

Page i

TRANSISTORS, POWER, NPN, BASED ON TYPE 2N3599 ESCC Detail Specification No. 5208/006

ISSUE 1 October 2002

ESCC Detail Specification

PAGE	ii
ISSUE	1

LEGAL DISCLAIMER AND COPYRIGHT

European Space Agency, Copyright © 2002. All rights reserved.

The European Space Agency disclaims any liability or responsibility, to any person or entity, with respect to any loss or damage caused, or allleged to be caused, directly or indirectly by the use and application of this ESCC publication.

This publication, without the prior permission of the European Space Ageny and provided that it is not used for a commercial purpose, may be:

- copied in whole in any medium without alteration or modification.
- copied in part, in any medium, provided that the ESCC document identification, comprising the ESCC symbol, document number and document issue, is removed.

european space agency agence spatiale européenne

Pages 1 to 22

TRANSISTORS, POWER, NPN BASED ON TYPE 2N3599

ESA/SCC Detail Specification No. 5208/006

space components coordination group

		Approved by			
Issue/Rev.	Date	SCCG Chairman	ESA Director General or his Deputy		
Issue 1	February 1980		1 -1 /		
Revision 'A'	February 1992	Pomomens	Llab		
Revision 'B'	August 1996	Sa mil	Hom		

Rev. 'B'

PAGE 2

ISSUE 1

DOCUMENTATION CHANGE NOTICE

BOOMENTATION CHANGE NOTICE						
Rev. Letter	Rev. Date	CHANGE Reference Item	Approved DCR No.			
'A'	Feb. '92	This Issue incorporates all modifications agreed on the basis of Policy DCR 21016 for adaptation to new qualification requirements. P1. Cover page P2. DCN P4. Table of Contents: "Appendices" title added P5. Para. 1.2: Paragraph amended P6. Table 1(a): "Lead Material and/or Finish" column amended P11. Para. 2: MIL-STD-1276 deleted, "ESA/SCC Basic Spec. No. 23500" added Para. 4.1: Additional text added Para. 4.2: PIND deviation deleted P13. Para. 4.4.2: Paragraph amended P18. Table 3(a), (b): Reference to Note 2 deleted, Note 1 put under this table	None None 21019 21021 21025 21025 21019 21043 21025 21047			
		This document has been transferred from hardcopy to electronic format. The content is unchanged but minor differences in presentation exist.				
'B'	Aug. '96	P1. Cover page P2. DCN P5. Para. 1.7 : Text amended	None None 21083			

PAGE 3

ISSUE 1

TABLE OF CONTENTS

1.	GENERAL	Page 5
1.1	Scope	5
1.2	Component Type Variants	5
1.3	Maximum Ratings	5
1.4	Parameter Derating Information	5
1.5	Physical Dimensions	5
1.6	Functional Diagram	5
1.7	High Temperature Test Precautions	5
1.8	BERYLLIUM OXIDE WARNING	5
2.	APPLICABLE DOCUMENTS	11
3.	TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS	11
4.	REQUIREMENTS	11
4.1	General	11
4.2	Deviations from Generic Specification	11
4.2.1	Deviations from Special In-process Controls	11
4.2.2	Deviations from Final Production Tests (Chart II)	11
4.2.3	Deviations from Burn-in and Electrical Measurements (Chart III)	12
4.2.4	Deviations from Qualification Tests (Chart IV)	12
4.2.5	Deviations from Lot Acceptance Tests (Chart V)	12
4.3	Mechanical Requirements	12
4.3.1	Dimension Check	12
4.3.2	Weight	12
4.3.3	Terminal Strength	13
4.4	Materials and Finishes	13
4.4.1	Case	13
4.4.2	Lead Material and Finish	13
4.5	Marking	13
4.5.1	General	13
4.5.2	Lead Identification	13
4.5.3	The SCC Component Number	14
4.5.4	Traceability Information	14
4.5.5	Marking of Small Components	14
4.6	Electrical Measurements	14

Rev. 'A'

PAGE 4

ISSUE 1

		<u>Page</u>
4.6.1	Electrical Measurements at Room Temperature	14
4.6.2	Electrical Measurements at High and Low Temperatures	14
4.6.3	Circuits for Electrical Measurements	15
4.7	Burn-in Tests	15
4.7.1	Parameter Drift Values	15
4.7.2	Conditions for Burn-in	15
4.7.3	Electrical Circuits for Burn-in	15
4.8	Environmental and Endurance Tests	21
4.8.1	Electrical Measurements on Completion of Environmental Tests	21
4.8.2	Electrical Measurements at Intermediate Points during Endurance Tests	21
4.8.3	Electrical Measurements on Completion of Endurance Tests	21
4.8.4	Conditions for Operating Life Tests	21
4.8.5	Electrical Circuits for Operating Life Tests	21
4.8.6	Conditions for High Temperature Storage Test	21
TABLE	<u>s</u>	
1(a)	Type Variants	6
1(b)	Maximum Ratings	7
2	Electrical Measurements at Room Temperature - d.c. Parameters	16
	Electrical Measurements at Room Temperature - a.c. Parameters	17
3	Electrical Measurements at High and Low Temperatures	18
4	Parameter Drift Values	20
5	Conditions for Burn-in and Operating Life Tests	20
6	Electrical Measurements at Intermediate Points and on Completion of Endurance Testing	22
FIGUR	<u>ES</u>	
1	Parameter Derating Information	8
2	Physical Dimensions	9
3	Functional Diagram	10
4	Circuits for Electrical Measurements	19

APPENDICES (Applicable to specific Manufacturers only) None.

Rev. 'B'

PAGE 5

ISSUE 1

1. GENERAL

1.1 SCOPE

This specification details the ratings, physical and electrical characteristics, test and inspection data for a Transistor, Power, NPN, based on Type 2N3599.

It shall be read in conjunction with ESA/SCC Generic Specification No. 5000, the requirements of which are supplemented herein.

1.2 COMPONENT TYPE VARIANTS

See Table 1(a).

1.3 MAXIMUM RATINGS

The maximum ratings, which shall not be exceeded at any time during use or storage, applicable to the transistors specified herein are scheduled in Table 1(b).

1.4 PARAMETER DERATING INFORMATION

The derating information applicable to the transistors specified herein is shown in Figure 1.

1.5 PHYSICAL DIMENSIONS

The physical dimensions of the transistors specified herein are shown in Figure 2.

1.6 FUNCTIONAL DIAGRAM

The functional diagram showing lead identification, of the transistors specified herein, is shown in Figure 3.

1.7 HIGH TEMPERATURE TEST PRECAUTIONS

For tin-lead plated or solder-dipped lead finish, all tests to be performed at a temperature that exceeds + 125°C shall be carried out in a 100% inert atmosphere.

1.8 BERYLLIUM OXIDE WARNING

THESE COMPONENTS CONTAIN BERYLLIUM OXIDE, THE DUST OF WHICH IS HIGHLY TOXIC. DISPOSAL BY WAY OF PUBLIC WASTE SYSTEMS IS STRICTLY FORBIDDEN.

Rev. 'A'

PAGE 6

ISSUE 1

TABLE 1(a) - TYPE VARIANTS

VARIANT	CASE	FIGURE	LEAD MATERIAL AND FINISH
01	TO61	2	D2
02	TO61	2	D3 or D4

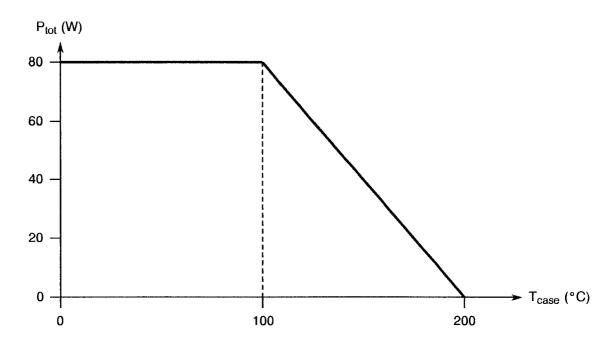
PAGE 7

ISSUE 1

TABLE 1(b) - MAXIMUM RATINGS

No.	CHARACTERISTICS	SYMBOL	MAXIMUM RATINGS	UNIT	REMARKS
1	Collector-Base Voltage	V_{CB}	100	Vdc	
2	Collector-Emitter Voltage	V_{CE}	80	Vdc	
3	Emitter-Base Voltage	V_{EB}	8.0	Vdc	
4	Collector Current (Continuous)	l _C	20	Adc	
5	Power Dissipation (Continuous)	P _{tot}	80	W	V _{CE} = 40Vdc Note 1
6	Operating Temperature Range	T _{op}	-65 to +200	°C	T _{case}
7	Storage Temperature Range	T _{stg}	-65 to +200	°C	
8	Soldering Temperature	T _{sol}	+ 260	°C	Note 2

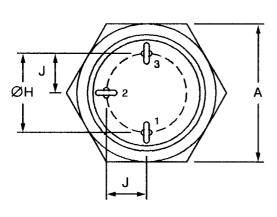
NOTES

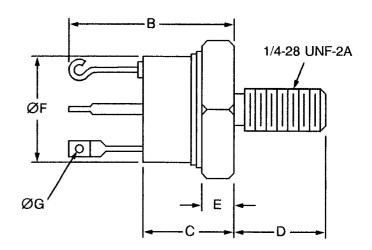

- 1. For derating at $T_{case} > +100$ °C, see Figure 1.
- 2. Duration 10 seconds maximum at a distance of not less than 1.5mm from the device body and the same lead shall not be resoldered until 3 minutes have elapsed.

PAGE

ISSUE 1

FIGURE 1 - PARAMETER DERATING INFORMATION



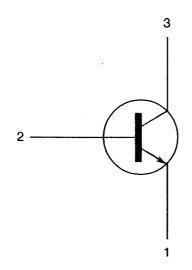

Power Dissipation versus Temperature

PAGE 9

ISSUE 1

FIGURE 2 - PHYSICAL DIMENSIONS

- 1. Emitter.
- 2. Base.
- 3. Collector.


SYMBOL	INC	HES	MILLIM	NOTES	
STIVIBUL	MIN.	MAX.	MIN.	MAX.	NOTES
Α	0.677	0.687	17.20	17.45	
В	0.720	0.790	18.29	20.07	
С	0.385	0.440	9.78	11.18	
D	0.425	0.455	10.80	11.56	
E	-	0.090	•	2.29	
ØF	0.590	0.610	14.99	15.50	
ØG	0.054	0.068	1.37	1.73	
ØН	0.385	0.415	9.78	10.54	
J	0.170	0.213	4.25	5.41	
K	0.105	0.125	2.67	3.18	

PAGE 10

ISSUE 1

FIGURE 3 - FUNCTIONAL DIAGRAM

- 1. Emitter.
- 2. Base.
- 3. Collector.

NOTES

1. The collector is electrically isolated from the case.

Rev. 'A'

PAGE 11

ISSUE 1

2. APPLICABLE DOCUMENTS

The following documents form part of this specification and shall be read in conjunction with it:-

- (a) ESA/SCC Generic Specification No. 5000 for Discrete Semiconductor Components.
- (b) MIL-STD-750, Test Methods and Procedures for Semiconductor Devices.
- (c) ESA/SCC Basic Specification No. 23500, Requirements for Lead Materials and Finishes for Components for Space Application.
- (d) MIL-STD-105, Sampling Procedure and Tables for Inspection by Attributes.
- (e) MIL-STD-883, Test Methods and Procedures for Microelectronics.

3. TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS

For the purpose of this specification, the terms, definitions, abbreviations, symbols and units specified in ESA/SCC Basic Specification No. 21300 shall apply.

4. REQUIREMENTS

4.1 GENERAL

The complete requirements for procurement of the transistors specified herein are stated in this specification and ESA/SCC Generic Specification No. 5000. Deviations from the Generic Specification, applicable to this specification only, are listed in Para. 4.2.

Deviations from the applicable Generic Specification and this Detail Specification, formally agreed with specific Manufacturers on the basis that the alternative requirements are equivalent to the ESA/SCC requirements and do not affect the components' reliability, are listed in the appendices attached to this specification.

4.2 <u>DEVIATIONS FROM GENERIC SPECIFICATION</u>

4.2.1 Deviations from Special In-process Controls

None.

4.2.2 Deviations from Final Production Tests (Chart II)

- (a) Add the following test, after Para. 9.2.1, "Bond Strength Test": Die Shear Test in accordance with MIL-STD-883 Method 2019, to be performed on 3 devices with no failures permitted.
- (b) Para. 9.6, "Constant Acceleration": Change Acceleration Level to 10000g.

PAGE 12

ISSUE 1

4.2.3 Deviations from Burn-in and Electrical Measurements (Chart III)

(a) Para. 7.1.1(a), High Temperature Reverse Bias test: Not applicable.

4.2.4 <u>Deviations from Qualification Tests (Chart IV)</u>

None.

4.2.5 Deviations from Lot Acceptance Tests (Chart V)

None.

4.3 <u>MECHANICAL REQUIREMENTS</u>

4.3.1 <u>Dimension Check</u>

The dimensions of the transistors specified herein shall be checked. They shall conform to those shown in Figure 2.

4.3.2 Weight

The maximum weight of the transistors specified herein shall be 18 grammes.

Rev. 'A'

PAGE 13

ISSUE 1

4.3.3 <u>Terminal Strength</u>

The requirements for terminal strength testing are specified in Section 9 of ESA/SCC Generic Specification No. 5000. The test conditions shall be as follows:-

Terminal:

Test Condition:

'A' (Tension).

Applied Force:

10 lb.f.

Duration:

15 seconds.

Stud:

Test Condition:

'D2' (Stud Torque).

Applied Torque:

20 lb.f.in.

Duration:

15 seconds.

4.4 MATERIALS AND FINISHES

The materials and finishes shall be as specified herein. Where a definite material is not specified, a material which will enable the transistors specified herein to meet the performance requirements of this specification shall be used. Acceptance or approval of any constituent material does not guarantee acceptance of the finished product.

4.4.1 <u>Case</u>

The case shall be hermetically sealed and have a metal body with hard glass seals and the lid shall be welded, brazed or preform soldered.

4.4.2 Lead Material and Finish

The lead material shall be Type 'D' with either Type '2' or Type '3 or 4' finish in accordance with the requirements of ESA/SCC Basic Specification No. 23500. (See Table 1(a) for Type Variants).

4.5 MARKING

4.5.1 General

The marking of all components delivered to this specification shall be in accordance with the requirements of ESA/SCC Basic Specification No. 21700. Each component shall be marked in respect of:-

- (a) The SCC Component Number.
- (b) Traceability Information.

4.5.2 Lead Identification

Leads shall be positioned as shown in Figure 2. No lead identification shall be marked on the part.

PAGE 14

ISSUE 1

4.5.3 The SCC Component Number

Each component shall bear the SCC Component Number which shall be constituted and marked as follows:-

	<u>520800602B</u>
Detail Specification Number ———	
Type Variant (see Table 1(a))	
Testing Level (B or C, as applicable)	

4.5.4 Traceability Information

Each component shall be marked in respect of traceability information in accordance with the requirements of ESA/SCC Basic Specification No. 21700.

4.5.5 Marking of Small Components

When it is considered that the component is too small to accommodate the marking as specified above, as much as space permits shall be marked. The order of precedence shall be as follows:-

- (a) Lead Identification.
- (b) The SCC Component Number.
- (c) Traceability Information.

The marking information in full shall accompany each component in its primary package.

4.6 ELECTRICAL MEASUREMENTS

4.6.1 Electrical Measurements at Room Temperature

The parameters to be measured at room temperature are scheduled in Table 2. Unless otherwise specified, measurements shall be performed at T_{amb} = +22 ±3 °C.

4.6.2 Electrical Measurements at High and Low Temperatures

The parameters to be measured at high and low temperatures are scheduled in Table 3. The measurements shall be performed at $T_{amb} = -55(+5-0)$ and +150(+0-5) °C respectively.

PAGE 15

ISSUE 1

4.6.3 <u>Circuits for Electrical Measurements</u>

Circuits for use in performing the electrical measurements listed in Tables 2 and 3 are shown, where applicable, in MIL-STD-750 and in Figure 4 of this specification.

4.7 BURN-IN TESTS

4.7.1 Parameter Drift Values

The parameter drift values applicable to burn-in are specified in Table 4 of this specification. Unless otherwise stated, measurements shall be performed at T_{amb} = +22±3 °C. The parameter drift values (Δ) applicable to the parameters scheduled shall not be exceeded. In addition to these drift value requirements, the appropriate limit value specified for a given parameter in Table 2 shall not be exceeded.

4.7.2 Conditions for Burn-in

The requirements for burn-in are specified in Section 7 of ESA/SCC Generic Specification No. 5000. The conditions for burn-in shall be as specified in Table 5 of this specification.

4.7.3 Electrical Circuits for Burn-in

Not applicable.

PAGE 16

ISSUE 1

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - d.c. PARAMETERS

No.	CHARACTERISTICS	SYMBOL	MIL-STD-750	TEST CONDITIONS	LIM	IITS	UNIT
NO.	CHARACTERISTICS	STIVIBUL	TEST METHOD	TEST CONDITIONS	MIN	MAX	UNII
1	Collector-Base Breakdown Voltage	BV _{CBO}	3001 Bias Cond. D	I _C = 100μAdc I _E = 0Adc	100		V
2	Collector-Emitter Breakdown Voltage	BV _{CES}	3011 Bias Cond. C	I _C = 1.0mAdc V _{BE} = 0Adc	100	-	V
3	Emitter-Base Breakdown Voltage	BV _{EBO}	3026 Bias Cond. D	I _E = 1.0mAdc I _C = 0Adc	8.0	-	V
4	Collector Cut-off Current	I _{CES}	3041 Bias Cond. C	V _{CE} = 60Vdc V _{BE} = 0Vdc	-	100	nA
5	Emitter Cut-off Current	l _{EBO}	3061 Bias Cond. D	V _{BE} = 5.0Vdc I _C = 0Adc	-	100	nA
6	Collector Saturation Voltage	V _{CE(SAT)}	3071	I _C = 10Adc I _B = 1.0Adc Note 1	-	0.5	V
7	Base Saturation Voltage	V _{BE(SAT)}	3066	I _C = 10Adc I _B = 1.0Adc Note 1	•	1.5	٧
8	D.C. Forward Current Transfer Ratio 1	h _{FE1}	3076	$V_{CE} = 5.0 \text{Vdc}$ $I_{C} = 100 \text{mAdc}$ Note 1	90	-	-
9	D.C. Forward Current Transfer Ratio 2	h _{FE2}	3076	$V_{CE} = 5.0 \text{Vdc}$ $I_{C} = 5.0 \text{Adc}$ Note 1	80	240	-
10	D.C. Forward Current Transfer Ratio 3	h _{FE3}	3076	$V_{CE} = 5.0 \text{Vdc}$ $I_C = 10 \text{Adc}$ Note 1	60	-	-

NOTES: See Page 17.

PAGE 17

ISSUE 1

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - a.c. PARAMETERS

No.	CHARACTERISTICS	SYMBOL	MIL-STD-750	TEST	EST TEST CONDITIONS	LIMITS		UNIT
140.	ONANAOTENIONIOS	STIVIDOL	TEST METHOD	FIG.	(NOTE 2)	MIN	MAX	ONIT
11	High Frequency Forward Current Gain	h _{fe}	3206	-	$V_{CE} = 10$ Vdc $I_{C} = 2.0$ Adc f = 10MHz	3.0	-	-
12	Output Capacitance	C _{obo}	3236	-	$V_{CB} = 10$ Vdc $I_E = 0$ Adc f = 0.1MHz	-	700	pF
13	Input Capacitance	C _{ibo}	3240	-	V _{EB} = 0.5Vdc	-	3000	pF
14	Turn On Time	t _{on}	-	4(a)	$I_C = 10 \text{Adc}$ $I_{B1} = I_{B2} = 1.0 \text{Adc}$	-	0.5	μs
15	Turn Off Time	t _{off}	-	4(b)	$I_C = 10Adc$ $I_{B1} = I_{B2} = 1.0Adc$	~ .	2.1	μs

NOTES

- 1. Pulsed measurement: Pulse Width ≤300μs, Duty Cycle ≤2.0%.
- 2. If more than 20 units have to be measured, the measurements shall be made on a sample basis in accordance with Level II, Table IIa, with an AQL = 1.0% of MIL-STD-105.

Rev. 'A'

PAGE 18

ISSUE 1

TABLE 3 - ELECTRICAL MEASUREMENTS AT HIGH AND LOW TEMPERATURES

TABLE 3(a) - T_{amb} = + 150(+ 0 - 5) °C

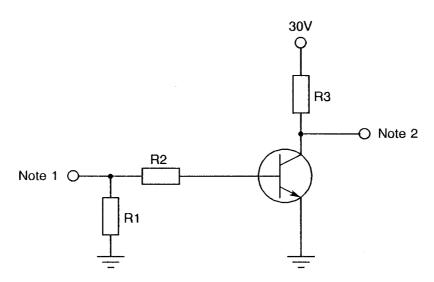
No	No. CHARACTERISTICS	CHARACTERISTICS SYMBOL MIL-STD-750	TEST CONDITIONS	LIMITS		UNIT	
140.	OHARACTERISTICS	STIVIDOL	TEST METHOD	TEST CONDITIONS	MIN	MAX	CIVIT
4	Collector Cut-off Current	I _{CES}	3036 Bias Cond. D	T _{amb} = + 150°C V _{CE} = 60Vdc V _{BE} = 0Vdc	-	1.0	mA

TABLE 3(b) - $T_{amb} = -55(+5-0)$ °C

No.	CHARACTERISTICS	SYMBOL	MIL-STD-750 TEST METHOD	TEST CONDITIONS	LIMITS		UNIT
				TEST CONDITIONS	MIN	MAX	UNIT
9	D.C. Forward Current Transfer Ratio 2	h _{FE2}	3076	$T_{amb} = -55$ °C $I_C = 5.0$ Adc $V_{CE} = 5.0$ Vdc Note 1	40	120	-

NOTES

1. Pulsed measurement: Pulse Width ≤300µs, Duty Cycle ≤2.0%.



PAGE 19

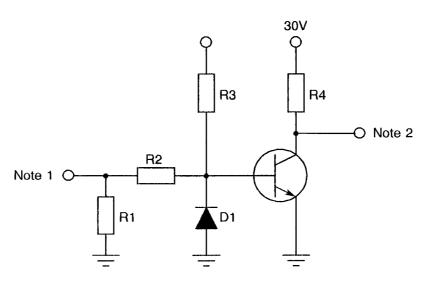

ISSUE 1

FIGURE 4 - CIRCUITS FOR ELECTRICAL MEASUREMENTS

FIGURE 4(a) - TURN-ON TIME

FIGURE 4(b) - TURN-OFF TIME

NOTES

- 1. Pulse rate 150pps, rise time ≤ 10ns.
- 2. Oscilloscope: rise time \leq 5.0ns, input impedance 10M Ω .

PAGE 20

ISSUE 1

TABLE 4 - PARAMETER DRIFT VALUES

No.	CHARACTERISTICS	SYMBOL	SPEC. AND/OR TEST METHOD	TEST CONDITIONS	CHANGE LIMITS (Δ)	UNIT
5	Emitter Cut-off Current	I _{EBO}	As per Table 2	As per Table 2	± 20	nA %
6	Collector Saturation Voltage	V _{CE(SAT)}	As per Table 2	As per Table 2	± 50	mV
9	D.C. Forward Current Transfer Ratio 2	h _{FE2}	As per Table 2	As per Table 2	± 25	%

TABLE 5 - CONDITIONS FOR BURN-IN AND OPERATING LIFE TESTS

No.	CHARACTERISTICS	SYMBOL	CONDITIONS	UNIT
1	Case Temperature	T _{case}	+ 100(+ 0 - 5)	°C
2	Collector-Base Voltage	V _{CB}	20	٧
3	Power Dissipation	P _{tot}	80	W
4	Test Method 1039 of MIL-STD-750	-	В	-

PAGE 21

ISSUE 1

4.8 <u>ENVIRONMENTAL AND ENDURANCE TESTS (CHARTS IV AND V OF ESA/SCC GENERIC SPECIFICATION NO. 5000)</u>

4.8.1 Electrical Measurements on Completion of Environmental Tests

The parameters to be measured on completion of environmental tests are scheduled in Table 2. The measurements shall be performed at $T_{amb} = +22 \pm 3$ °C.

4.8.2 Electrical Measurements at Intermediate Points during Endurance Tests

The parameters to be measured at intermediate points during endurance tests are scheduled in Table 6 of this specification.

4.8.3 Electrical Measurements on Completion of Endurance Tests

The parameters to be measured on completion of endurance testing are scheduled in Table 6 of this specification. The measurements shall be performed at T_{amb} = +22 ±3 °C.

4.8.4 Conditions for Operating Life Tests (Part of Endurance Testing)

The requirements for operating life testing are specified in Section 9 of ESA/SCC Generic Specification No. 5000. The conditions for operating life testing shall be the same as specified in Table 5 for the burn-in test.

4.8.5 Electrical Circuits for Operating Life Tests

Not applicable.

4.8.6 Conditions for High Temperature Storage Test (Part of Endurance Testing)

The requirements for the high temperature storage test are specified in ESA/SCC Generic Specification No. 5000. The conditions for high temperature storage shall be T_{amb} = +200(+0-5) °C.

PAGE 22

ISSUE 1

TABLE 6 - ELECTRICAL MEASUREMENTS AT INTERMEDIATE POINTS AND ON COMPLETION OF ENDURANCE TESTING

No.	CHARACTERISTICS	SYMBOL	SPEC. AND/OR	TEST	LIMITS		UNIT
INO.	OHAHAOTENIOTIOS	STWIDOL	TEST METHOD	CONDITIONS	MIN.	MAX.	UNIT
5	Emitter Cut-off Current	l _{EBO}	As per Table 2	As per Table 2	-	100	nA
6	Collector-Emitter Saturation Voltage	V _{CE(SAT)}	As per Table 2	As per Table 2	•	0.5	٧
9	D.C. Forward Current Transfer Ratio 2	h _{FE2}	As per Table 2	As per Table 2	80	240	-