub>op</sub>                                | -45              | + 80             | Ç                | 1                                                        |
| 11  | Frequency Variation with Drive Level                                                                         | $\frac{\Delta f}{f}$                           | Not ap           | olicable         | 10-6             |                                                          |
| 12  | Resistance Variation with Drive Level                                                                        | <u>Δ R</u><br>R                                | Not ap           | plicable         | %                |                                                          |
| 13  | Motional Inductance                                                                                          | L <sub>1</sub>                                 | Not ap           | plicable         | mH               |                                                          |
| 14  | Motional Capacitance                                                                                         | C <sub>1</sub>                                 | Not ap           | plicable         | fF               |                                                          |
| 15  | Static Capacitance                                                                                           | Co                                             | -                | 7.0              | pF               |                                                          |
| 16  | Q Factor                                                                                                     | Q                                              | 70 000           |                  | -                |                                                          |
| 17  | Ratio of Unwanted: Response Resistance to Resonance Resistance or Response Impedance to Resonance Resistance | R <sub>p</sub> /R<br>or<br>IZ <sub>p</sub> I/R | 2:1              | -                |                  | In the frequency range:  fL -200kHz  to  fL +200kHz      |
| 18  | Ageing                                                                                                       | $\frac{\Delta f}{f}$                           | -3.0             | +3.0             | 10-6             | Over 5 years after<br>Burn-in                            |
| 19  | Lead Finish                                                                                                  | -1                                             | Ту               | oe 2             |                  | N 1                                                      |
| 20  | Intended Application                                                                                         |                                                | Not ap           | plicable         |                  |                                                          |

PAGE 29

ISSUE 3

## TABLE 1(a) - TYPE VARIANT DETAILED INFORMATION

| No.  | Characteristics                                                                                              | Symbol                                         | Lim    | nits     | Unit             | Remarks                                                                    |    |
|------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------|----------|------------------|----------------------------------------------------------------------------|----|
| 140. | Onaracteristics                                                                                              | Symbol                                         | Min.   | Max.     | Offic            | rtemarks                                                                   |    |
| 1    | Resonance Frequency                                                                                          | γ <sub>i</sub> f∟                              | 1      | 0        | MHz              |                                                                            |    |
| 2    | Reference Temperature                                                                                        | T <sub>o</sub>                                 | + 23   | + 27     | : °C             |                                                                            |    |
| 3    | Overtone Order                                                                                               | -                                              | Funda  | mental   | •                | i.                                                                         |    |
| 4    | Load Capacitance                                                                                             | CL                                             | 3      | 0        | pF               |                                                                            |    |
| 5    | Rated Drive Level                                                                                            | Po                                             | 0.     | .1       | mW               |                                                                            |    |
| 6    | Frequency Adjustment<br>Tolerance                                                                            | $\frac{\Delta f}{f}$                           | -10    | +10      | 10-6             | At T <sub>o</sub> °C                                                       |    |
| .7   | Resonance Resistance                                                                                         | RL                                             | -      | 20       | Ω                | At To °C                                                                   |    |
| 8    | Frequency Variation with Temperature over Top                                                                | <u>∆</u> f                                     | -25    | + 25     | 10 <sup>-6</sup> | From frequency measured at T <sub>o</sub>                                  | ,C |
| 9    | Resistance Variation with Temperature over Top                                                               | ΔR<br>R                                        | Not ap | plicable | %                |                                                                            |    |
| 10   | Operating Temperature<br>Range                                                                               | T <sub>op</sub>                                | -55    | + 100    | °C               |                                                                            | 1  |
| 11   | Frequency Variation with Drive Level                                                                         | <u>∆ f</u>                                     | Not ap | plicable | 10-6             | ·                                                                          |    |
| 12   | Resistance Variation with Drive Level                                                                        | <u>Δ R</u><br>R                                | Not ap | plicable | %                |                                                                            |    |
| 13   | Motional Inductance                                                                                          | L <sub>1</sub>                                 | Not ap | plicable | mH               |                                                                            |    |
| 14   | Motional Capacitance                                                                                         | C <sub>1</sub>                                 | Not ap | plicable | fF               |                                                                            |    |
| 15   | Static Capacitance                                                                                           | , C <sub>o</sub>                               | - :-   | 7.0      | pF               |                                                                            |    |
| 16   | Q Factor                                                                                                     | Q                                              | 80 000 | ,        | <b>-</b>         |                                                                            |    |
| 17   | Ratio of Unwanted: Response Resistance to Resonance Resistance or Response Impedance to Resonance Resistance | R <sub>p</sub> /R<br>or<br>IZ <sub>p</sub> I/R | 2:1    | -<br>-   |                  | In the frequency<br>f <sub>L</sub> -500kHz<br>to<br>f <sub>L</sub> +500kHz |    |
| 18   | Ageing                                                                                                       | Δ f                                            | -5.0   | + 5.0    | 10-6             | Over 5 years aft<br>Burn-in                                                | er |
| 19   | Lead Finish                                                                                                  |                                                | Тур    | pe 2     |                  |                                                                            |    |
| 20   | Intended Application                                                                                         |                                                | Not ap | plicable |                  |                                                                            |    |

PAGE 30

ISSUE 3

## TABLE 1(a) - TYPE VARIANT DETAILED INFORMATION

|     |                                                                                                              | TYPE VARIANT NO. 00                            |                    |               | <u> </u>         |                                                        |
|-----|--------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------|---------------|------------------|--------------------------------------------------------|
| No. | Characteristics                                                                                              | Symbol                                         | Lim<br>Min.        | its<br>Max.   | Unit             | Remarks                                                |
| 1   | Resonance Frequency                                                                                          | ∯ f∟                                           | 10                 | .0            | MHz              |                                                        |
| 2   | Reference Temperature                                                                                        | Τ <sub>ο</sub>                                 | + 23               | + 27          | °C               |                                                        |
| 3   | Overtone Order                                                                                               | -<br>14                                        | Fundar             | nental        | _                |                                                        |
| 4   | Load Capacitance                                                                                             | CL                                             | 3                  | 0             | pF               |                                                        |
| 5   | Rated Drive Level                                                                                            | ∛P <sub>o</sub>                                | 0.                 | 1             | mW               |                                                        |
| 6   | Frequency Adjustment<br>Tolerance                                                                            | <u>Δ f</u>                                     | -10                | + 10          | 10 <sup>-6</sup> | At T <sub>o</sub> °C                                   |
| 7   | Resonance Resistance                                                                                         | RL                                             | 1 st               | 30            | Ω                | At To °C                                               |
| 8   | Frequency Variation with Temperature over Top                                                                | <u>∆ f</u><br>f                                | -30                | +30           | 10-6             | From frequency<br>measured at T <sub>o</sub> °C        |
| 9   | Resistance Variation with Temperature over Top                                                               | ΔR<br>R                                        | - 10<br>o<br>- 2.0 | + 10<br>+ 2.0 | %                | From resistance measured at $T_0$ °C If $R < 10\Omega$ |
| 10  | Operating Temperature Range                                                                                  | T <sub>op</sub>                                | -55                | + 100         | °C               |                                                        |
| 11  | Frequency Variation with Drive Level                                                                         | $\frac{\Delta f}{f}$                           | Not ap             | plicable      | 10 <sup>-6</sup> |                                                        |
| 12  | Resistance Variation with Drive Level                                                                        | ΔR<br>R                                        | Not ap             | plicable      | %                |                                                        |
| 13  | Motional Inductance                                                                                          | L <sub>1</sub>                                 | Not ap             | plicable      | mH               |                                                        |
| 14  | Motional Capacitance                                                                                         | C <sub>1</sub>                                 | Not ap             | plicable      | fF .             |                                                        |
| 15  | Static Capacitance                                                                                           | Co                                             | ,                  | 7.0           | pF               | L.                                                     |
| 16  | Q Factor                                                                                                     | Q                                              | 100 000            | e per e e     | <del>.</del> .   |                                                        |
| 17  | Ratio of Unwanted: Response Resistance to Resonance Resistance or Response Impedance to Resonance Resistance | R <sub>p</sub> /R<br>or<br>IZ <sub>p</sub> I/R | 2:1                |               |                  | In the frequency range:  fL - 200kHz  to  fL + 200kHz  |
| 18  | Ageing                                                                                                       | $\frac{\Delta f}{f}$                           | -2.0               | +2.0          | 10-6             | Per year after Burn-in                                 |
| 19  | Lead Finish                                                                                                  |                                                | Ту                 | pe 2          |                  |                                                        |
| 20  | Intended Application                                                                                         |                                                | >                  | (O            |                  |                                                        |
|     |                                                                                                              |                                                |                    |               |                  |                                                        |

PAGE 31

ISSUE 4

## TABLE 1(a) - TYPE VARIANT DETAILED INFORMATION

|     |                                                                                                              |                      | Lim         | its         |                  |                                                      |
|-----|--------------------------------------------------------------------------------------------------------------|----------------------|-------------|-------------|------------------|------------------------------------------------------|
| No. | Characteristics                                                                                              | Symbol               | Min.        | Max.        | Unit             | Remarks                                              |
| . 1 | Resonance Frequency                                                                                          | f∟                   | 5(          | 0           | MHz              |                                                      |
| 2   | Reference Temperature                                                                                        | To                   | + 23        | + 27        | °C               |                                                      |
| 3   | Overtone Order                                                                                               | •                    | 3           | 3           | •                |                                                      |
| 4   | Load Capacitance                                                                                             | CL                   | 11.9        | 12.1        | pF               |                                                      |
| 5   | Rated Drive Level                                                                                            | Po                   | 0.          | 1           | mW               |                                                      |
| 6   | Frequency Adjustment<br>Tolerance                                                                            | $\frac{\Delta f}{f}$ | -5.0        | +5.0        | 10-6             | At T <sub>o</sub> °C                                 |
| 7   | Resonance Resistance                                                                                         | , R <sub>L</sub>     | -           | 40          | Ω                | Over T <sub>op</sub> °C                              |
| 8   | Frequency Variation with Temperature over Top                                                                | Δf<br>f              | -5.0<br>-10 | +5.0<br>+10 | 10 <sup>-6</sup> | From T -20°C to +70°C<br>From T -20°C to +80°C       |
| 9   | Resistance Variation with Temperature over Top                                                               | ΔR<br>R              | Not ap      | plicable    | %                |                                                      |
| 10  | Operating Temperature Range                                                                                  | T <sub>op</sub>      | -20         | +80         | °C               |                                                      |
| 11  | Frequency Variation with Drive Level                                                                         | $\frac{\Delta f}{f}$ | Not ap      | plicable    | 10-6             |                                                      |
| 12  | Resistance Variation with Drive Level                                                                        | <u>Δ R</u><br>R      | Not ap      | plicable    | %                |                                                      |
| 13  | Motional Inductance                                                                                          | L <sub>1</sub>       | Not ap      | plicable    | mH               |                                                      |
| 14  | Motional Capacitance                                                                                         | C <sub>1</sub>       | 1.7         | -           | fF               |                                                      |
| 15  | Static Capacitance                                                                                           | Co                   | -           | 6.0         | pF               |                                                      |
| 16  | Q Factor                                                                                                     | Q                    | 50 000      | -           | -                |                                                      |
| 17  | Ratio of Unwanted: Response Resistance to Resonance Resistance or Response Impedance to Resonance Resistance | Rp/R<br>or<br>IZpI/R | 2.5:1       | · •         |                  | In the frequency range:  fL -200kHz  to  fL + 200kHz |
| 18  | Ageing                                                                                                       | $\frac{\Delta f}{f}$ | -6.0        | +6.0        | 10-6             | Over 5 years                                         |
| 19  | Lead Finish                                                                                                  |                      | Ту          | pe 2        |                  |                                                      |
| 20  | Intended Application                                                                                         | ·                    | VC          | CXO         |                  |                                                      |

PAGE 32

ISSUE 4

## TABLE 1(a) - TYPE VARIANT DETAILED INFORMATION

| No. | Characteristics                                                                                              | Symbol                                         | Lim<br>Min. | iits<br>Max. | Unit             | Remarks                                             |
|-----|--------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------|--------------|------------------|-----------------------------------------------------|
| 1   | Resonance Frequency                                                                                          | fL                                             | 4.          | 0            | MHz              |                                                     |
| 2   | Reference Temperature                                                                                        | T <sub>o</sub>                                 | + 23        | + 27         | °C.              |                                                     |
| 3   | Overtone Order                                                                                               | -                                              | Fundar      | nental       | <b>-</b>         |                                                     |
| 4   | Load Capacitance                                                                                             | CL                                             | 3           | 0            | pF               |                                                     |
| 5   | Rated Drive Level                                                                                            | Po                                             | 0.          | 1            | mW               |                                                     |
| 6   | Frequency Adjustment<br>Tolerance                                                                            | <u>∆ f</u><br>f                                | -10         | + 10         | 10 <sup>-6</sup> | At T <sub>o</sub> °C                                |
| 7   | Resonance Resistance                                                                                         | $R_L$                                          | :<br>:-     | 25           | Ω                | At To °C                                            |
| 8   | Frequency Variation with Temperature over Tob                                                                | <u>Δ f</u><br>f                                | -30         | +30          | 10 <sup>-6</sup> | From frequency<br>measured at T <sub>o</sub> °C     |
| 9   | Resistance Variation with Temperature over Top                                                               | ΔR<br>R                                        | Not ap      | olicable     | %                |                                                     |
| 10  | Operating Temperature Range                                                                                  | T <sub>op</sub>                                | -40         | + 80         | °C               |                                                     |
| 11  | Frequency variation with Drive Level                                                                         | $\frac{\Delta f}{f}$                           | Not ap      | olicable     | 10 <sup>-6</sup> |                                                     |
| 12  | Resistance variation with Drive Level                                                                        | <u>Δ R</u><br>R                                | Not ap      | plicable     | %                |                                                     |
| 13  | Motional Inductance                                                                                          | L <sub>1</sub>                                 | Not ap      | plicable     | mH               |                                                     |
| 14  | Motional Capacitance                                                                                         | C <sub>1</sub>                                 | Not ap      | plicable     | fF               |                                                     |
| 15  | Static Capacitance                                                                                           | C <sub>o</sub>                                 | Not ap      | plicable     | pF               |                                                     |
| 16  | Q Factor                                                                                                     | Q                                              | 125 000     | -            | -                |                                                     |
| 17  | Ratio of Unwanted: Response Resistance to Resonance Resistance or Response Impedance to Resonance Resistance | R <sub>p</sub> /R<br>or<br>IZ <sub>p</sub> I/R | 2:1         |              |                  | In the frequency range:  fL -500kHz  to  fL +500kHz |
| 18  | Ageing                                                                                                       | $\frac{\Delta f}{f}$                           | -3.0        | +3.0         | 10-6             | 1 year after Burn-in                                |
| 19  | Lead Finish                                                                                                  |                                                | Тур         | pe 2         |                  |                                                     |
| 20  | Intended Application                                                                                         |                                                | ×           | O            |                  | With 54HC04                                         |

PAGE 33

ISSUE 4

## TABLE 1(a) - TYPE VARIANT DETAILED INFORMATION

|     | the second of th | TIFE VARIANT NO. 11                            |             |             |                  |                                                                             |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------|-------------|------------------|-----------------------------------------------------------------------------|
| No. | Characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Symbol                                         | Lim<br>Min. | its<br>Max. | Unit             | Remarks                                                                     |
| 1   | Resonance Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | fL                                             | 10          | .0          | MHz              |                                                                             |
| 2   | Reference Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | To                                             | + 23        | + 27        | °C               |                                                                             |
| 3   | Overtone Order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>-</b>                                       | Fundar      | nental      |                  |                                                                             |
| 4   | Load Capacitance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CL                                             | 3           | 0           | pF               |                                                                             |
| 5   | Rated Drive Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Po                                             | 0.          | 1           | mW               |                                                                             |
| 6   | Frequency Adjustment<br>Tolerance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\frac{\Delta f}{f}$                           | -10         | + 10        | 10-6             | At T <sub>o</sub> °C                                                        |
| 7   | Resonance Resistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $R_{L}$                                        |             | 30          | Ω                | At To °C                                                                    |
| 8   | Frequency Variation with Temperature over Top                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ∆f<br>f                                        | -30         | +30         | 10-6             | From frequency<br>measured at T <sub>o</sub> °C                             |
| 9   | Resistance Variation with Temperature over Top                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ΔR<br>R                                        | -2.0        | +2.0        | Ω                | From resistance<br>measured at T <sub>o</sub> °C                            |
| 10  | Operating Temperature<br>Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | T <sub>op</sub>                                | -55         | + 100       | °C               |                                                                             |
| 11  | Frequency Variation with Drive Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\frac{\Delta f}{f}$                           | Not ap      | plicable    | 10 <sup>-6</sup> |                                                                             |
| 12  | Resistance Variation with Drive Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>Δ R</u><br>R                                | Not ap      | plicable    | %                |                                                                             |
| 13  | Motional Inductance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | L <sub>1</sub>                                 | Not ap      | plicable    | mH               |                                                                             |
| 14  | Motional Capacitance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C <sub>1</sub>                                 | Not ap      | plicable    | fF               |                                                                             |
| 15  | Static Capacitance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Co                                             | -           | 7.0         | pF               |                                                                             |
| 16  | Q Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Q                                              | 100 000     | -           | -                |                                                                             |
| 17  | Ratio of Unwanted: Response Resistance to Resonance Resistance or Response Impedance to Resonance Resistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | R <sub>p</sub> /R<br>or<br>IZ <sub>p</sub> I/R | 2:1         |             |                  | In the frequency range:  f <sub>L</sub> -200kHz  to  f <sub>L</sub> +200kHz |
| 18  | Ageing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\frac{\Delta f}{f}$                           | -2.0        | + 2.0       | 10-6             | Per year after Burn-in at To                                                |
| 19  | Lead Finish                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                | Ту          | pe 2        |                  |                                                                             |
| 20  | Intended Application                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                | >           | (0          |                  |                                                                             |



PAGE 34

ISSUE 4

## TABLE 1(a) - TYPE VARIANT DETAILED INFORMATION

| No. | Characteristics                                                                                              | Symbol                                         | Lim<br>Min.         | its<br>Max.    | Unit | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----|--------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------|----------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| - 1 | Resonance Frequency                                                                                          | f <sub>r</sub>                                 | 8.                  | 0              | MHz  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2   | Reference Temperature                                                                                        | T <sub>o</sub>                                 | + 20                | +30            | °C   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3   | Overtone Order                                                                                               | -                                              | Fundar              | nental         | ·    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4   | Load Capacitance                                                                                             | CL                                             | α                   | )              | . pF |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5   | Rated Drive Level                                                                                            | Po                                             | 0.                  | 1              | mW   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6   | Frequency Adjustment<br>Tolerance                                                                            | $\frac{\Delta f}{f}$                           | -10                 | + 10           | 10-6 | At T <sub>o</sub> °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 7   | Resonance Resistance                                                                                         | R <sub>r</sub>                                 | -                   | 40             | Ω    | At To °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 8   | Frequency Variation with Temperature over Top                                                                | <u>∆ f</u>                                     | 0<br>- 9.0<br>- 9.0 | + 9.0<br>+ 9.0 | 10-6 | From T -20 to +10 °C<br>From T +10 to +50 °C<br>From T +50 to +80 °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 9   | Resistance Variation with Temperature over Top                                                               | ΔR<br>R                                        | -2.0                | +2.0           | Ω    | From resistance<br>measured at T <sub>o</sub> °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10  | Operating Temperature Range                                                                                  | T <sub>op</sub>                                | -20                 | + 80           | °C   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11  | Frequency Variation with Drive Level                                                                         | $\frac{\Delta f}{f}$                           | Not ap              | olicable       | 10-6 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12  | Resistance Variation with Drive Level                                                                        | <u>Δ R</u><br>R                                | Not ap              | plicable       | %    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13  | Motional Inductance                                                                                          | L <sub>1</sub>                                 | 2.0                 | -              | mH   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 14  | Motional Capacitance                                                                                         | C <sub>1</sub>                                 | Not ap              | plicable       | fF   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15  | Static Capacitance                                                                                           | Co                                             | -                   | 5.0            | pF   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 16  | Q Factor                                                                                                     | Q                                              | 70 000              | -              | -    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 17  | Ratio of Unwanted: Response Resistance to Resonance Resistance or Response Impedance to Resonance Resistance | R <sub>p</sub> /R<br>or<br>IZ <sub>p</sub> I/R | 2:1                 | <u>.</u>       |      | In the frequency range:  f <sub>r</sub> - 10%  to  f <sub>r</sub> + 10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 18  | Ageing                                                                                                       | $\frac{\Delta f}{f}$                           | -5.0                | + 5.0          | 10-6 | 12 years after Burn-in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 19  | Lead Finish                                                                                                  |                                                | Туј                 | oe 2           |      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 20  | Intended Application                                                                                         |                                                | ×                   | (O             |      | The state of the s |

PAGE 35

ISSUE 4

## TABLE 1(a) - TYPE VARIANT DETAILED INFORMATION

| No. | Characteristics                                                                                              | Symbol                                         | Lim<br>Min. | its<br>Max. | Unit     | Remarks                                                               |
|-----|--------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------|-------------|----------|-----------------------------------------------------------------------|
| 1   | Resonance Frequency                                                                                          | f <sub>r</sub>                                 | 10          | 10.0        |          | AT cut                                                                |
| 2   | Reference Temperature                                                                                        | To                                             | +20         | + 30        | °C       | * · · · · · · · · · · · · · · · · · · ·                               |
| 3   | Overtone Order                                                                                               |                                                | 3           | 3:          | -        |                                                                       |
| 4   | Load Capacitance                                                                                             | CL                                             | α           | 9           | pF       | A.                                                                    |
| 5   | Rated Drive Level                                                                                            | Po                                             | 0.          | 1           | mW       |                                                                       |
| 6   | Frequency Adjustment<br>Tolerance                                                                            | $\frac{\Delta f}{f}$                           | -10         | + 10        | 10-6     | At T <sub>o</sub> °C                                                  |
| 7   | Resonance Resistance                                                                                         | R <sub>r</sub>                                 | -           | 40          | Ω        | At To °C                                                              |
| 8   | Frequency Variation with Temperature over Top                                                                | <u>Δ f</u><br>f                                | <b>– 10</b> | +10         | 10-6     | From frequency measured at T <sub>0</sub> °C                          |
| 9   | Resistance Variation with Temperature over Top                                                               | ΔR<br>R                                        | -2.0        | + 2.0       | Ω        | From resistance<br>measured at T <sub>o</sub> °C                      |
| 10  | Operating Temperature<br>Range                                                                               | T <sub>op</sub>                                | -20         | +80         | °C       |                                                                       |
| 11  | Frequency Variation with Drive Level                                                                         | ∆ f<br>f                                       | - 0.5       | + 0.5       | 10-6     | From P <sub>S1</sub> = 0.01mW<br>to<br>P <sub>S2</sub> = 0.1mW        |
| 12  | Resistance Variation with Drive Level                                                                        | <u>Δ R</u><br>R                                | -20         | +20         | <b>%</b> | From P <sub>S1</sub> = 0.01mW<br>to<br>P <sub>S2</sub> = 0.1mW        |
| 13  | Motional Inductance                                                                                          | L <sub>1</sub>                                 | 3.0         | -           | mH       |                                                                       |
| 14  | Motional Capacitance                                                                                         | , C <sub>1</sub>                               | Not ap      | plicable    | fF       |                                                                       |
| 15  | Static Capacitance                                                                                           | Co                                             | -           | 5.0         | pF       |                                                                       |
| 16  | Q Factor                                                                                                     | Q                                              | 70 000      | -           | - "      |                                                                       |
| 17  | Ratio of Unwanted: Response Resistance to Resonance Resistance or Response Impedance to Resonance Resistance | R <sub>p</sub> /R<br>or<br>IZ <sub>p</sub> I/R | 3:1         |             |          | In the frequency range:  f <sub>r</sub> -10%  to  f <sub>r</sub> +10% |
| 18  | Ageing                                                                                                       | $\frac{\Delta f}{f}$                           | - 10        | + 10        | 10-6     | 12 years after Burn-in                                                |
| 19  | Lead Finish                                                                                                  |                                                | Ту          | oe 2        |          |                                                                       |
| 20  | Intended Application                                                                                         |                                                | TC          | XO          |          |                                                                       |

PAGE 36

ISSUE 4

## TABLE 1(a) - TYPE VARIANT DETAILED INFORMATION

|     |                                                                                                              | ,                                              |             |                   |                  |                                                              |
|-----|--------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------|-------------------|------------------|--------------------------------------------------------------|
| No. | Characteristics                                                                                              | Symbol                                         | Lim<br>Min. | its<br>Max.       | Unit             | Remarks                                                      |
| 1   | Resonance Frequency                                                                                          | fL                                             | 6.          | 6.4               |                  |                                                              |
| 2   | Reference Temperature                                                                                        | T <sub>o</sub>                                 | + 23        | + 27              | °C               |                                                              |
| 3   | Overtone Order                                                                                               | -                                              | Fundar      | nental            | 1                | 1 · · · · · · · · · · · · · · · · · · ·                      |
| 4   | Load Capacitance                                                                                             | CL                                             | 3           | 0                 | pF               |                                                              |
| 5   | Rated Drive Level                                                                                            | Po                                             | 0.          | 1                 | mW               | ·                                                            |
| 6   | Frequency Adjustment<br>Tolerance                                                                            | $\frac{\Delta f}{f}$                           | -10         | + 10              | 10 <sup>-6</sup> | At To °C                                                     |
| 7   | Resonance Resistance                                                                                         | RL                                             | -           | 20                | Ω                | At To °C                                                     |
| 8   | Frequency Variation with Temperature over Top                                                                | ∆ f<br>f                                       | -20         | + 20              | 10-6             | From frequency<br>measured at T <sub>o</sub> °C              |
| 9   | Resistance Variation with Temperature over Top                                                               | ΔR<br>R                                        | -20<br>-2.0 | +20<br>or<br>+2.0 | %<br>Ω           | From resistance<br>measured at T <sub>o</sub> °C<br>If R<10Ω |
| 10  | Operating Temperature<br>Range                                                                               | T <sub>op</sub>                                | -45         | +80               | °C               |                                                              |
| 11  | Frequency Variation with Drive Level                                                                         | $\frac{\Delta f}{f}$                           | Not ap      | plicable          | 10 <sup>-6</sup> |                                                              |
| 12  | Resistance Variation with Drive Level                                                                        | <u>Δ R</u><br>R                                | Not ap      | plicable          | %                |                                                              |
| 13  | Motional Inductance                                                                                          | L <sub>1</sub>                                 | Not ap      | plicable          | mH               |                                                              |
| 14  | Motional Capacitance                                                                                         | C <sub>1</sub>                                 | Not ap      | plicable          | fF               |                                                              |
| 15  | Static Capacitance                                                                                           | Co                                             | -           | 7.0               | pF               |                                                              |
| 16  | Q Factor                                                                                                     | Q                                              | 70 000      | -                 | . <b>-</b>       |                                                              |
| 17  | Ratio of Unwanted: Response Resistance to Resonance Resistance or Response Impedance to Resonance Resistance | R <sub>p</sub> /R<br>or<br>IZ <sub>p</sub> I/R | 2:1         |                   |                  | In the frequency range:  fL -200kHz  to  fL +200kHz          |
| 18  | Ageing                                                                                                       | $\frac{\Delta f}{f}$                           | -3.0        | + 3.0             | 10-6             | Per year after Burn-in                                       |
| 19  | Lead Finish                                                                                                  |                                                | Ту          | oe 4              |                  |                                                              |
| 20  | Intended Application                                                                                         | -                                              | <b>&gt;</b> | (0                |                  |                                                              |

PAGE 37

ISSUE 4

#### TABLE 1(a) - TYPE VARIANT DETAILED INFORMATION

| No. | Characteristics                                                                                              | Symbol                                         | Lim<br>Min. | nits<br>Max.        | Unit             | Remarks                                                                 |
|-----|--------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------|---------------------|------------------|-------------------------------------------------------------------------|
| 1   | Resonance Frequency                                                                                          | f <sub>r</sub>                                 | 12.0        | 12.605              |                  | AT cut                                                                  |
| 2   | Reference Temperature                                                                                        | To                                             | + 20        | + 30                | °C               |                                                                         |
| 3   | Overtone Order                                                                                               | -                                              | Funda       | mental              | -                |                                                                         |
| 4   | Load Capacitance                                                                                             | CL                                             | .0          | 0                   | рF               |                                                                         |
| 5   | Rated Drive Level                                                                                            | Po                                             | 0.          | 1                   | mW               |                                                                         |
| 6   | Frequency Adjustment<br>Tolerance                                                                            | $\frac{\Delta f}{f}$                           | - 10        | + 10                | 10-6             | At T <sub>o</sub> °C                                                    |
| 7   | Resonance Resistance                                                                                         | R <sub>r</sub>                                 | · -         | 40                  | Ω                | At To °C                                                                |
| 8   | Frequency Variation with Temperature over Top                                                                | ∆ f<br>f                                       | - 10        | + 10                | 10-6             | From frequency measured at T <sub>0</sub> °C                            |
| 9   | Resistance Variation with Temperature over Top                                                               | ΔR<br>R                                        | -20         | + 20<br>or<br>+ 2.0 | %                | From resistance<br>measured at T <sub>0</sub> °C                        |
| 10  | Operating Temperature<br>Range                                                                               | T <sub>op</sub>                                | -20         | +60                 | °C               |                                                                         |
| 111 | Frequency Variation with Drive Level                                                                         | $\frac{\Delta f}{f}$                           | Not ap      | plicable            | 10 <sup>-6</sup> |                                                                         |
| 12  | Resistance Variation with Drive Level                                                                        | <u>Δ R</u><br>R                                | Not ap      | plicable            | %                |                                                                         |
| 13  | Motional Inductance                                                                                          | L <sub>1</sub>                                 | 2.0         |                     | mH               |                                                                         |
| 14  | Motional Capacitance                                                                                         | C <sub>1</sub>                                 | Not ap      | plicable            | fF               |                                                                         |
| 15  | Static Capacitance                                                                                           | Co                                             | -           | 7.0                 | pF               |                                                                         |
| 16  | Q Factor                                                                                                     | Q                                              | 70 000      | -                   | -                |                                                                         |
| 17  | Ratio of Unwanted: Response Resistance to Resonance Resistance or Response Impedance to Resonance Resistance | R <sub>p</sub> /R<br>or<br>IZ <sub>p</sub> 1/R | 2:1         | <u>.</u>            |                  | In the frequency range:  f <sub>r</sub> - 10%  to  f <sub>r</sub> + 10% |
| 18  | Ageing                                                                                                       | $\frac{\Delta f}{f}$                           | -5.0        | +5.0                | 10-6             | Operation 12 years                                                      |
| 19  | Lead Finish                                                                                                  |                                                | Тур         | pe 2                |                  |                                                                         |
| 20  | Intended Application                                                                                         |                                                | тс          | XO                  |                  |                                                                         |

PAGE 38

ISSUE 4

### TABLE 1(a) - TYPE VARIANT DETAILED INFORMATION

|     | ·                                                                                                            |                                                |             |                   |      |                                                                       |
|-----|--------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------|-------------------|------|-----------------------------------------------------------------------|
| No. | Characteristics                                                                                              | Symbol                                         | Lim<br>Min. | its<br>Max.       | Unit | Remarks                                                               |
| 1   | Resonance Frequency                                                                                          | fL                                             | 7.          | 7.0               |      | AT cut                                                                |
| 2   | Reference Temperature                                                                                        | T <sub>o</sub>                                 | + 23        | + 27              | °C   | 1                                                                     |
| 3   | Overtone Order                                                                                               | <b>-</b>                                       | Fundar      | nental            |      | i i i i i i i i i i i i i i i i i i i                                 |
| 4   | Load Capacitance                                                                                             | CL                                             | 30          | )                 | pF   |                                                                       |
| 5   | Rated Drive Level                                                                                            | Po                                             | 0.          | 1                 | mW   |                                                                       |
| 6   | Frequency Adjustment<br>Tolerance                                                                            | $\frac{\Delta f}{f}$                           | - 10        | + 10              | 10-6 | At To °C                                                              |
| 7   | Resonance Resistance                                                                                         | RL                                             | -           | 20                | Ω    | At To °C                                                              |
| 8   | Frequency Variation with Temperature over Top                                                                | Δ f<br>f                                       | <b>– 12</b> | + 12              | 10-6 | From frequency<br>measured at T <sub>o</sub> °C                       |
| 9   | Resistance Variation with Temperature                                                                        | <u>Δ R</u><br>R                                | -20<br>0    |                   | %    | From resistance measured at T <sub>0</sub> °C                         |
|     | over T <sub>op</sub>                                                                                         |                                                | -2.0        | +2.0              | Ω    |                                                                       |
| 10  | Operating Temperature Range                                                                                  | T <sub>op</sub>                                | -35         | + 70              | °C   |                                                                       |
| 11  | Frequency Variation with Drive Level                                                                         | $\frac{\Delta f}{f}$                           | Not ap      | olicable          | 10-6 | N. 3                                                                  |
| 12  | Resistance Variation with Drive Level                                                                        | <u>Δ R</u><br>R                                | Not ap      | olicable          | %    |                                                                       |
| 13  | Motional Inductance                                                                                          | L <sub>1</sub>                                 | 40          | e pulja i c       | mH   |                                                                       |
| 14  | Motional Capacitance                                                                                         | C <sub>1</sub>                                 | Not ap      | olicable          | fF   |                                                                       |
| 15  | Static Capacitance                                                                                           | Co                                             | -           | 7.0               | pF   | :                                                                     |
| 16  | Q Factor                                                                                                     | Q                                              | 100 000     | -                 | -    |                                                                       |
| 17  | Ratio of Unwanted: Response Resistance to Resonance Resistance or Response Impedance to Resonance Resistance | R <sub>p</sub> /R<br>or<br>IZ <sub>p</sub> I/R | 3:1         | : "<br>: "<br>: . |      | In the frequency range:  f <sub>L</sub> -10%  to  f <sub>L</sub> +10% |
| 18  | Ageing                                                                                                       | $\frac{\Delta f}{f}$                           | -3.0        | +3.0              | 10-6 | Per year after Burn-in                                                |
| 19  | Lead Finish                                                                                                  |                                                | Ту          | pe 2              |      |                                                                       |
| 20  | Intended Application                                                                                         |                                                | ×           | O                 |      |                                                                       |

PAGE 39

ISSUE 4

### TABLE 1(a) - TYPE VARIANT DETAILED INFORMATION

|     |                                                                                                              |                                                | MUMILI           |                       |        |                                                                       |
|-----|--------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------|-----------------------|--------|-----------------------------------------------------------------------|
| No. | Characteristics                                                                                              | Symbol                                         | Lim<br>Min.      | nits<br>Max.          | Unit   | Remarks                                                               |
| 1   | Resonance Frequency                                                                                          | fr                                             | 12.6             | 665                   | MHz    | AT cut                                                                |
| 2   | Reference Temperature                                                                                        | To                                             | +20              | + 30                  | °C     |                                                                       |
| 3   | Overtone Order                                                                                               | -                                              | Fundai           | mental                | -      | 12.5                                                                  |
| 4   | Load Capacitance                                                                                             | CL                                             | 0                | 0                     | pF     |                                                                       |
| 5   | Rated Drive Level                                                                                            | Po                                             | 0.               | .1                    | mW     |                                                                       |
| 6   | Frequency Adjustment<br>Tolerance                                                                            | $\frac{\Delta f}{f}$                           | -10              | + 10                  | 10-6   | At To °C                                                              |
| 7   | Resonance Resistance                                                                                         | R <sub>r</sub>                                 |                  | 40                    | Ω      | At To °C                                                              |
| 8   | Frequency Variation with Temperature over Top                                                                | <u>∆</u> f                                     | - 12             | + 12                  | 10-6   | From frequency measured at T <sub>0</sub> °C                          |
| 9   | Resistance Variation with Temperature over Top                                                               | ΔR<br>R                                        | -20<br>0<br>-2.0 | +20<br>r<br>+2.0      | %<br>Ω | From resistance measured at T <sub>0</sub> °C                         |
| 10  | Operating Temperature<br>Range                                                                               | T <sub>op</sub>                                | -20              | +80                   | °C     |                                                                       |
| 111 | Frequency variation with Drive Level                                                                         | <u>Δ f</u>                                     | Not ap           | plicable              | 10-6   |                                                                       |
| 12  | Resistance variation with Drive Level                                                                        | ΔR<br>R                                        | Not ap           | plicable              | %      |                                                                       |
| 13  | Motional Inductance                                                                                          | L <sub>1</sub>                                 | 2.0              | :                     | mH     |                                                                       |
| 14  | Motional Capacitance                                                                                         | C <sub>1</sub>                                 | Not ap           | plicable              | fF     |                                                                       |
| 15  | Static Capacitance                                                                                           | Co                                             | -                | 7.0                   | pF     |                                                                       |
| 16  | Q Factor                                                                                                     | Q                                              | 70 000           |                       | -      |                                                                       |
| 17  | Ratio of Unwanted: Response Resistance to Resonance Resistance or Response Impedance to Resonance Resistance | R <sub>p</sub> /R<br>or<br>IZ <sub>p</sub> I/R | 2:1              | 2<br>2<br>3<br>3<br>4 |        | In the frequency range:  f <sub>r</sub> -10%  to  f <sub>r</sub> +10% |
| 18  | Ageing                                                                                                       | ∆ f<br>f                                       | -5.0             | + 5.0                 | 10-6   | Over 12 years after 240 hours Burn-in                                 |
| 19  | Lead Finish                                                                                                  |                                                | Туј              | oe 2                  |        |                                                                       |
| 20  | Intended Application                                                                                         |                                                | TC               | XO                    |        |                                                                       |

PAGE 40

ISSUE 4

# TABLE 1(a) - TYPE VARIANT DETAILED INFORMATION

|     | ! コイナス - 製造 :                                                                                                | · · · · · ·          | 7 11 117 11 1 | 10: 10      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----|--------------------------------------------------------------------------------------------------------------|----------------------|---------------|-------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No. | Characteristics                                                                                              | Symbol               | Lim<br>Min.   | its<br>Max. | Unit  | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1   | Resonance Frequency                                                                                          | ₩ fL                 | 5.7           | 60          | MHz   | AT cut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2   | Reference Temperature                                                                                        | T <sub>o</sub>       | + 23          | + 27        | °C    | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3   | Overtone Order                                                                                               |                      | Fundar        | nental      | •     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4   | Load Capacitance                                                                                             | CL                   | 29.5          | 30.5        | pF    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5   | Rated Drive Level                                                                                            | $P_{o}$              | 0.            | 1           | mW    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6   | Frequency Adjustment<br>Tolerance                                                                            | <u>Δ f</u><br>f      | -10           | + 10        | 10-6  | At T <sub>o</sub> °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 7   | Resonance Resistance                                                                                         | $R_{L}$              | 4.0           | 15          | Ω     | At T <sub>o</sub> °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8   | Frequency Variation with Temperature over Top                                                                | <u>Δ f</u><br>f      | -15           | + 15        | 10-6  | From frequency<br>measured at To °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 9   | Resistance Variation with Temperature over Top                                                               | ΔR<br>R              | Not app       | icable      | %     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10  | Operating Temperature Range                                                                                  | T <sub>op</sub>      | -40           | +90         | °C    | 14.4<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 11  | Frequency Variation with Drive Level                                                                         | $\frac{\Delta f}{f}$ | Not ap        | olicable    | 10-6  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12  | Resistance Variation with Drive Level                                                                        | Δ <u>R</u><br>R      | Not ap        | plicable    | %     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 13  | Motional Inductance                                                                                          | L <sub>1</sub>       | Not ap        | plicable    | mH    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 14  | Motional Capacitance                                                                                         | C <sub>1</sub>       | Not ap        | plicable    | fF    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15  | Static Capacitance                                                                                           | Co                   | -             | 7.0         | pF    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 16  | Q Factor                                                                                                     | Q                    | 100 000       |             | - · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 17  | Ratio of Unwanted: Response Resistance to Resonance Resistance or Response Impedance to Resonance Resistance | Rp/R<br>or<br>IZpI/R | 3:1           | -           |       | In the frequency range:  fL -200kHz  to  fL +200kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 18  | Ageing                                                                                                       | ∆ f<br>f             | -15           | + 15        | 10-6  | Over 10 years after 240 hours Burn-in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 19  | Lead Finish                                                                                                  |                      |               | pe 2        |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20  | Intended Application                                                                                         |                      | <u> </u>      | (O          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |                                                                                                              | 4 1                  |               |             |       | The second secon |

PAGE 40

ISSUE 4

## TABLE 1(a) - TYPE VARIANT DETAILED INFORMATION

| No. | Characteristics                                                                                              | Symbol               | Lin<br>Min.    | nits<br>Max. | Unit             | Remarks                                             |
|-----|--------------------------------------------------------------------------------------------------------------|----------------------|----------------|--------------|------------------|-----------------------------------------------------|
| 1   | Resonance Frequency                                                                                          | fL                   | 5.7            | 5.760        |                  | AT cut                                              |
| 2   | Reference Temperature                                                                                        | To                   | + 23           | + 27         | °C               |                                                     |
| 3   | Overtone Order                                                                                               |                      | Fundai         | mental       | -                |                                                     |
| 4   | Load Capacitance                                                                                             | C <sub>L</sub>       | 29.5           | 30.5         | pF               |                                                     |
| 5   | Rated Drive Level                                                                                            | Po                   | 0.             | 1            | mW               |                                                     |
| 6   | Frequency Adjustment<br>Tolerance                                                                            | $\frac{\Delta f}{f}$ | -10            | + 10         | 10 <sup>-6</sup> | At T <sub>o</sub> °C                                |
| 7   | Resonance Resistance                                                                                         | RL                   | 4.0            | 15           | Ω                | At To °C                                            |
| 8   | Frequency Variation with Temperature over Top                                                                | ∆f<br>f              | -15            | + 15         | 10-6             | From frequency<br>measured at T <sub>o</sub> °C     |
| 9   | Resistance Variation with Temperature over Top                                                               | ΔR<br>R              | Not applicable |              | %                |                                                     |
| 10  | Operating Temperature Range                                                                                  | T <sub>op</sub>      | -40            | + 90         | °C               | ) A 91                                              |
| 11  | Frequency Variation with Drive Level                                                                         | $\frac{\Delta f}{f}$ | Not ap         | olicable     | 10-6             |                                                     |
| 12  | Resistance Variation with Drive Level                                                                        | <u>Δ R</u><br>R      | Not ap         | plicable     | %                |                                                     |
| 13  | Motional Inductance                                                                                          | L <sub>1</sub>       | Not ap         | plicable     | mH               |                                                     |
| 14  | Motional Capacitance                                                                                         | C <sub>1</sub>       | Not ap         | plicable     | fF               |                                                     |
| 15  | Static Capacitance                                                                                           | Co                   | •              | 7.0          | pF               |                                                     |
| 16  | Q Factor                                                                                                     | Q                    | 100 000        | •            | -                |                                                     |
| 17  | Ratio of Unwanted: Response Resistance to Resonance Resistance or Response Impedance to Resonance Resistance | Rp/R<br>or<br>IZpI/R | 3:1            | <u>-</u>     |                  | In the frequency range:  fL -200kHz  to  fL +200kHz |
| 18  | Ageing                                                                                                       | $\frac{\Delta f}{f}$ | -15            | + 15         | 10-6             | Over 10 years after 240 hours Burn-in               |
| 19  | Lead Finish                                                                                                  |                      | Тур            | pe 2         |                  |                                                     |
| 20  | Intended Application                                                                                         |                      | ×              | O            |                  |                                                     |

PAGE 41

ISSUE 4

## TABLE 1(a) - TYPE VARIANT DETAILED INFORMATION

| No. | Characteristics                                                                                              | Symbol                                         | Lim<br>Min.      | nits<br>Max.        | Unit             | Remarks                                                               |
|-----|--------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------|---------------------|------------------|-----------------------------------------------------------------------|
| 1   | Resonance Frequency                                                                                          | fL                                             | 8.602            | 8.602893            |                  | AT cut                                                                |
| 2   | Reference Temperature                                                                                        | T <sub>o</sub>                                 | + 55             | + 65                | °C               |                                                                       |
| 3   | Overtone Order                                                                                               |                                                | Fundar           | mental              |                  |                                                                       |
| 4   | Load Capacitance                                                                                             | CL                                             | 3                | 0                   | pF               |                                                                       |
| 5   | Rated Drive Level                                                                                            | Po                                             | 0.               | 1                   | mW               |                                                                       |
| 6   | Frequency Adjustment<br>Tolerance                                                                            | $\frac{\Delta f}{f}$                           | -10              | + 10                | 10-6             | At T <sub>o</sub> °C                                                  |
| 7   | Resonance Resistance                                                                                         | $R_{L}$                                        | -                | 30                  | Ω                | At To °C                                                              |
| 8   | Frequency Variation with Temperature over Top                                                                | Δf<br>f                                        | -12              | + 12                | 10-6             | From frequency<br>measured at T <sub>0</sub> °C                       |
| 9   | Resistance Variation with Temperature over Top                                                               | ΔR<br>R                                        | -20<br>0<br>-2.0 | +20<br>or<br>I +2.0 | %<br>Ω           | From resistance<br>measured at T <sub>0</sub> °C                      |
| 10  | Operating Temperature<br>Range                                                                               | T <sub>op</sub>                                | -40              | + 85                | °C               |                                                                       |
| 11  | Frequency Variation with Drive Level                                                                         | <u>Δ f</u>                                     | Not ap           | plicable            | 10-6             |                                                                       |
| 12  | Resistance Variation with Drive Level                                                                        | ΔR<br>R                                        | -20              | +20                 | <b>%</b>         | From $P_{S1} = 0.01 \text{mW}$<br>to $P_{S2} = 0.1 \text{mW}$         |
| 13  | Motional Inductance                                                                                          | L <sub>1</sub>                                 | 2.0              | : <b>-</b>          | mH               |                                                                       |
| 14  | Motional Capacitance                                                                                         | C <sub>1</sub>                                 | Not ap           | plicable            | fF               |                                                                       |
| 15  | Static Capacitance                                                                                           | Co                                             |                  | 5.0                 | pF               |                                                                       |
| 16  | Q Factor                                                                                                     | Q                                              | 100 000          | _                   | ; <b>-</b>       | A contract of                                                         |
| 17  | Ratio of Unwanted: Response Resistance to Resonance Resistance or Response Impedance to Resonance Resistance | R <sub>p</sub> /R<br>or<br>IZ <sub>p</sub> I/R | 2:1              |                     |                  | In the frequency range:  f <sub>L</sub> -10%  to  f <sub>L</sub> +10% |
| 18  | Ageing                                                                                                       | $\frac{\Delta f}{f}$                           | -5.0             | + 5.0               | 10 <sup>-6</sup> | Over 10 years after 240 hours Burn-in                                 |
| 19  | Lead Finish                                                                                                  |                                                | Ту               | Type 2              |                  |                                                                       |
| 20  | Intended Application                                                                                         |                                                | ×                | O                   |                  |                                                                       |



PAGE 42

ISSUE 4

### TABLE 1(a) - TYPE VARIANT DETAILED INFORMATION

| No. | Characteristics                                                                                              | Symbol                                         | Lim<br>Min. | its<br>Max.      | Unit   | Remarks                                                               |
|-----|--------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------|------------------|--------|-----------------------------------------------------------------------|
| 1   | Resonance Frequency                                                                                          | f <sub>r</sub>                                 | 15.104893   |                  | MHz    | AT cut                                                                |
| 2   | Reference Temperature                                                                                        | To                                             | + 20        | + 30             | °C     |                                                                       |
| 3   | Overtone Order                                                                                               | -                                              | Fundar      | nental           | -      |                                                                       |
| 4   | Load Capacitance                                                                                             | CL                                             | ο ο         | D                | pF     |                                                                       |
| 5   | Rated Drive Level                                                                                            | Po                                             | 0.          | 1                | mW     |                                                                       |
| 6   | Frequency Adjustment<br>Tolerance                                                                            | ∆ f<br>f                                       | -10         | + 10             | 10-6   | At T <sub>o</sub> °C                                                  |
| 7   | Resonance Resistance                                                                                         | R <sub>r</sub>                                 |             | 40               | Ω      | At To °C                                                              |
| 8   | Frequency Variation with Temperature over Top                                                                | Δf<br>f                                        | <b>-10</b>  | + 10             | 10-6   | From frequency measured at T <sub>o</sub> °C                          |
| 9   | Resistance Variation with Temperature                                                                        | ΔR<br>R                                        | -20<br>0    | +20<br>r<br>+2.0 | %<br>Ω | From resistance<br>measured at T <sub>o</sub> °C                      |
|     | over T <sub>op</sub>                                                                                         |                                                | - 2.0       |                  |        |                                                                       |
| 10  | Operating Temperature Range                                                                                  | T <sub>op</sub>                                | -20         | + 80             | °C     |                                                                       |
| 11. | Frequency Variation with Drive Level                                                                         | $\frac{\Delta f}{f}$                           | Not ap      | olicable         | 10-6   |                                                                       |
| 12  | Resistance Variation with Drive Level                                                                        | ΔR<br>R                                        | Not ap      | plicable         | %      |                                                                       |
| 13  | Motional Inductance                                                                                          | L <sub>1</sub>                                 | 2.0         |                  | mH     |                                                                       |
| 14  | Motional Capacitance                                                                                         | C <sub>1</sub>                                 | Not ap      | plicable         | fF     |                                                                       |
| 15  | Static Capacitance                                                                                           | Co                                             | -           | 7.0              | pF     | :                                                                     |
| 16  | Q Factor                                                                                                     | Q                                              | 70 000      |                  |        |                                                                       |
| 17  | Ratio of Unwanted: Response Resistance to Resonance Resistance or Response Impedance to Resonance Resistance | R <sub>p</sub> /R<br>or<br>IZ <sub>p</sub> l/R | 2:1         | -<br>-           |        | In the frequency range:  f <sub>r</sub> -10%  to  f <sub>r</sub> +10% |
| 18  | Ageing                                                                                                       | Δf<br>f                                        | - 5.0       | + 5.0            | 10-6   | Over 12 years after 240 hours Burn-in                                 |
| 19  | Lead Finish                                                                                                  | -                                              | Туг         | e 2              |        |                                                                       |
| 20  | Intended Application                                                                                         |                                                | ×           | (O               |        |                                                                       |

PAGE 43

ISSUE 4

# TABLE 1(a) - TYPE VARIANT DETAILED INFORMATION

| No. | Characteristics                                                                                              | Symbol                                         | Lim<br>Min.      | its<br>Max.                             | Unit     | Remarks                                                                     |
|-----|--------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------|-----------------------------------------|----------|-----------------------------------------------------------------------------|
| 1   | Resonance Frequency                                                                                          | fL                                             | 20.              | 20.0                                    |          | AT cut                                                                      |
| 2   | Reference Temperature                                                                                        | To                                             | + 23             | + 27                                    | • °C     |                                                                             |
| 3   | Overtone Order                                                                                               |                                                | Fundan           | nental                                  | -        |                                                                             |
| 4   | Load Capacitance                                                                                             | CL                                             | 30               | )                                       | pF       |                                                                             |
| 5   | Rated Drive Level                                                                                            | Po                                             | 0.               | 1                                       | mW       |                                                                             |
| 6   | Frequency Adjustment<br>Tolerance                                                                            | $\frac{\Delta f}{f}$                           | -10              | + 10                                    | 10-6     | At T <sub>o</sub> °C                                                        |
| 7   | Resonance Resistance                                                                                         | $R_L$                                          | -                | 30                                      | Ω        | At To °C                                                                    |
| 8   | Frequency Variation with Temperature over Top                                                                | ∆ f<br>f                                       | – 15             | + 15                                    | 10-6     | From frequency<br>measured at T <sub>o</sub> °C                             |
| 9   | Resistance Variation with Temperature over Top                                                               | ∆R<br>R                                        | -20<br>o<br>-2.0 | +20<br>r<br>+2.0                        | %<br>Ω   | From resistance<br>measured at T <sub>0</sub> °C                            |
| 10  | Operating Temperature<br>Range                                                                               | T <sub>op</sub>                                | -30              | + 70                                    | °C       |                                                                             |
| 11  | Frequency Variation with Drive Level                                                                         | $\frac{\Delta f}{f}$                           | Not app          | olicable                                | 10-6     |                                                                             |
| 12  | Resistance Variation with Drive Level                                                                        | <u>∆ R</u><br>R                                | Not ap           | olicable                                | %        |                                                                             |
| 13  | Motional Inductance                                                                                          | L <sub>1</sub>                                 | Not app          | olicable                                | mH       |                                                                             |
| 14  | Motional Capacitance                                                                                         | C <sub>1</sub>                                 | Not ap           | olicable                                | fF       |                                                                             |
| 15  | Static Capacitance                                                                                           | Co                                             | -                | 7.0                                     | pF       |                                                                             |
| 16  | Q Factor                                                                                                     | Q                                              | 70 000           | _                                       | <u>-</u> |                                                                             |
| 17  | Ratio of Unwanted: Response Resistance to Resonance Resistance or Response Impedance to Resonance Resistance | R <sub>p</sub> /R<br>or<br>IZ <sub>p</sub> I/R | 2:1              | - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 |          | In the frequency range:  f <sub>L</sub> -200kHz  to  f <sub>L</sub> +200kHz |
| 18  | Ageing                                                                                                       | <u>Δ f</u>                                     | -1.0             | + 1.0                                   | 10-6     | Per year after Burn-in                                                      |
| 19  | Lead Finish                                                                                                  |                                                | Type 2           |                                         |          |                                                                             |
| 20  | Intended Application                                                                                         |                                                | ×                | 0                                       |          |                                                                             |

PAGE 44

ISSUE 4

## TABLE 1(a) - TYPE VARIANT DETAILED INFORMATION

| No. | Characteristics                                                                                              | Symbol                                         | Lim<br>Min.      | its<br>Max. | Unit             | Remarks                                                                     |
|-----|--------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------|-------------|------------------|-----------------------------------------------------------------------------|
| 1   | Resonance Frequency                                                                                          | f <sub>L</sub>                                 | 13.              | 0           | MHz              | AT cut                                                                      |
| 2   | Reference Temperature                                                                                        | To                                             | + 23             | + 27        | °C               |                                                                             |
| 3   | Overtone Order                                                                                               | -                                              | Fundar           | nental      | -                |                                                                             |
| 4   | Load Capacitance                                                                                             | C <sub>L</sub>                                 | 30               | )           | pF               |                                                                             |
| 5   | Rated Drive Level                                                                                            | P <sub>o</sub>                                 | 0.               | 1           | mW               |                                                                             |
| 6   | Frequency Adjustment Tolerance                                                                               | $\frac{\Delta f}{f}$                           | -10              | +10         | 10-6             | At T <sub>o</sub> °C                                                        |
| 7   | Resonance Resistance                                                                                         | $R_{L}$                                        | · :-             | 20          | Ω                | At To °C                                                                    |
| 8   | Frequency Variation with Temperature over Top                                                                | ∆ f<br>f                                       | - 20             | +20         | 10-6             | From frequency measured at T <sub>0</sub> °C                                |
| 9   | Resistance Variation with Temperature over Top                                                               | ΔR<br>R                                        | -20<br>0<br>-2.0 |             | %<br>Ω           | From resistance<br>measured at T <sub>o</sub> °C                            |
| 10  | Operating Temperature<br>Range                                                                               | T <sub>op</sub>                                | -40              | +80         | °C               |                                                                             |
| 11  | Frequency Variation with Drive Level                                                                         | $\frac{\Delta f}{f}$                           | Not ap           | olicable    | 10-6             |                                                                             |
| 12  | Resistance Variation with Drive Level                                                                        | ΔR<br>R                                        | Not app          | olicable    | %                |                                                                             |
| 13  | Motional Inductance                                                                                          | L <sub>1</sub>                                 | Not ap           | plicable    | mH               |                                                                             |
| 14  | Motional Capacitance                                                                                         | C <sub>1</sub>                                 | Not ap           | plicable    | fF               |                                                                             |
| 15  | Static Capacitance                                                                                           | Co                                             | _                | 7.0         | pF               |                                                                             |
| 16  | Q Factor                                                                                                     | Q                                              | 70 000           | -           | -                |                                                                             |
| 17  | Ratio of Unwanted: Response Resistance to Resonance Resistance or Response Impedance to Resonance Resistance | R <sub>p</sub> /R<br>or<br>IZ <sub>p</sub> I/R | 2:1              | <br>        |                  | In the frequency range:  f <sub>L</sub> -200kHz  to  f <sub>L</sub> +200kHz |
| 18  | Ageing                                                                                                       | ∆ f<br>f                                       | -2.0             | +2.0        | 10 <sup>-6</sup> | Per year after Burn-in                                                      |
| 19  | Lead Finish                                                                                                  |                                                | Туј              | oe 2        |                  |                                                                             |
| 20  | Intended Application                                                                                         |                                                | <b>&gt;</b>      | O           |                  |                                                                             |

PAGE 45

ISSUE 4

# TABLE 1(a) - TYPE VARIANT DETAILED INFORMATION

|     |                                                                                                              |                                                |             |             |                  | · · · · · · · · · · · · · · · · · · ·                                                                         |
|-----|--------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------|-------------|------------------|---------------------------------------------------------------------------------------------------------------|
| No. | Characteristics                                                                                              | Symbol                                         | Lim<br>Min. | its<br>Max. | Unit             | Remarks                                                                                                       |
| 1   | Resonance Frequency                                                                                          | f∟                                             | 10          | 10.0        |                  | AT cut                                                                                                        |
| 2   | Reference Temperature                                                                                        | To                                             | + 23        | + 27        | °C               |                                                                                                               |
| 3   | Overtone Order                                                                                               | -                                              | Fundar      | nental      | -                |                                                                                                               |
| 4   | Load Capacitance                                                                                             | CL                                             | 30          | 0           | pF               |                                                                                                               |
| 5   | Rated Drive Level                                                                                            | Po                                             | 0.          | 1           | mW               |                                                                                                               |
| 6   | Frequency Adjustment<br>Tolerance                                                                            | $\frac{\Delta f}{f}$                           | -10         | + 10        | 10 <sup>-6</sup> | At T <sub>o</sub> °C                                                                                          |
| 7   | Resonance Resistance                                                                                         | RL                                             | .: •        | 30          | Ω                | At To °C                                                                                                      |
| 8   | Frequency Variation with Temperature over Top                                                                | $\frac{\Delta f}{f}$                           | -30         | +30         | 10 <sup>-6</sup> | From frequency<br>measured at T <sub>0</sub> °C                                                               |
| 9   | Resistance Variation with Temperature                                                                        | <u>Δ R</u><br>R                                | -20<br>o    |             | %                | From resistance<br>measured at T <sub>0</sub> °C                                                              |
|     | over T <sub>op</sub>                                                                                         |                                                | -2.0        | + 2.0       | Ω                |                                                                                                               |
| 10  | Operating Temperature Range                                                                                  | T <sub>op</sub>                                | -55         | + 100       | °C               |                                                                                                               |
| 11  | Frequency variation with Drive Level                                                                         | $\frac{\Delta f}{f}$                           | Not ap      | olicable    | 10 <sup>-6</sup> |                                                                                                               |
| 12  | Resistance variation with Drive Level                                                                        | <u>Δ R</u><br>R                                | Not ap      | plicable    | %                |                                                                                                               |
| 13  | Motional Inductance                                                                                          | L <sub>1</sub>                                 | Not ap      | plicable    | mH               |                                                                                                               |
| 14  | Motional Capacitance                                                                                         | C <sub>1</sub>                                 | Not ap      | plicable    | fF               |                                                                                                               |
| 15  | Static Capacitance                                                                                           | Co                                             | -           | 7.0         | pF               |                                                                                                               |
| 16  | Q Factor                                                                                                     | Q                                              | 100 000     |             |                  | i de la companya de |
| 17  | Ratio of Unwanted: Response Resistance to Resonance Resistance or Response Impedance to Resonance Resistance | R <sub>p</sub> /R<br>or<br>IZ <sub>p</sub> I/R | 2:1         | : <u>-</u>  |                  | In the frequency range:  f <sub>L</sub> -200kHz  to  f <sub>L</sub> +200kHz                                   |
| 18  | Ageing                                                                                                       | $\frac{\Delta f}{f}$                           | - 2.0       | +2.0        | 10-6             | Per year after Burn-in                                                                                        |
| 19  | Lead Finish                                                                                                  |                                                | Тур         | pe 2        |                  |                                                                                                               |
| 20  | Intended Application                                                                                         |                                                | ×           | O           |                  |                                                                                                               |

PAGE 46

ISSUE 4

# TABLE 1(a) - TYPE VARIANT DETAILED INFORMATION

| · · · · · · · · · · · · · · · · · · · |                                                                                                              |                                                |             |             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------|-------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No.                                   | Characteristics                                                                                              | Symbol                                         | Lim<br>Min. | its<br>Max. | Unit             | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1                                     | Resonance Frequency                                                                                          | f∟                                             | 5.242       | 2880        | MHz              | AT cut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2                                     | Reference Temperature                                                                                        | Τ <sub>o</sub>                                 | + 60        | + 60        | °C               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3                                     | Overtone Order                                                                                               | -                                              | Fundar      | nental      | <b>-</b>         | and the second of the second o |
| 4                                     | Load Capacitance                                                                                             | CL                                             | 30          | 0           | рF               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5                                     | Rated Drive Level                                                                                            | P <sub>o</sub>                                 | 0.          | 1           | mW               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6                                     | Frequency Adjustment<br>Tolerance                                                                            | $\frac{\Delta f}{f}$                           | <b>– 10</b> | + 10        | 10 <sup>-6</sup> | At T <sub>o</sub> °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 7                                     | Resonance Resistance                                                                                         | RL                                             | -           | 13          | Ω                | At To °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 8                                     | Frequency Variation with Temperature over $T_{00}$                                                           | Δf<br>f                                        | <b>- 15</b> | + 15        | 10-6             | From frequency<br>measured at T <sub>o</sub> °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9                                     | Resistance Variation with Temperature over Top                                                               | ΔR<br>R                                        | Not ap      | olicable    | %                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10                                    | Operating Temperature<br>Range                                                                               | T <sub>op</sub>                                | -40         | + 85        | °C               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11                                    | Frequency variation with Drive Level                                                                         | $\frac{\Delta f}{f}$                           | Not ap      | plicable    | 10 <sup>-6</sup> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12                                    | Resistance variation with Drive Level                                                                        | ΔR<br>R                                        | Not ap      | plicable    | %                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13                                    | Motional Inductance                                                                                          | L <sub>1</sub>                                 | 20          | <u> </u>    | mΗ               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 14                                    | Motional Capacitance                                                                                         | C <sub>1</sub>                                 | Not ap      | plicable    | fF               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15                                    | Static Capacitance                                                                                           | Co                                             | -           | 5.0         | pF               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 16                                    | Q Factor                                                                                                     | , Q                                            | 50 000      | <u>-</u>    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 17                                    | Ratio of Unwanted: Response Resistance to Resonance Resistance or Response Impedance to Resonance Resistance | R <sub>p</sub> /R<br>or<br>IZ <sub>p</sub> I/R | 3:1         |             |                  | In the frequency range:  f <sub>L</sub> - 525kHz  to  f <sub>L</sub> + 525kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 18                                    | Ageing                                                                                                       | Δ f<br>f                                       | -3.0        | +3.0        | 10-6             | Per year after Burn-in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 19                                    | Lead Finish                                                                                                  |                                                | Ту          | pe 2        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20                                    | Intended Application                                                                                         |                                                | >           | (O          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

PAGE 47

ISSUE 4

## TABLE 1(a) - TYPE VARIANT DETAILED INFORMATION

|     |                                                                                                              |                                                | 7 (1 (1) (1 (1 ) | <u></u>     |                |                                                               |
|-----|--------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------|-------------|----------------|---------------------------------------------------------------|
| No. | Characteristics                                                                                              | Symbol                                         | Lim<br>Min.      | its<br>Max. | Unit           | Remarks                                                       |
| 1   | Resonance Frequency                                                                                          | fL                                             | 5.62             | 250         | MHz            | AT cut                                                        |
| 2   | Reference Temperature                                                                                        | T <sub>o</sub>                                 | + 20             | + 30        | °C             |                                                               |
| 3   | Overtone Order                                                                                               | : · · •                                        | Fundar           | nental      |                |                                                               |
| 4   | Load Capacitance                                                                                             | CL                                             | - 30             | 0           | pF             |                                                               |
| 5   | Rated Drive Level                                                                                            | Po                                             | 0.               | 1           | mW             |                                                               |
| 6   | Frequency Adjustment<br>Tolerance                                                                            | ∆ f<br>f                                       | <del>-</del> 10  | + 10        | 10-6           | At T <sub>o</sub> °C                                          |
| 7   | Resonance Resistance                                                                                         | RL                                             | -                | 25          | Ω              | At T <sub>o</sub> °C                                          |
| 8   | Frequency Variation with Temperature over Top                                                                | Δf<br>f                                        | <del>-</del> 14  | +14         | 10-6           | From frequency<br>measured at T <sub>o</sub> °C               |
| 9   | Resistance Variation with Temperature                                                                        | ΔR<br>R                                        | -20<br>0         |             | %              | From resistance measured at T <sub>o</sub> °C                 |
| ļ   | over T <sub>op</sub>                                                                                         |                                                | -2.0             | + 2.0       | Ω              |                                                               |
| 10  | Operating Temperature Range                                                                                  | T <sub>op</sub>                                | -40              | + 85        | °C             |                                                               |
| 11  | Frequency variation with Drive Level                                                                         | $\frac{\Delta f}{f}$                           | - 0.5            | + 0.5       | 10-6           | From P <sub>S1</sub> = .01mW<br>to<br>P <sub>S2</sub> = 0.1mW |
| 12  | Resistance variation with Drive Level                                                                        | ΔR<br>R                                        | -20              | +20         | . <b>%</b><br> | From P <sub>S1</sub> = .01mW<br>to<br>P <sub>S2</sub> = 0.1mW |
| 13  | Motional Inductance                                                                                          | L <sub>1</sub>                                 | 2.0              | # 2 15 M    | mH             |                                                               |
| 14  | Motional Capacitance                                                                                         | C <sub>1</sub>                                 | Not ap           | plicable    | fF             |                                                               |
| 15  | Static Capacitance                                                                                           | Co                                             | -                | 5.0         | pF             |                                                               |
| 16  | Q Factor                                                                                                     | Q                                              | 10 000           | -           | -              |                                                               |
| 17  | Ratio of Unwanted: Response Resistance to Resonance Resistance or Response Impedance to Resonance Resistance | R <sub>p</sub> /R<br>or<br>IZ <sub>p</sub> I/R | 3:1              |             |                | In the frequency range:  f10%  to  f_ +10%                    |
| 18  | Ageing                                                                                                       | $\frac{\Delta f}{f}$                           | - 5.0            | + 5.0       | 10-6           | Over 10 years after<br>Burn-in                                |
| 19  | Lead Finish                                                                                                  |                                                | Тур              | oe 2        |                |                                                               |
| 20  | Intended Application                                                                                         |                                                | ×                | O           |                |                                                               |

PAGE 48

ISSUE 4

# TABLE 1(a) - TYPE VARIANT DETAILED INFORMATION

| $ \begin{array}{ c c c c c c c c c } \hline No. & Characteristics & Symbol & \frac{Limits}{Min.} & Unit & Remarks \\ \hline 1 & Resonance Frequency & f_L & 11.250 & MHz & AT cut \\ \hline 2 & Reference Temperature & T_o & +23 & +27 & ^{\circ}C \\ \hline 3 & Overtone Order & - & Fundamental & - & \\ \hline 4 & Load Capacitance & C_L & 29.7 & 30.3 & pF \\ \hline 5 & Rated Drive Level & P_o & 0.1 & mW \\ \hline 6 & Frequency Adjustment & \frac{\Delta f}{f} & -10 & +10 & 10^{-6} & At T_o ^{\circ}C \\ \hline 7 & Resonance Resistance & R_L & - & 20 & \Omega & At T_o ^{\circ}C \\ \hline 8 & Frequency Variation & \frac{\Delta f}{f} & -20 & +20 & 10^{-6} & From frequency measured at T_o ^{\circ} \\ \hline 9 & Resistance Variation & \frac{\Delta R}{R} & Not applicable & \% \\ \hline \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 2 Reference Temperature $T_0$ +23 +27 °C<br>3 Overtone Order - Fundamental -<br>4 Load Capacitance $C_L$ 29.7 30.3 pF<br>5 Rated Drive Level $P_0$ 0.1 mW<br>6 Frequency Adjustment $\Delta f$ -10 +10 10-6 At $T_0$ °C<br>7 Resonance Resistance $R_L$ - 20 $\Omega$ At $T_0$ °C<br>8 Frequency Variation with Temperature over $T_{op}$ $\Delta f$ Not applicable %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C      |
| 3 Overtone Order - Fundamental -<br>4 Load Capacitance $C_L$ 29.7 30.3 pF<br>5 Rated Drive Level $P_o$ 0.1 mW<br>6 Frequency Adjustment $\Delta f = -10 + 10 + 10 = -10 + 10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = -10 = $ | C      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C      |
| 8 Frequency Variation with Temperature over $T_{op}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C      |
| with Temperature over Top measured at To ° measured at T          | C      |
| 9 Resistance Variation ΔR Not applicable %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
| over Top                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
| 10 Operating Temperature T <sub>op</sub> -50 +100 °C Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
| Frequency variation $\Delta f$ Not applicable 10-6 with Drive Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |
| 12 Resistance variation ΔR Not applicable % with Drive Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . ·    |
| 13 Motional Inductance L <sub>1</sub> Not applicable mH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| 14 Motional Capacitance C <sub>1</sub> Not applicable fF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
| 15 Static Capacitance C <sub>o</sub> - 7.0 pF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |
| 16 Q Factor Q 50 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | range: |
| 18 Ageing $\frac{\Delta f}{f}$ -20 +20 10-6 Over 15 years at 240 hours Burn-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |
| 19 Lead Finish Type 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |
| 20 Intended Application XO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |

PAGE 49

ISSUE 4

# TABLE 1(a) - TYPE VARIANT DETAILED INFORMATION

|     |                                                                                                              |                                                |                  |                    |                  | ·                                                                           |
|-----|--------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------|--------------------|------------------|-----------------------------------------------------------------------------|
| No. | Characteristics                                                                                              | Symbol                                         | Lim<br>Min.      | its<br>Max.        | Unit             | Remarks                                                                     |
| 1   | Resonance Frequency                                                                                          | f <sub>r</sub>                                 | 8.0              | 0                  | MHz              | AT cut                                                                      |
| 2   | Reference Temperature                                                                                        | T <sub>o</sub>                                 | + 23             | +27                | °C               |                                                                             |
| 3   | Overtone Order                                                                                               | -                                              | Fundan           | nental             | -                |                                                                             |
| 4   | Load Capacitance                                                                                             | . C <sub>L</sub>                               | ∞                | )                  | pF               |                                                                             |
| 5   | Rated Drive Level                                                                                            | Po                                             | 0.               | 1                  | mW               |                                                                             |
| 6   | Frequency Adjustment<br>Tolerance                                                                            | $\frac{\Delta f}{f}$                           | - 10             | + 10               | 10-6             | At To °C                                                                    |
| 7   | Resonance Resistance                                                                                         | R <sub>r</sub>                                 | -                | 30                 | Ω                | At T <sub>o</sub> °C                                                        |
| 8   | Frequency Variation with Temperature over Top                                                                | <u>Δ f</u><br>f                                | - 10             | + 10               | 10-6             | From frequency measured at T <sub>o</sub> °C                                |
| 9   | Resistance Variation with Temperature over Top                                                               | ΔR<br>R                                        | -20<br>0<br>-1.0 | + 20<br>r<br>+ 1.0 | %<br>Ω           | From resistance<br>measured at T <sub>o</sub> °C                            |
| 10  | Operating Temperature<br>Range                                                                               | T <sub>op</sub>                                | -30              | + 70               | °C               |                                                                             |
| 111 | Frequency variation with Drive Level                                                                         | ∆ f<br>f                                       | Not ap           | olicable           | 10 <sup>-6</sup> |                                                                             |
| 12  | Resistance variation with Drive Level                                                                        | ΔR<br>R                                        | Not ap           | plicable           | %                |                                                                             |
| 13  | Motional Inductance                                                                                          | L <sub>1</sub>                                 | Not ap           | plicable           | mH               |                                                                             |
| 14  | Motional Capacitance                                                                                         | C <sub>1</sub>                                 | Not ap           | plicable           | fF               |                                                                             |
| 15  | Static Capacitance                                                                                           | Co                                             | •                | 7.0                | pF               |                                                                             |
| 16  | Q Factor                                                                                                     | Q                                              | 80 000           | -                  | -                |                                                                             |
| 17  | Ratio of Unwanted: Response Resistance to Resonance Resistance or Response Impedance to Resonance Resistance | R <sub>p</sub> /R<br>or<br>IZ <sub>p</sub> I/R | 2:1              | -<br>-             |                  | In the frequency range:  f <sub>r</sub> -200kHz  to  f <sub>r</sub> +200kHz |
| 18  | Ageing                                                                                                       | Δf<br>f                                        | -3.0             | +3.0               | 10-6             | Per year after Burn-in                                                      |
| 19  | Lead Finish                                                                                                  |                                                | Tyl              | pe 2               |                  |                                                                             |
| 20  | Intended Application                                                                                         |                                                | <b>&gt;</b>      | (O                 |                  |                                                                             |

PAGE 50

ISSUE 4

## TABLE 1(a) - TYPE VARIANT DETAILED INFORMATION

|     | :                                                                                                            |                                                | 1           |                 |                  |                                                     |
|-----|--------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------|-----------------|------------------|-----------------------------------------------------|
| No. | Characteristics                                                                                              | Symbol                                         | Lim<br>Min. | Max.            | Unit             | Remarks                                             |
| 1   | Resonance Frequency                                                                                          | f∟                                             | 3.494       | 1400            | MHz              | AT cut                                              |
| 2   | Reference Temperature                                                                                        | To                                             | + 23        | + 27            | °C               |                                                     |
| 3   | Overtone Order                                                                                               | -                                              | Fundar      | mental          | -                |                                                     |
| 4   | Load Capacitance                                                                                             | CL                                             | 20          | 50              | pF               |                                                     |
| 5   | Rated Drive Level                                                                                            | Po                                             | 0.          | 1               | mW               |                                                     |
| 6   | Frequency Adjustment<br>Tolerance                                                                            | $\frac{\Delta f}{f}$                           | - 10        | + 10            | 10 <sup>-6</sup> | At T <sub>o</sub> °C                                |
| 7   | Resonance Resistance                                                                                         | RL                                             | : <b>-</b>  | 12              | Ω                | At To °C                                            |
| 8   | Frequency Variation with Temperature over Top                                                                | <u>∆</u> f                                     | -20         | +20             | 10 <sup>-6</sup> | From frequency<br>measured at T <sub>0</sub> °C     |
| 9   | Resistance Variation with Temperature over Top                                                               | ΔR<br>R                                        | Not a       | oplicable       | %                |                                                     |
| 10  | Operating Temperature<br>Range                                                                               | T <sub>op</sub>                                | - 55        | + 100           | °C               |                                                     |
| 11  | Frequency variation with Drive Level                                                                         | $\frac{\Delta f}{f}$                           | Not ap      | plicable        | 10-6             |                                                     |
| 12  | Resistance variation with Drive Level                                                                        | <u>Δ R</u>                                     | Not ap      | plicable        | %                |                                                     |
| 13  | Motional Inductance                                                                                          | L <sub>1</sub>                                 | 200         | - 1 · 1 · 1 · 1 | mH               |                                                     |
| 14  | Motional Capacitance                                                                                         | <sup>-</sup> C <sub>1</sub>                    | Not ap      | plicable        | fF               |                                                     |
| 15  | Static Capacitance                                                                                           | C <sub>o</sub>                                 | _           | 2.7             | pF               |                                                     |
| 16  | Q Factor                                                                                                     | Q                                              | 400 000     | -               | -                |                                                     |
| 17  | Ratio of Unwanted: Response Resistance to Resonance Resistance or Response Impedance to Resonance Resistance | R <sub>p</sub> /R<br>or<br>IZ <sub>p</sub> I/R | 2:1         | 100 mg/m        |                  | In the frequency range:  fL -300kHz  to  fL +300kHz |
| 18  | Ageing                                                                                                       | $\frac{\Delta f}{f}$                           | -5.0        | + 5.0           | 10 <sup>-6</sup> | Per year after Burn-in                              |
| 19  | Lead Finish                                                                                                  | * 3                                            | Туј         | pe 2            |                  |                                                     |
| 20  | Intended Application                                                                                         |                                                | >           | O               |                  |                                                     |

PAGE 51

ISSUE 4

# TABLE 1(a) - TYPE VARIANT DETAILED INFORMATION

|     |                                                                                                              |                                                | 7 11 117 11 11 1 |             |                  |                                                                             |
|-----|--------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------|-------------|------------------|-----------------------------------------------------------------------------|
| No. | Characteristics                                                                                              | Symbol                                         | Lim<br>Min.      | its<br>Max. | Unit             | Remarks                                                                     |
| 1   | Resonance Frequency                                                                                          | f∟                                             | 3.8              | 32          | MHz              |                                                                             |
| 2   | Reference Temperature                                                                                        | To                                             | + 23             | +27         | °C               |                                                                             |
| 3   | Overtone Order                                                                                               | -                                              | Fundar           | mental      |                  | #                                                                           |
| 4   | Load Capacitance                                                                                             | CL                                             | 3                | 0           | pF               |                                                                             |
| 5   | Rated Drive Level                                                                                            | Po                                             | 0.               | 1           | mW               |                                                                             |
| 6   | Frequency Adjustment<br>Tolerance                                                                            | ∆ f<br>f                                       | - 10             | + 10        | 10-6             | At T <sub>o</sub> °C                                                        |
| 7   | Resonance Resistance                                                                                         | $R_{L}$                                        | -                | 45          | Ω                | Over T <sub>op</sub> °C                                                     |
| 8   | Frequency Variation with Temperature over Top                                                                | Δf<br>f                                        | <b>– 17</b>      | + 17        | 10-6             | From frequency<br>measured at T <sub>o</sub> °C                             |
| 9   | Resistance Variation with Temperature over Top                                                               | ΔR<br>R                                        | Not ap           | oplicable   | %                |                                                                             |
| 10  | Operating Temperature<br>Range                                                                               | T <sub>op</sub>                                | - 40             | +80         | °C               |                                                                             |
| 11  | Frequency Variation with Drive Level                                                                         | $\frac{\Delta f}{f}$                           | Not ap           | plicable    | 10 <sup>-6</sup> |                                                                             |
| 12  | Resistance Variation with Drive Level                                                                        | <u>Δ R</u><br>R                                | Not ap           | plicable    | %                |                                                                             |
| 13  | Motional Inductance                                                                                          | L <sub>1</sub>                                 | 230              | -           | mH               |                                                                             |
| 14  | Motional Capacitance                                                                                         | C <sub>1</sub>                                 | Not ap           | plicable    | fF               |                                                                             |
| 15  | Static Capacitance                                                                                           | Co                                             | _                | 5.0         | pF               |                                                                             |
| 16  | Q Factor                                                                                                     | Q                                              | 125 000          | -           | -                |                                                                             |
| 17  | Ratio of Unwanted: Response Resistance to Resonance Resistance or Response Impedance to Resonance Resistance | R <sub>p</sub> /R<br>or<br>IZ <sub>p</sub> I/R | 2:1              | -           |                  | In the frequency range:  f <sub>L</sub> -500kHz  to  f <sub>L</sub> +500kHz |
| 18  | Ageing                                                                                                       | ∆ f<br>f                                       | -3.0             | +3.0        | 10-6             | Per year after Burn-in                                                      |
| 19  | Lead Finish                                                                                                  |                                                | Ту               | pe 2        |                  |                                                                             |
| 20  | Intended Application                                                                                         |                                                | >                | (O          |                  |                                                                             |

PAGE 52

ISSUE 4

# TABLE 1(a) - TYPE VARIANT DETAILED INFORMATION

| No. | Characteristics                                                                                              | Symbol                                         | Lim<br>Min. | its<br>Max. | Unit       | Remarks                                                                       |
|-----|--------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------|-------------|------------|-------------------------------------------------------------------------------|
| 1   | Resonance Frequency                                                                                          | fL                                             | 3.0         | 72          | MHz        |                                                                               |
| 2   | Reference Temperature                                                                                        | T <sub>o</sub>                                 | + 23        | + 27        | °C         |                                                                               |
| 3   | Overtone Order                                                                                               | -                                              | Fundar      | nental      |            |                                                                               |
| 4   | Load Capacitance                                                                                             | CL                                             | 30          | 0           | pF         |                                                                               |
| 5   | Rated Drive Level                                                                                            | Po                                             | 0.          | 1           | mW         |                                                                               |
| 6   | Frequency Adjustment<br>Tolerance                                                                            | $\frac{\Delta f}{f}$                           | <b>– 10</b> | + 10        | 10-6       | At T <sub>o</sub> °C                                                          |
| 7   | Resonance Resistance                                                                                         | RL                                             | -           | 50          | Ω          | Over T <sub>op</sub> °C                                                       |
| 8   | Frequency Variation with Temperature over Top                                                                | <u>∆</u> <del>f</del>                          | <b>-20</b>  | + 20        | 10-6       | From frequency measured at T <sub>o</sub> °C                                  |
| 9   | Resistance Variation with Temperature over Top                                                               | ΔR<br>R                                        | Not ap      | plicable    | %          |                                                                               |
| 10  | Operating Temperature<br>Range                                                                               | T <sub>op</sub>                                | - 40        | + 80        | °C         |                                                                               |
| 11  | Frequency Variation with Drive Level                                                                         | $\frac{\Delta f}{f}$                           | Not ap      | olicable    | 10-6       |                                                                               |
| 12  | Resistance Variation with Drive Level                                                                        | ΔR<br>R                                        | Not ap      | plicable    | %          |                                                                               |
| 13  | Motional Inductance                                                                                          | L <sub>1</sub>                                 | 230         | -           | mH         |                                                                               |
| 14  | Motional Capacitance                                                                                         | C <sub>1</sub>                                 | Not ap      | plicable    | fF         |                                                                               |
| 15  | Static Capacitance                                                                                           | C <sub>o</sub>                                 | -           | 5.0         | pF         |                                                                               |
| 16  | Q Factor                                                                                                     | Q                                              | 125 000     | -           | . <b>-</b> | ·                                                                             |
| 17  | Ratio of Unwanted: Response Resistance to Resonance Resistance or Response Impedance to Resonance Resistance | R <sub>p</sub> /R<br>or<br>IZ <sub>p</sub> I/R | 2:1         | -           |            | In the frequency range:  f <sub>L</sub> - 500kHz  to  f <sub>L</sub> + 500kHz |
| 18  | Ageing                                                                                                       | ∆ f<br>f                                       | -3.0        | +3.0        | 10-6       | Per year after Burn-in                                                        |
| 19  | Lead Finish                                                                                                  |                                                | Ту          | pe 2        |            |                                                                               |
| 20  | Intended Application                                                                                         |                                                | >           | (O          |            |                                                                               |



PAGE 53

ISSUE 4

## TABLE 1(a) - TYPE VARIANT DETAILED INFORMATION

| No. | Characteristics                                                                                              | Symbol                                         | Lim<br>Min. | its<br>Max. | Unit             | Remarks                                                                       |
|-----|--------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------|-------------|------------------|-------------------------------------------------------------------------------|
| 1   | Resonance Frequency                                                                                          | f∟                                             | 4.0         |             | MHz              |                                                                               |
| 2   | Reference Temperature                                                                                        | ··· T <sub>o</sub>                             | + 23        | + 27        | °C               |                                                                               |
| 3   | Overtone Order                                                                                               | •                                              | Fundar      | Fundamental |                  |                                                                               |
| 4   | Load Capacitance                                                                                             | C <sub>L</sub>                                 | 3(          | 0           | pF               |                                                                               |
| 5   | Rated Drive Level                                                                                            | Po                                             | 0.          | 1.          | mW               |                                                                               |
| 6   | Frequency Adjustment<br>Tolerance                                                                            | $\frac{\Delta f}{f}$                           | <b>- 10</b> | +10         | 10-6             | At T <sub>o</sub> °C                                                          |
| 7   | Resonance Resistance                                                                                         | $R_{L}$                                        | -           | 25          | Ω                | Over T <sub>op</sub> °C                                                       |
| 8   | Frequency Variation with Temperature over Tob                                                                | <u>Δ</u> f<br>f                                | - 17        | +17         | 10-6             | From frequency measured at To °C                                              |
| 9   | Resistance Variation with Temperature over Top                                                               | <u>Δ R</u><br>R                                | Not ap      | pplicable   | %                |                                                                               |
| 10  | Operating Temperature Range                                                                                  | T <sub>op</sub>                                | - 40        | +80         | °C               |                                                                               |
| 11  | Frequency Variation with Drive Level                                                                         | <u>∆ f</u><br>f                                | Not ap      | olicable    | 10 <sup>-6</sup> |                                                                               |
| 12  | Resistance Variation with Drive Level                                                                        | <u>Δ R</u><br>R                                | Not ap      | plicable    | %                |                                                                               |
| 13  | Motional Inductance                                                                                          | L <sub>1</sub>                                 | 230         |             | mH               |                                                                               |
| 14  | Motional Capacitance                                                                                         | C <sub>1</sub>                                 | Not ap      | plicable    | fF               |                                                                               |
| 15  | Static Capacitance                                                                                           | √ C <sub>o</sub>                               | -           | 5.0         | pF               |                                                                               |
| 16  | Q Factor                                                                                                     | Q                                              | 125 000     | •           |                  |                                                                               |
| 17  | Ratio of Unwanted: Response Resistance to Resonance Resistance or Response Impedance to Resonance Resistance | R <sub>p</sub> /R<br>or<br>IZ <sub>p</sub> I/R | 2:1         |             |                  | In the frequency range:  f <sub>L</sub> - 500kHz  to  f <sub>L</sub> + 500kHz |
| 18  | Ageing                                                                                                       | Δ f<br>f                                       | -3.0        | +3.0        | 10 <sup>-6</sup> | Per year after Burn-in                                                        |
| 19  | Lead Finish                                                                                                  |                                                | Тур         | pe 2        |                  |                                                                               |
| 20  | Intended Application                                                                                         |                                                | ×           | O           |                  |                                                                               |

PAGE 54

ISSUE 4

# TABLE 1(a) - TYPE VARIANT DETAILED INFORMATION

|     |                                                                                                              |                                                |                 |             |      | <u> Paramatan di Par</u> |
|-----|--------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------|-------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No. | Characteristics                                                                                              | Symbol                                         | Lim<br>Min.     | its<br>Max. | Unit | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1   | Resonance Frequency                                                                                          | f∟                                             | 16              | .0          | MHz  | AT cut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2   | Reference Temperature                                                                                        | To                                             | + 23            | + 27        | °C   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3   | Overtone Order                                                                                               | -                                              | Fundar          | nental      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4   | Load Capacitance                                                                                             | CL                                             | 30              | 0           | pF   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5   | Rated Drive Level                                                                                            | Po                                             | 0.              | 1           | mW   | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 6   | Frequency Adjustment<br>Tolerance                                                                            | $\frac{\Delta f}{f}$                           | <del>-</del> 10 | + 10        | 10-6 | At T <sub>o</sub> °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 7   | Resonance Resistance                                                                                         | RL                                             | -               | 30          | Ω    | At To °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 8   | Frequency Variation with Temperature over Top                                                                | ∆ f<br>f                                       | <b>-</b> 50     | + 50        | 10-6 | From frequency<br>measured at T <sub>0</sub> °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 9   | Resistance Variation with Temperature over Top                                                               | ΔR<br>R                                        | Not ap          | plicable    | %    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 10  | Operating Temperature<br>Range                                                                               | T <sub>op</sub>                                | - 55            | + 125       | °C   | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 11  | Frequency Variation with Drive Level                                                                         | $\frac{\Delta f}{f}$                           | Not ap          | plicable    | 10-6 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 12  | Resistance Variation with Drive Level                                                                        | ΔR<br>R                                        | Not ap          | plicable    | %    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 13  | Motional Inductance                                                                                          | L <sub>1</sub>                                 | Not ap          | plicable    | mH   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 14  | Motional Capacitance                                                                                         | C <sub>1</sub>                                 | Not ap          | plicable    | fF   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 15  | Static Capacitance                                                                                           | Co                                             | -               | 7.0         | pF   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 16  | Q Factor                                                                                                     | Q                                              | 50 000          | -           | _    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 17  | Ratio of Unwanted: Response Resistance to Resonance Resistance or Response Impedance to Resonance Resistance | R <sub>p</sub> /R<br>or<br>IZ <sub>p</sub> I/R | 2:1             | -           |      | In the frequency range:  fL -100kHz  to  fL +200kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 18  | Ageing                                                                                                       | $\frac{\Delta f}{f}$                           | -3.0            | +3.0        | 10-6 | Per year after Burn-in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 19  | Lead Finish                                                                                                  |                                                | Ту              | pe 2        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 20  | Intended Application                                                                                         |                                                | >               | (O          |      | • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

PAGE 55

ISSUE 4

## TABLE 1(a) - TYPE VARIANT DETAILED INFORMATION

|     |                                                                                                              |                                                | Lim             | its               |                  | <u> </u>                                            |
|-----|--------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------|-------------------|------------------|-----------------------------------------------------|
| No. | Characteristics                                                                                              | Symbol                                         | Min.            | Max.              | Unit             | Remarks                                             |
| 1   | Resonance Frequency                                                                                          | fL                                             | 11.05           | 11.059200         |                  | AT cut                                              |
| 2   | Reference Temperature                                                                                        | T <sub>o</sub>                                 | + 23            | + 27              | °C               |                                                     |
| 3   | Overtone Order                                                                                               | -                                              | Fundar          | nental            | <b>-</b>         |                                                     |
| 4   | Load Capacitance                                                                                             | CL                                             | 3               | 0                 | pF               |                                                     |
| 5   | Rated Drive Level                                                                                            | Po                                             | 0.              | 1                 | mW               |                                                     |
| 6   | Frequency Adjustment<br>Tolerance                                                                            | ∆ f<br>f                                       | - 10            | + 10              | 10 <sup>-6</sup> | At To °C                                            |
| 7   | Resonance Resistance                                                                                         | RL                                             | ., <del>-</del> | 15                | Ω                | At T <sub>o</sub> °C                                |
| 8   | Frequency Variation with Temperature over Top                                                                | <u>Δ</u> f                                     | <b>- 25</b>     | + 25              | 10-6             | From frequency<br>measured at T <sub>o</sub> °C     |
| 9   | Resistance Variation with Temperature over Top                                                               | ΔR<br>R                                        | -20<br>-2.0     | +20<br>or<br>+2.0 | %                | From resistance<br>measured at T <sub>o</sub> °C    |
| 10  | Operating Temperature<br>Range                                                                               | Тор                                            | - 55            | + 100             | °C               |                                                     |
| 11  | Frequency Variation with Drive Level                                                                         | $\frac{\Delta f}{f}$                           | Not ap          | plicable          | 10 <sup>-6</sup> |                                                     |
| 12  | Resistance Variation with Drive Level                                                                        | ΔR<br>R                                        | Not ap          | plicable          | %                |                                                     |
| 13  | Motional Inductance                                                                                          | L <sub>1</sub>                                 | Not ap          | plicable          | mH               |                                                     |
| 14  | Motional Capacitance                                                                                         | C <sub>1</sub>                                 | Not ap          | plicable          | fF               |                                                     |
| 15  | Static Capacitance                                                                                           | Co                                             | -               | 7.0               | pF               |                                                     |
| 16  | Q Factor                                                                                                     | Q                                              | 70 000          | -                 |                  | 4,                                                  |
| 17  | Ratio of Unwanted: Response Resistance to Resonance Resistance or Response Impedance to Resonance Resistance | R <sub>p</sub> /R<br>or<br>IZ <sub>p</sub> l/R | 2:1             | - · · · · -       |                  | In the frequency range:  fL -200kHz  to  fL +200kHz |
| 18  | Ageing                                                                                                       | $\frac{\Delta f}{f}$                           | - 1.0           | + 1.0             | 10-6             | Per year after Burn-in                              |
| 19  | Lead Finish                                                                                                  |                                                | Тур             | pe 2              |                  |                                                     |
| 20  | Intended Application                                                                                         |                                                | ×               | O                 |                  |                                                     |

PAGE 56

ISSUE 4

# TABLE 1(a) - TYPE VARIANT DETAILED INFORMATION

|     |                                                                      |                           | Lim      | its        |                  |                                                  |
|-----|----------------------------------------------------------------------|---------------------------|----------|------------|------------------|--------------------------------------------------|
| No. | Characteristics                                                      | Symbol                    | Min.     | Max.       | Unit             | Remarks                                          |
| 1   | Resonance Frequency                                                  | f∟                        | 12.00    | 7125       | MHz              | AT cut                                           |
| 2   | Reference Temperature                                                | T <sub>o</sub>            | + 20     | + 30       | •C               |                                                  |
| 3   | Overtone Order                                                       | -                         | Fundar   | mental     | -                |                                                  |
| 4   | Load Capacitance                                                     | CL                        | 3        | 0          | pF               |                                                  |
| 5   | Rated Drive Level                                                    | P <sub>o</sub>            | 0.       | 1          | mW               |                                                  |
| 6   | Frequency Adjustment<br>Tolerance                                    | $\frac{\Delta f}{f}$      | - 10     | + 10       | 10 <sup>-6</sup> | At T <sub>o</sub> °C                             |
| 7   | Resonance Resistance                                                 | RL                        | -        | 15         | Ω                | At To °C                                         |
| 8   | Frequency Variation with Temperature                                 | Δf<br>f                   | - 20     | + 20       | 10 <sup>-6</sup> | From frequency<br>measured at T <sub>0</sub> °C  |
|     | ото. Тор                                                             | <u> </u>                  |          | . 00       | <u> </u>         | F                                                |
| 9   | Resistance Variation with Temperature                                | ΔR<br>R                   | -20<br>c | + 20<br>or | %                | From resistance<br>measured at To °C             |
|     | over T <sub>op</sub>                                                 |                           | -2.0     | + 2.0      | Ω                | •                                                |
| 10  | Operating Temperature Range                                          | T <sub>op</sub>           | - 40     | +90        | °C               |                                                  |
| 11  | Frequency Variation with Drive Level                                 | $\frac{\Delta f}{f}$      | - 0.5    | + 0.5      | 10-6             |                                                  |
| 12  | Resistance Variation with Drive Level                                | ΔR<br>R                   | - 10     | +10        | %                |                                                  |
| 13  | Motional Inductance                                                  | L <sub>1</sub>            | 5.0      | -          | mH               |                                                  |
| 14  | Motional Capacitance                                                 | C <sub>1</sub>            | Not ap   | plicable   | fF               |                                                  |
| 15  | Static Capacitance                                                   | Co                        | -        | 5.5        | pF               |                                                  |
| 16  | Q Factor                                                             | Q                         | 70 000   |            | -                |                                                  |
| 17  | Ratio of Unwanted:<br>Response Resistance to<br>Resonance Resistance | R <sub>p</sub> /R         | 6-4      |            |                  | In the frequency range:  f <sub>L</sub> -10%  to |
| :   | or<br>Response Impedance to<br>Resonance Resistance                  | or<br>IZ <sub>p</sub> I/R | 3:1      | -          | 271              | f <sub>L</sub> +10%                              |
| 18  | Ageing                                                               | $\frac{\Delta f}{f}$      | - 5.0    | + 5.0      | 10-6             | Over 10 years after<br>Burn-in                   |
| 19  | Lead Finish                                                          |                           | Ту       | pe 2       |                  |                                                  |
| 20  | Intended Application                                                 |                           | TO       | CXO        |                  |                                                  |

PAGE 57

ISSUE 4

## TABLE 1(a) - TYPE VARIANT DETAILED INFORMATION

| No. | Characteristics                                                                                              | Symbol                                         | Lim<br>Min, | its<br>Max.      | Unit             | Remarks                                                                     |
|-----|--------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------|------------------|------------------|-----------------------------------------------------------------------------|
| 1   | Resonance Frequency                                                                                          | fL                                             | 11.0        | 592              | MHz              | AT cut                                                                      |
| 2   | Reference Temperature                                                                                        | To                                             | + 23        | +27              | °C               |                                                                             |
| 3   | Overtone Order                                                                                               |                                                | Fundan      | nental           | -                |                                                                             |
| 4   | Load Capacitance                                                                                             | CL                                             | <u></u> 50  | )                | pF               |                                                                             |
| 5   | Rated Drive Level                                                                                            | Po                                             | 0.          | 1                | mW               |                                                                             |
| 6   | Frequency Adjustment<br>Tolerance                                                                            | <u>Δ f</u><br>f                                | - 10        | + 10             | 10-6             | At To °C                                                                    |
| 7   | Resonance Resistance                                                                                         | $R_L$                                          |             | 20               | Ω                | At To °C                                                                    |
| 8   | Frequency Variation with Temperature over Top                                                                | <u>Δ f</u><br>f                                | - 30        | +30              | 10-6             | From frequency<br>measured at T <sub>o</sub> °C                             |
| 9   | Resistance Variation with Temperature over Top                                                               | ΔR<br>R                                        | -20<br>-2.0 | +20<br>r<br>+2.0 | %                | From resistance measured at T <sub>o</sub> °C If R<10Ω                      |
| 10  | Operating Temperature<br>Range                                                                               | T <sub>op</sub>                                | - 55        | + 100            | °C               |                                                                             |
| 11  | Frequency Variation with Drive Level                                                                         | $\frac{\Delta f}{f}$                           | Not app     | olicable         | 10 <sup>-6</sup> |                                                                             |
| 12  | Resistance Variation with Drive Level                                                                        | <u>Δ R</u><br>R                                | Not ap      | olicable         | %                |                                                                             |
| 13  | Motional Inductance                                                                                          | L <sub>1</sub>                                 | 7.0         | -                | mΗ               |                                                                             |
| 14  | Motional Capacitance                                                                                         | C <sub>1</sub>                                 | Not ap      | plicable         | fF               |                                                                             |
| 15  | Static Capacitance                                                                                           | Co                                             | - "         | 7.0              | pF               |                                                                             |
| 16  | Q Factor                                                                                                     | Q                                              | 100 000     |                  | -                |                                                                             |
| 17  | Ratio of Unwanted: Response Resistance to Resonance Resistance or Response Impedance to Resonance Resistance | R <sub>p</sub> /R<br>or<br>IZ <sub>p</sub> I/R | 2:1         |                  |                  | In the frequency range:  f <sub>L</sub> -200kHz  to  f <sub>L</sub> +200kHz |
| 18  | Ageing                                                                                                       | Δ f                                            | -5.0        | + 5.0            | 10 <sup>-6</sup> | Per year after 240<br>Hour Burn-in                                          |
| 19  | Lead Finish                                                                                                  |                                                | Тур         | oe 2             |                  |                                                                             |
| 20  | Intended Application                                                                                         |                                                | ×           | (0               |                  |                                                                             |



PAGE 58

ISSUE 4

## APPENDIX 'A'

Page 1 of 1

## AGREED DEVIATIONS FOR RAKON (F)

| ITEN        | IS AFFECTED    | DESCRIPTION OF DEVIATION                                    |  |
|-------------|----------------|-------------------------------------------------------------|--|
| Para. 4.2.2 | alita ja kanga | Para 9.3, Shock: Shall not be performed.                    |  |
| Para. 4.2.3 |                | Para 9.11, Radiographic Inspection: Shall not be performed. |  |