

Page i

QUADRUPLE PNP SILICON TRANSISTOR ARRAY BASED ON TYPE MQ3467

ESCC Detail Specification No. 5207/006

ISSUE 1 October 2002

Document Custodian: European Space Agency - see https://escies.org

ESCC Detail Specification

PAGE	ii
ISSUE	1

LEGAL DISCLAIMER AND COPYRIGHT

European Space Agency, Copyright © 2002. All rights reserved.

The European Space Agency disclaims any liability or responsibility, to any person or entity, with respect to any loss or damage caused, or allleged to be caused, directly or indirectly by the use and application of this ESCC publication.

This publication, without the prior permission of the European Space Ageny and provided that it is not used for a commercial purpose, may be:

- copied in whole in any medium without alteration or modification.
- copied in part, in any medium, provided that the ESCC document identification, comprising the ESCC symbol, document number and document issue, is removed.

european space agency agence spatiale européenne

Pages 1 to 21

QUADRUPLE PNP SILICON TRANSISTOR ARRAY BASED ON TYPE MQ3467

ESA/SCC Detail Specification No. 5207/006

space components coordination group

		Appro	Approved by			
Issue/Rev.	Date	SCCG Chairman	ESA Director General or his Deputy			
Issue 2	August 1996	Sa mill	Hom			

PAGE 2

ISSUE 2

DOCUMENTATION CHANGE NOTICE

DOCOMENTATION OFFICE			
Rev. Letter	Rev. Date	CHANGE Reference Item	Approved DCR No.
		This Issue supersedes Issue 1 and incorporates all modifications defined in Revisions 'A', 'B' and 'C' to Issue 1 and the changes agreed in the following DCRs:- Cover page DCN Para. 1.7 : Text amended	None None 21083

PAGE 3

ISSUE 2

TABLE OF CONTENTS

1.	<u>GENERAL</u>	<u>Page</u> 5
1.1	Scope	5
1.2	Component Type Variants	5
1.3	Maximum Ratings	5
1.4	Parameter Derating Information	5
1.5	Physical Dimensions	5
1.6	Functional Diagram	5
1.7	High Temperature Test Precautions	
2.	APPLICABLE DOCUMENTS	5
3.	TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS	5
4.	REQUIREMENTS	12
4.1	General	12
4.2	Deviations from Generic Specification	12
4.2.1	Deviations from Special In-process Controls	12
4.2.2	Deviations from Final Production Tests	12
4.2.3	Deviations from Burn-in Tests	12
4.2.4	Deviations from Qualification Tests	12
4.2.5	Deviations from Lot Acceptance Tests	12
4.3	Mechanical Requirements	12
4.3.1	Dimension Check	12
4.3.2	Weight	12
4.4	Materials and Finishes	13
4.4.1	Case	13
4.4.2	Lead Material and Finish	13
4.5	Marking	13
4.5.1	General	13
4.5.2	Lead Identification	13
4.5.3	The SCC Component Number	13
4.5.4	Traceability Information	13
4.5.5	Marking of Small Components	14
4.6	Electrical Measurements	14
4.6.1	Electrical Measurements at Room Temperature	14
4.6.2	Electrical Measurements at High and Low Temperatures	14
4.6.3	Circuits for Electrical Measurements	14
4.7	Burn-in Tests	14
4.7.1	Parameter Drift Values	14
4.7.2	Conditions for H.T.R.B. and Burn-in	14
4.7.3	Electrical Circuits for Burn-in	14
4.8	Environmental and Endurance Tests	21
4.8.1	Electrical Measurements on Completion of Environmental Tests	21
4.8.2	Electrical Measurements at Intermediate Points during Endurance Tests	21
4.8.3	Electrical Measurements on Completion of Endurance Tests	21
4.8.4	Conditions for Operating Life Tests	21
4.8.5	Electrical Circuits for Operating Life Tests	21
4.8.6	Conditions for High Temperature Storage Test	21

PAGE 4

		<u>Page</u>
TABL	<u>≅S</u>	
1(a)	Type Variants	6
1(b)	Maximum Ratings	6
2	Electrical Measurements at Room Temperature - d.c. Parameters	15
2	Electrical Measurements at Room Temperature - a.c. Parameters	16
3	Electrical Measurements at High and Low Temperatures	17
4	Parameter Drift Values	19
5(a)	Conditions for High Temperature Reverse Bias Burn-in	19
5(b)	Conditions for Burn-in and Operating Life Tests	19
6	Electrical Measurements after Environmental Tests and at Intermediate Points	21
	during Endurance Testing	
FIGUE	RES	
1	Parameter Derating Information	7
2	Physical Dimensions	8
3	Functional Diagram and Pin Assignment	11
1	Circuite for Electrical Measurements	18

APPENDICES (Applicable to specific Manufacturers only)

None.

PAGE 5

ISSUE 2

1. GENERAL

1.1 <u>SCOPE</u>

This specification details the ratings, physical and electrical characteristics, test and inspection data for a Quadruple PNP Silicon Transistor Array, based on Type MQ3467. It shall be read in conjunction with ESA/SCC Generic Specification No. 5000, the requirements of which are supplemented herein.

1.2 COMPONENT TYPE VARIANTS

Variants of the basic transistors specified herein, which are also covered by this specification, are given in Table 1(a).

1.3 MAXIMUM RATINGS

The maximum ratings, which shall not be exceeded at any time during use or storage, applicable to the transistors specified herein, are scheduled in Table 1(b).

1.4 PARAMETER DERATING INFORMATION

The derating information applicable to the transistors specified herein is shown in Figure 1.

1.5 PHYSICAL DIMENSIONS

The physical dimensions of the transistors specified herein are shown in Figure 2.

1.6 FUNCTIONAL DIAGRAM

The functional diagram, showing lead identification of the transistors specified herein, is shown in Figure 3.

1.7 HIGH TEMPERATURE TEST PRECAUTIONS

For tin-lead plated or solder-dipped lead-finish, all tests to be performed at a temperature that exceeds + 125°C shall be carried out in a 100% inert atmosphere.

2. APPLICABLE DOCUMENTS

The following documents form part of this specification and shall be read in conjunction with it:-

- (a) ESA/SCC Generic Specification No. 5000 for Discrete Semiconductors.
- (b) MIL-STD-750, Test Methods and Procedures for Semiconductor Devices.

3. TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS

For the purpose of this specification, the terms, definitions, abbreviations, symbols and units specified in ESA/SCC Basic Specification No. 21300 shall apply.

PAGE 6 ISSUE 2

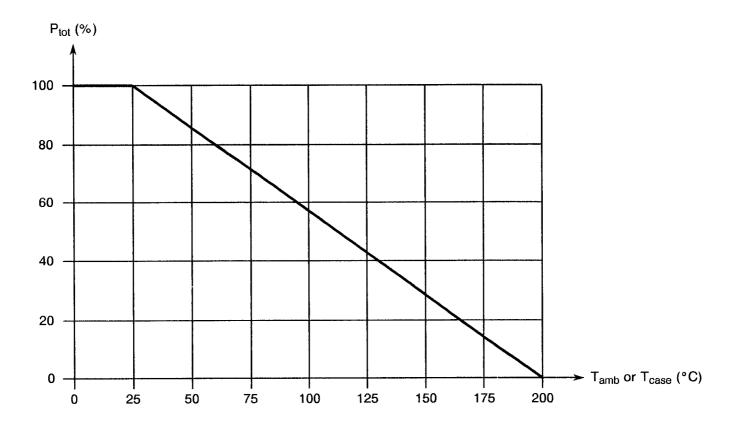
TABLE 1(a) - TYPE VARIANTS

VARIANT	CASE	FIGURE	LEAD MATERIAL AND FINISH
01	FLAT	2(a)	D2
02	FLAT	2(a)	D3 or D4
03	D.I.L.	2(b)	D2
04	D.I.L.	2(b)	D3 or D4

TABLE 1(b) - MAXIMUM RATINGS

No.	CHARACTERISTICS	SYMBOL	MAXIMUM RATINGS	UNIT	REMARKS
1	Collector-Base Breakdown Voltage	V _{CB}	40	٧	
2	Collector-Emitter Breakdown Voltage	V _{CE}	40	V	
3	Emitter-Base Breakdown Voltage	V _{EB}	5.0	V	
4	Collector Current	lc	1.0	Α	
5	Power Dissipation T _{amb} = +25°C	P _{tot}	0.4 (Note 1) 0.5 (Note 2)	W	Note 3
6	Power Dissipation T _{case} = +25°C	P _{tot}	1.25 (Note 1) 5.0 (Note 2)	W	Note 4
7	Operating Temperature Range	Тор	-55 to +200	°C	T _{amb}
8	Storage Temperature Range	T _{stg}	-65 to +200	°C	
9	Soldering Temperature	T _{sol}	+ 260	°C	Note 5

NOTES

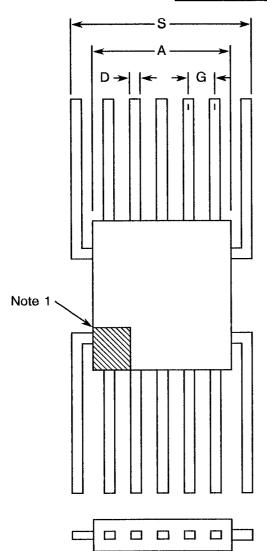

- 1. One transistor.
- 2. Four transistors.
- 3. For T_{amb} > +25°C derate at 2.8mW/°C up to +200°C. 4. For T_{case} > +25°C derate at 28mW/°C up to +200°C.
- 5. Duration 10 seconds maximum at a distance of not less than 1.5mm from the device body and the same lead shall not be resoldered until 3 minutes have elapsed.

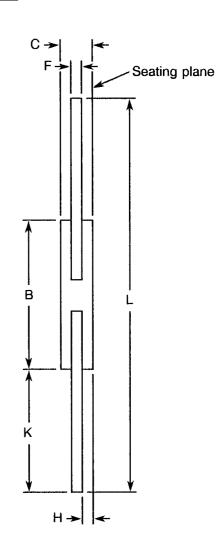
PAGE 7

ISSUE 2

FIGURE 1 - PARAMETER DERATING INFORMATION

Power Dissipation versus Temperature



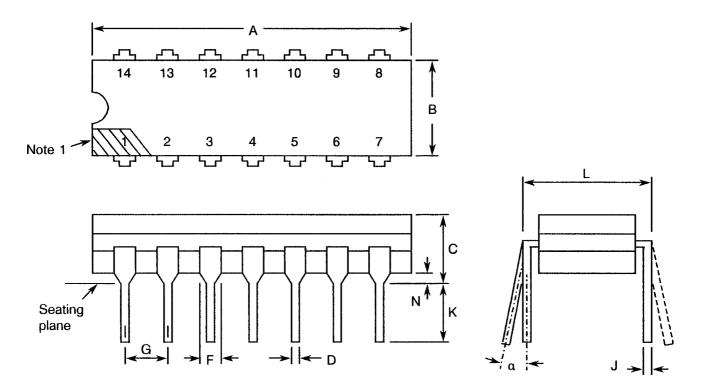

PAGE 8

ISSUE 2

FIGURE 2 - PHYSICAL DIMENSIONS

FIGURE 2(a) - FLAT PACKAGE, 14-PIN

SYMBOL	MILLIM	NOTES	
STIVIDOL	MIN.	MAX.	NOTES
Α	6.1	7.0	-
В	6.1	6.6	2
С	0.76	0.79	-
D	0.3	0.5	4
F	0.08	0.15	4
. G	1.1	1.4	3, 5
Н	-	0.8	-
K	6.1	-	-
L	18.8	-	-



PAGE 9

ISSUE 2

FIGURE 2 - PHYSICAL DIMENSIONS (CONTINUED)

FIGURE 2(b) - DUAL-IN-LINE PACKAGE, 14-PIN

SYMBOL	MILLIM	NOTES	
STWIDOL	MIN.	MAX.	NOTES
А	19.05	19.94	8
В	6.23	7.11	8
С	3.94	5.08	-
D	0.39	0.58	4
F	1.40	1.66	4
G	2.54	BSC	5, 9
J	0.21	0.38	4
K	3.18	4.31	6
L	7.62 BSC		7
α	0°	15°	10
N	0.51	1.01	-

NOTES: See Page 10.

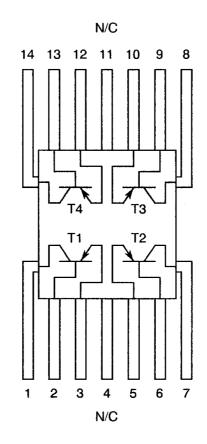
PAGE 10

ISSUE 2

FIGURE 2 - PHYSICAL DIMENSIONS (CONTINUED)

NOTES TO FIGURES 2(a) AND 2(b)

- 1. Index area: a notch or a dot shall be located adjacent to Pin 1 and shall be within the shaded area shown.
- 2. This dimension allows for off-centre lids, meniscus and glass overrun.
- 3. The true position pin spacing is 1.27mm between centrelines. Each pin centreline shall be located within ± 0.13mm of its true longitudinal position relative to Pins 1 and 14.
- 4. All leads.
- 5. 12 spaces.
- 6. Leads within 0.13mm radius of true position at seating plane at maximum material condition.
- 7. Dimension L to centre of leads when formed parallel.
- 8. Dimension A and B do not include glass run-out.
- 9. The true position pin spacing is 2.54mm between centrelines. Each pin centreline shall be located within ± 0.25mm of its true longitudinal position relative to Pins 1 and 14, at the seating plane maximum position.
- 10. Lead centre when α is 0°.



PAGE 11

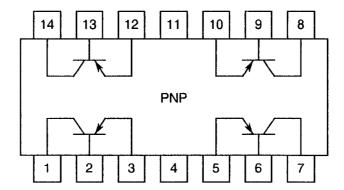

ISSUE 2

FIGURE 3 - FUNCTIONAL DIAGRAM AND PIN ASSIGNMENT

FIGURE 3(a) - FLAT PACKAGE

FIGURE 3(b) - DUAL-IN-LINE PACKAGE

PAGE 12

ISSUE 2

4. **REQUIREMENTS**

4.1 GENERAL

The complete requirements for procurement of the transistors specified herein shall be as stated in this specification and ESA/SCC Generic Specification No. 5000 for Discrete Semiconductors. Deviations from the Generic Specification, applicable to this specification only, are listed in Para, 4.2.

Deviations from the applicable Generic Specification and this Detail Specification, formally agreed with specific Manufacturers on the basis that the alternative requirements are equivalent to the ESA/SCC requirements and do not affect the components' reliability, are listed in the appendices attached to this specification.

4.2 DEVIATIONS FROM GENERIC SPECIFICATION

4.2.1 <u>Deviations from Special In-process Controls</u>

None.

4.2.2 <u>Deviations from Final Production Tests (Chart II)</u>

None.

4.2.3 Deviations from Burn-in Tests (Chart III)

None.

4.2.4 Deviations from Qualification Tests (Chart IV)

(a) The electrical measurements specified at the end of Subgroup I and II tests shall be carried out as stated in Table 6 of this specification.

4.2.5 Deviations from Lot Acceptance Tests (Chart V)

(a) The electrical measurements referenced 9.9.3 shall be performed as stated in Table 6 of this specification.

4.3 MECHANICAL REQUIREMENTS

4.3.1 <u>Dimension Check</u>

The dimensions of the transistors specified herein shall be checked. They shall conform to those shown in Figure 2.

4.3.2 Weight

The maximum weight of the transistors specified herein shall be 2.0 grammes.

PAGE " 13

ISSUE 2

520700602B

4.4 MATERIALS AND FINISHES

The materials and finishes shall be as specified herein. Where a definite material is not specified, a material which will enable the transistors specified herein to meet the performance requirements of this specification shall be used. Acceptance or approval of any constituent material does not guarantee acceptance of the finished product.

4.4.1 <u>Case</u>

The case shall be hermetically sealed and have a ceramic body with hard glass seals, and the lid shall be welded, brazed or preform soldered.

4.4.2 Lead Material and Finish

The lead material shall be Type 'D' with Type '2' or Type '3 or 4' finish in accordance with the requirements of ESA/SCC Basic Specification No. 23500. (See Table 1(a) for Type Variants).

4.5 MARKING

4.5.1 General

The marking of all components delivered to this specification shall be in accordance with the requirements of ESA/SCC Basic Specification No. 21700. Each component shall be marked in respect of:-

- (a) Lead Identification.
- (b) The SCC Component Number.
- (c) Traceability Information.

4.5.2 Lead Identification

Pin 1 shall be marked with a black dot located within the shaded area shown in Figure 2.

4.5.3 The SCC Component Number

Each component shall bear the SCC Component Number which shall be constituted and marked as follows:

	т
Detail Specification Number	 l
Type Variant (See Table 1(a)) ———	
Testing Level (B or C, as applicable)	

4.5.4 Traceability Information

Each component shall be marked in respect of traceability information in accordance with the requirements of ESA/SCC Basic Specification No. 21700.

PAGE 14

ISSUE 2

4.5.5 Marking of Small Components

When it is considered that the component is too small to accommodate the marking as specified above, as much as space permits shall be marked. The order of precedence shall be as follows:-

- (a) Lead Identification.
- (b) The SCC Component Number.
- (c) Traceability Information.

The marking information in full shall accompany each component in its primary package.

4.6 <u>ELECTRICAL MEASUREMENTS</u>

4.6.1 Electrical Measurements at Room Temperature

The parameters to be measured at room temperature are scheduled in Table 2. The measurements shall be performed at T_{amb} = +22 ±3 °C.

4.6.2 Electrical Measurements at High and Low Temperatures

The parameters to be measured at high and low temperatures are scheduled in Table 3. The measurements shall be performed at $T_{amb} = +150$ °C and -55°C respectively.

4.6.3 Circuits for Electrical Measurements

Circuits for use in performing the electrical measurements listed in Tables 2 and 3 are shown, where applicable, in MIL-STD-750 and Figure 4.

4.7 BURN-IN TESTS

4.7.1 Parameter Drift Values

The parameter drift values applicable to burn-in are specified in Table 4 of this specification. Unless otherwise stated, measurements shall be performed at T_{amb} = +22 ±3 °C. The parameter drift values (Δ) applicable to the parameters scheduled, shall not be exceeded. In addition to these drift value requirements, the appropriate limit value specified for a given parameter in Table 2 shall not be exceeded.

4.7.2 Conditions for H.T.R.B. and Burn-in

The requirements for H.T.R.B. and burn-in are specified in Section 7 of ESA/SCC Generic Specification No. 5000. The conditions for H.T.R.B. and burn-in shall be as specified in Tables 5(a) and 5(b) of this specification.

4.7.3 Electrical Circuits for Burn-in (Figure 5)

Not applicable.

PAGE 15

ISSUE 2

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - d.c. PARAMETERS

No.	CHARACTERISTICS	SYMBOL	MIL-STD-750	TEST CONDITIONS	LIM	ITS	UNIT
INO.	CHARACTERISTICS	STIMBOL	TEST METHOD	(PINS UNDER TEST)	MIN.	MAX.	UNIT
1 to 4	Collector-Base Breakdown Voltage	BV _{CBO}	3001	I _C = 10μA I _E = 0A (Pins 1-2-6-7-8-9-13-14)	- 40	-	٧
5 to 8	Collector-Emitter Breakdown Voltage	BV _{CEO}	3011	I _C = 10mA I _B = 0A Note 1 (Pins 1-3-5-7-8-10-12-14)	- 40	-	V
9 to 12	Emitter-Base Breakdown Voltage	BV _{EBO}	3026	I _E = 10μA I _C = 0A (Pins 2-3-5-6-9-10-12-13)	-5.0	-	V
13 to 16	Collector Cut-off Current	I _{CBO}	3036	$V_{CB} = 30V$ $I_E = 0A$ (Pins 1-2-6-7-8-9-13-14)	-	100	nA
17 to 20	Collector Saturation Voltage	V _{CE(SAT)}	3071	I _C = 500mA I _B = 50mA Note 1 (Pins 1-3-5-7-8-10-12-14)	-	0.5	٧
21 to 24	Base Saturation Voltage	V _{BE(SAT)}	3066	I _C = 500mA I _B = 50mA Note 1 (Pins 2-3-5-6-9-10-12-13)	-	1.2	٧
25 to 28	D.C. Forward Current Transfer Ratio	h _{FE}	3076	I _C = 500mA V _{CE} = 1.0V Note 1 (Pins 1 to 14)	20	-	-

- Pulse measurements: Pulse width ≤300μs, Duty Cycle ≤2%.
 Test performed on a sample basis Inspection Level II, Table IIA, AQL = 1.0, of MIL-STD-105.

PAGE 16

ISSUE 2

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - a.c. PARAMETERS

No.	CHARACTERISTICS	SYMBOL	MIL-STD- 750	TEST	TEST CONDITIONS	LIM	IITS	UNIT
INO.	CHARACTERISTICS	STIVIBUL	TEST METHOD	FIG.	(PINS UNDER TEST)	MIN.	MAX.	UNIT
29 to 32	Output Capacitance	C _{obo}	3236		V_{CB} = 10V I_E = 0A Variants 01, 02 f = 100kHz Variants 03, 04 f = 1.0MHz (Pins 1-2-3, 5-6-7, 8-9-10, 12-13-14) Note 2		20 25	pF
33 to 36	Input Capacitance	C _{ibo}	3240		V _{EB} = 0.5V I _C = 0A Variants 01, 02 f = 100kHz Variants 03, 04 f = 1.0MHz (Pins 1-2-3, 5-6-7, 8-9-10, 12-13-14) Note 2	-	80 80	pF
37 to 44	Switching Time	t _{on} t _{off}	-	4	I _C = 500mA I _B = 50mA (Pins 1-2-3, 5-6-7, 8-9-10, 12-13-14) Note 2	-	40 110	ns
45 to 48	Current Gain Bandwidth Product	f _T	3261	-	I_C = 50mA V_{CE} = 10V f = 100MHz (Pins 1-2-3, 5-6-7, 8-9-10, 12-13-14) Note 2	150	-	MHz

NOTES: See Page 15.

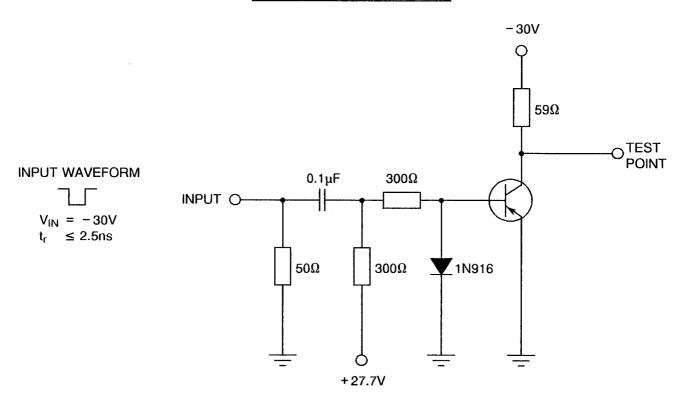
PAGE 17

ISSUE 2

TABLE 3 - ELECTRICAL MEASUREMENTS AT HIGH AND LOW TEMPERATURES, +150°C, -55°C

No.	CHARACTERISTICS	SYMBOL	MIL-STD-750 TEST METHOD	TEST CONDITIONS	LIMITS		UNIT
				(PINS UNDER TEST)	MIN.	MAX.	CIVIT
13 to 16	Collector-Base Cut-off Current	Ісво	3036	$V_{CB} = 30V$ $I_E = 0A$ $T_{amb} = +150$ °C (Pins 1-2, 6-7, 8-9, 13-14)	-	10	μА
25 to 28	D.C. Forward Current Transfer Ratio	h _{FE}	3076	I_C = 500mA V_{CE} = 1.0V T_{amb} = -55°C (Pins 1-2-3, 5-6-7, 8-9-10, 12-13-14) Note 1	15	-	-

NOTES: See Page 15.



PAGE 18

ISSUE 2

FIGURE 4 - CIRCUITS FOR ELECTRICAL MEASUREMENTS

FIGURE 4(a) - SWITCHING TIME

PAGE 19

ISSUE 2

TABLE 4 - PARAMETER DRIFT VALUES

No.	CHARACTERISTICS	SYMBOL	SPEC. AND/OR TEST METHOD	TEST CONDITIONS	CHANGE LIMITS (Δ)	UNIT
13 to 16	Collector-Base Cut-off Current	I _{CBO}	As per Table 2	As per Table 2	± 100	%
17 to 20	Collector Saturation Voltage	V _{CE(SAT)}	As per Table 2	As per Table 2	±50	mV
25 to 28	D.C. Forward Current Transfer Ratio	h _{FE}	As per Table 2	As per Table 2	±20	%

TABLE 5(a) - CONDITIONS FOR HIGH TEMPERATURE REVERSE BIAS BURN-IN

No.	CHARACTERISTICS	SYMBOL	CONDITION	UNIT
1	Ambient Temperature	T _{amb}	+ 150	°C
2	Collector-Base Voltage	V _{CB}	32	V
3	Test Method 1039 of MIL-STD-750	-	А	-
4	Duration	~-	48	Hrs

TABLE 5(b) - CONDITIONS FOR BURN-IN AND OPERATING LIFE TESTS

No.	CHARACTERISTICS	SYMBOL	CONDITION	UNIT
1	Ambient Temperature	T _{amb}	+25±3	°C
2	Power Dissipation	P _{tot}	125 (Note 1)	mW
3	Collector-Base Voltage	V _{CB}	20 (Note 1)	V
4	Test Method 1039 of MIL-STD-750	-	В	-

NOTES

1. Each transistor.

PAGE 20

ISSUE 2

4.8 <u>ENVIRONMENTAL AND ENDURANCE TESTS (CHARTS IV AND V OF ESA/SCC GENERIC SPECIFICATION No. 5000)</u>

4.8.1 Electrical Measurements on Completion of Environmental Tests

The parameters to be measured on completion of environmental tests are scheduled in Table 6. The measurements shall be performed at $T_{amb} = +22 \pm 3$ °C.

4.8.2 Electrical Measurements at Intermediate Points during Endurance Tests

The parameters to be measured at intermediate points during endurance tests are scheduled in Table 6.

4.8.3 Electrical Measurements on Completion of Endurance Tests

The parameters to be measured on completion of endurance tests are scheduled in Table 2. The measurements shall be performed at T_{amb} = +22 ±3 °C.

4.8.4 Conditions for Operating Life Tests (Part of Endurance Testing)

The requirements for operating life testing are specified in Section 9 of ESA/SCC Generic Specification No. 5000. The conditions for operating life testing shall be as specified in Table 5(b) of this specification.

4.8.5 Electrical Circuits for Operating Life Tests (Figure 5)

Not applicable.

4.8.6 Conditions for High Temperature Storage Test (Part of Endurance Testing)

The requirements for the high temperature storage test are specified in ESA/SCC Generic Specification No. 5000. The conditions for high temperature storage shall be $T_{amb} = +200(+0-5)^{\circ}C$.

PAGE 21

ISSUE 2

TABLE 6 - ELECTRICAL MEASUREMENTS AFTER ENVIRONMENTAL TESTS AND AT INTERMEDIATE POINTS DURING ENDURANCE TESTING

No.	CHARACTERISTICS	SYMBOL	SPEC. AND/OR TEST METHOD	TEST CONDITIONS	LIMITS		UNIT
					MIN.	MAX.	OIVIII
13 to 16	Collector-to-Base Cut-off Current	I _{CBO}	As per Table 2	As per Table 2	-	100	nA
17 to 20	Collector Saturation Voltage	V _{CE(SAT)}	As per Table 2	As per Table 2	-	0.5	V
25 to 28	D.C. Forward Current Transfer Ratio	h _{FE}	As per Table 2	As per Table 2	-	Min. 20	%