

Page i

INTEGRATED CIRCUITS, SILICON MONOLITHIC, BIPOLAR OPERATIONAL AMPLIFIERS BASED ON TYPE LM108A

ESCC Detail Specification No. 9101/005

ISSUE 1 October 2002

ESCC Detail Specification

PAGE	ii
ISSUE	1

LEGAL DISCLAIMER AND COPYRIGHT

European Space Agency, Copyright © 2002. All rights reserved.

The European Space Agency disclaims any liability or responsibility, to any person or entity, with respect to any loss or damage caused, or allleged to be caused, directly or indirectly by the use and application of this ESCC publication.

This publication, without the prior permission of the European Space Ageny and provided that it is not used for a commercial purpose, may be:

- copied in whole in any medium without alteration or modification.
- copied in part, in any medium, provided that the ESCC document identification, comprising the ESCC symbol, document number and document issue, is removed.

european space agency agence spatiale européenne

Pages 1 to 34

INTEGRATED CIRCUITS. SILICON MONOLITHIC BIPOLAR OPERATIONAL AMPLIFIERS BASED ON TYPE LM108A

ESA/SCC Detail Specification No. 9101/005

space components coordination group

		Approved by		
Issue/Rev.	Date	SCCG Chairman	ESA Director General or his Deputy	
Issue 4	August 1983	-	-	
Revision 'A'	September 1984	-	-	
Revision 'B'	November 1984	-	-	
Revision 'C'	December 1991	•		
Revision 'D'	October 1994	Tonomical	Homa	

Rev. 'B'

PAGE 2

ISSUE 4

DOCUMENTATION CHANGE NOTICE

Rev. Letter	Rev. Date	CHANGE Reference Item	Approved DCR No.
		This issue supersedes Issue 3 and incorporates all modifications agreed on the basis of Policy DCR 21019 (Appendices to Detail Specification), DCR 23058 (new Table 2, 3(a), 3(b) and Figure 4 format) and the following DCR's:- P1. Cover Page : Page numbers changed P5. Appendix 'A' : Added P7. Table 1(a) : Lead material and finish redefined P14. Para. 2 : MIL-STD-1276 deleted P16. Para. 4.4.2 : Lead material and finish redefined P19. Table 2 : Test 9, Limit changed to 0.6mA P33. Appendix 'A' : Added	None 24023 21025 21025 21025 23089 24033
'A'	Sep. '84	P1. Cover Page P2. DCN P5. Appendices : Appendix 'B' added P7. Table 1(b) : P _D rating changed Notes to Table 1(b) : Note 3, 4 and 5 derating factors amended. Format amended P8. Figure 1 : Amended P14. Para. 4.2.2 : PIND testing added P16. Para. 4.4.2 : Rewritten P20. Table 2 : Test 16 and 17 Limits amended P22. Table 3(a) : Typographical deletion P23. Table 3(b) : Limits of Tests 10 and 11 amended : Limits for Test 13 added P34. Appendices : New Appendix 'B' added	None None 24038/35 22291 22291 22291 22240 21025 23115 23159 22232 23159 24038/35
'B'	Nov. '84	P1. Cover page P2. DCN P22. Table 3(a) : Test No. 10 Note corrected	None None 23197

Rev. 'D'

PAGE 2A

ISSUE 4

DOCUMENTATION CHANGE NOTICE

	DOCOMENTATION CHANGE NOTICE					
Rev. Letter	Rev. Date	Reference	CHANGE Item	Approved DCR No.		
'C'	Dec. '91	P1. Cover page P2A. DCN P3. T of C P7. Table 1(a)	 Page added Para. 4.3.3 deleted Variant 07 added No. 5, Characteristics amended to include Variant 07 Note 2 amended to include Variant 07 Deviation deleted, "None." added Deviation deleted, "None." added Deviation deleted, "None." added Paragraph amended to include Variant 07 Paragraph amended Paragraph amended Paragraph amended Paragraph amended to include Variant 07 	None None None 22914 22914 22914 21048 22919 22919 22914 22921 22914 22914		
'D'	Oct. '94		: Page added : Variant 08, "Chip Carrier" added : Item 5, Variant 08 added : Note 1, Variant 08 added : Imperial dimensions deleted, number of pins added to Title : Imperial dimensions deleted, number of pins added to Title : Imperial dimensions deleted, number of pins added to Title : Imperial dimensions deleted, number of pins added to Title : "Chip Carrier Package" added, old Page 12 renumbered "12A" : Renumbered from Page 12. "Chip Carrier Package" added : "Chip Carrier Package" added to Pin Configuration table : Variant 08 added : Variant 08 added and text rewritten : Variant 08 added and text rewritten : Vo. 20 and 21, Limit amended to 18V : No. 20 and 21, Limit amended to 18V : No. 20 and 21, Limit amended to 18V as been transferred from hardcopy to electronic format. The add but minor differences in presentation exist.	None None 221110 221110 221110 221110 221110 221110 221110 221110 221110 221110 221110 221110 221150 221150 221150		

Rev. 'C'

PAGE 3

ISSUE 4

TABLE OF CONTENTS

	TABLE OF CONTENTS	D
1.	GENERAL.	Page 6
1.1	Scope	6
1.2	Component Type Variants	6
1.3	Maximum Ratings	6
1.4	Parameter Derating Information (Figure 1)	6
1.5	Physical Dimensions	6
1.6	Pin Assignment	6
1.7	Truth Table	6
1.8	Circuit Schematic	6
1.9	Functional Diagram	6
2.	APPLICABLE DOCUMENTS	14
3.	TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS	14
4.	REQUIREMENTS	14
4.1	General	14
4.2	Deviations from Generic Specification	14
4.2.1	Deviations from Special In-process Controls	14
4.2.2	Deviations from Final Production Tests (Chart II)	14
4.2.3	Deviations from Burn-in Tests (Chart III)	15
4.2.4	Deviations from Qualification, Environmental and Endurance Tests (Chart IV)	15
4.2.5	Deviations from Lot Acceptance Tests (Chart V)	15
4.3	Mechanical Requirements	15
4.3.1	Dimension Check	15
4.3.2	Weight	15
4.4	Materials and Finishes	15
4.4.1	Case	16
4.4.2	Lead Material and Finish	16
4.5	Marking	16
4.5.1	General	16
4.5.2	Lead Identification	16
4.5.3	The SCC Component Number	16
4.5.4	Traceability Information	16
4.5.5	Marking of Small Components	17

PAGE 4

4.6.1 Electrical Measurements at Room Temperature 17 4.6.2 Electrical Measurements at High and Low Temperatures 17 4.6.3 Circuits for Electrical Measurements 17 4.7 Burn-in Tests 17 4.7.1 Parameter Drift Values 17 4.7.2 Conditions for H.T.R.B. and Burn-in 18 4.7.3 Electrical Circuits for H.T.R.B. and Burn-in 18 4.8 Environmental and Endurance Tests 31 4.8.1 Electrical Measurements on Completion of Environmental Tests 31 4.8.2 Electrical Measurements at Intermediate Points During Endurance Tests 31 4.8.3 Electrical Measurements on Completion of Endurance Tests 31 4.8.4 Conditions for Operating Life Tests 31 4.8.5 Electrical Circuits for Operating Life Tests 31 4.8.6 Conditions for High Temperature Storage Test 31 TABLES 1(a) Type Variants 7 1(b) Maximum Ratings 7 2 Electrical Measurements at Room Temperature 22 3(a) Electrical Measurements at			<u>Page</u>
4.6.2 Electrical Measurements at High and Low Temperatures 17 4.6.3 Circuits for Electrical Measurements 17 4.7 Burn-in Tests 17 4.7.1 Parameter Drift Values 17 4.7.2 Conditions for H.T.R.B. and Burn-in 18 4.7.3 Electrical Circuits for H.T.R.B. and Burn-in 18 4.8 Environmental and Endurance Tests 31 4.8.1 Electrical Measurements on Completion of Environmental Tests 31 4.8.2 Electrical Measurements on Completion of Endurance Tests 31 4.8.3 Electrical Measurements on Completion of Endurance Tests 31 4.8.4 Conditions for Operating Life Tests 31 4.8.5 Electrical Circuits for Operating Life Tests 31 4.8.6 Conditions for High Temperature Storage Test 31 4.8.7 Electrical Circuits for Operating Life Tests 31 4.8.8 Electrical Measurements at Room Temperature, d.c. Parameters 31 4.8 Electrical Measurements at High Temperature, d.c. Parameters 31 5 Electrical Measurements at High Temperature 32 6 Electrical Measurements at Low Temperature 32 7 Electrical Measurements at Low Temperature 33 8 Electrical Measurements at Completion of Environmental Tests and at Intermediate Parameter Drift Values 5 Conditions for Burn-in 6 Electrical Measurements on Completion of Environmental Tests and at Intermediate Points and on Completion of Environmental Testing FIGURES 1 Device Dissipation Derating with Temperature 8 Physical Dimensions	4.6	Electrical Characteristics	17
4.6.3 Circuits for Electrical Measurements 17 4.7 Burn-in Tests 17 4.7.1 Parameter Drift Values 17 4.7.2 Conditions for H.T.R.B. and Burn-in 18 4.7.3 Electrical Circuits for H.T.R.B. and Burn-in 18 4.8.1 Electrical Circuits for H.T.R.B. and Burn-in 18 4.8.2 Electrical Measurements on Completion of Environmental Tests 31 4.8.3 Electrical Measurements at Intermediate Points During Endurance Tests 31 4.8.4 Conditions for Operating Life Tests 31 4.8.5 Electrical Circuits for Operating Life Tests 31 4.8.6 Conditions for High Temperature Storage Test 31 4.8.7 Electrical Circuits for Operating Life Tests 31 4.8.8 Electrical Circuits for Operating Life Tests 31 4.8.9 Electrical Measurements at Room Temperature Storage Test 31 4.8.0 Conditions for High Temperature 19 4.0 Type Variants 7 5.0 Electrical Measurements at Room Temperature, d.c. Parameters 19 5.1 Electrical Measurements at Low Temperature 22 5.1 Electrical Measurements at Low Temperature 22 5.1 Conditions for Burn-in 30 6. Electrical Measurements on Completion of Environmental Tests and at Intermediate 32 7 Points and on Completion of Environmental Tests and at Intermediate 32 7 Points and on Completion of Environmental Testing 8 FIGURES 1. Device Dissipation Derating with Temperature 8 6 Physical Dimensions 9			
4.7.1Burn-in Tests174.7.1Parameter Drift Values174.7.2Conditions for H.T.R.B. and Burn-in184.7.3Electrical Circuits for H.T.R.B. and Burn-in184.8Environmental and Endurance Tests314.8.1Electrical Measurements on Completion of Environmental Tests314.8.2Electrical Measurements at Intermediate Points During Endurance Tests314.8.3Electrical Measurements on Completion of Endurance Tests314.8.4Conditions for Operating Life Tests314.8.5Electrical Circuits for Operating Life Tests314.8.6Conditions for High Temperature Storage Test31TABLES1(a)Type Variants71(b)Maximum Ratings72Electrical Measurements at Room Temperature, d.c. Parameters193(a)Electrical Measurements at High Temperature223(b)Electrical Measurements at Low Temperature234Parameter Drift Values305Conditions for Burn-in306Electrical Measurements on Completion of Environmental Tests and at Intermediate Points and on Completion of Environmental Testing32FIGURES1Device Dissipation Derating with Temperature82Physical Dimensions9			
4.7.1 Parameter Drift Values 17 4.7.2 Conditions for H.T.R.B. and Burn-in 18 4.7.3 Electrical Circuits for H.T.R.B. and Burn-in 18 4.8 Environmental and Endurance Tests 31 4.8.1 Electrical Measurements on Completion of Environmental Tests 31 4.8.2 Electrical Measurements at Intermediate Points During Endurance Tests 31 4.8.3 Electrical Measurements on Completion of Endurance Tests 31 4.8.4 Conditions for Operating Life Tests 31 4.8.5 Electrical Circuits for Operating Life Tests 31 4.8.6 Conditions for High Temperature Storage Test 1(a) Type Variants 1(b) Maximum Ratings 7 2 Electrical Measurements at Room Temperature, d.c. Parameters 19 3(a) Electrical Measurements at High Temperature 22 3(b) Electrical Measurements at Low Temperature 30 5 Conditions for Burn-in 6 Electrical Measurements on Completion of Environmental Tests and at Intermediate Points and on Completion of Environmental Testing FIGURES 1 Device Dissipation Derating with Temperature 8 Physical Dimensions			
4.7.2 Conditions for H.T.R.B. and Burn-in 4.7.3 Electrical Circuits for H.T.R.B. and Burn-in 4.8.1 Electrical Measurements on Completion of Environmental Tests 4.8.2 Electrical Measurements at Intermediate Points During Endurance Tests 31 4.8.3 Electrical Measurements on Completion of Endurance Tests 31 4.8.4 Conditions for Operating Life Tests 31 4.8.5 Electrical Circuits for Operating Life Tests 31 4.8.6 Conditions for High Temperature Storage Test 1(a) Type Variants 1(b) Maximum Ratings 7 1 Electrical Measurements at Room Temperature, d.c. Parameters 19 3(a) Electrical Measurements at High Temperature 22 3(b) Electrical Measurements at Low Temperature 23 4 Parameter Drift Values 5 Conditions for Burn-in 6 Electrical Measurements on Completion of Environmental Tests and at Intermediate Points and on Completion of Environmental Tests and at Intermediate 7 FIGURES 1 Device Dissipation Derating with Temperature 8 Physical Dimensions 9			
4.7.3 Electrical Circuits for H.T.R.B. and Burn-in 4.8 Environmental and Endurance Tests 31 4.8.1 Electrical Measurements on Completion of Environmental Tests 31 4.8.2 Electrical Measurements at Intermediate Points During Endurance Tests 31 4.8.3 Electrical Measurements on Completion of Endurance Tests 31 4.8.4 Conditions for Operating Life Tests 31 4.8.5 Electrical Circuits for Operating Life Tests 31 4.8.6 Conditions for High Temperature Storage Test 1(a) Type Variants 1(b) Maximum Ratings 7 1(b) Maximum Ratings 7 2 Electrical Measurements at Room Temperature, d.c. Parameters 19 3(a) Electrical Measurements at High Temperature 22 3(b) Electrical Measurements at Low Temperature 22 3(b) Electrical Measurements at Low Temperature 23 4 Parameter Drift Values 5 Conditions for Burn-in 6 Electrical Measurements on Completion of Environmental Tests and at Intermediate Points and on Completion of Environmental Tests and at Intermediate Points and on Completion of Environmental Tests and at Intermediate Points and on Completion of Environmental Testing FIGURES 1 Device Dissipation Derating with Temperature 8 Physical Dimensions			
4.8 Environmental and Endurance Tests 4.8.1 Electrical Measurements on Completion of Environmental Tests 4.8.2 Electrical Measurements at Intermediate Points During Endurance Tests 31 4.8.3 Electrical Measurements on Completion of Endurance Tests 31 4.8.4 Conditions for Operating Life Tests 31 4.8.5 Electrical Circuits for Operating Life Tests 31 4.8.6 Conditions for High Temperature Storage Test 1(a) Type Variants 1(b) Maximum Ratings 7 1(b) Maximum Ratings 7 2 Electrical Measurements at Room Temperature, d.c. Parameters 19 3(a) Electrical Measurements at High Temperature 22 3(b) Electrical Measurements at Low Temperature 22 3(b) Electrical Measurements at Low Temperature 30 5 Conditions for Burn-in 30 6 Electrical Measurements on Completion of Environmental Tests and at Intermediate Points and on Completion of Environmental Testing FIGURES 1 Device Dissipation Derating with Temperature 8 9 Physical Dimensions			
4.8.1 Electrical Measurements on Completion of Environmental Tests 4.8.2 Electrical Measurements at Intermediate Points During Endurance Tests 31 4.8.3 Electrical Measurements on Completion of Endurance Tests 31 4.8.4 Conditions for Operating Life Tests 31 4.8.5 Electrical Circuits for Operating Life Tests 31 4.8.6 Conditions for High Temperature Storage Test 31 TABLES 1(a) Type Variants 1(b) Maximum Ratings 7 2 Electrical Measurements at Room Temperature, d.c. Parameters 19 3(a) Electrical Measurements at High Temperature 22 3(b) Electrical Measurements at Low Temperature 30 4 Parameter Drift Values 5 Conditions for Burn-in 6 Electrical Measurements on Completion of Environmental Tests and at Intermediate Points and on Completion of Environmental Testing FIGURES 1 Device Dissipation Derating with Temperature 8 Physical Dimensions 9			
4.8.2 Electrical Measurements at Intermediate Points During Endurance Tests 4.8.3 Electrical Measurements on Completion of Endurance Tests 4.8.4 Conditions for Operating Life Tests 4.8.5 Electrical Circuits for Operating Life Tests 4.8.6 Conditions for High Temperature Storage Test 1(a) Type Variants 1(b) Maximum Ratings 7 1(c) Maximum Ratings 7 2 Electrical Measurements at Room Temperature, d.c. Parameters 1(a) Electrical Measurements at High Temperature 2(a) Electrical Measurements at Low Temperature 3(b) Electrical Measurements at Low Temperature 4 Parameter Drift Values 5 Conditions for Burn-in 6 Electrical Measurements on Completion of Environmental Tests and at Intermediate Points and on Completion of Environmental Tests and at Intermediate 1 Device Dissipation Derating with Temperature 2 Physical Dimensions 3 Device Dissipation Derating with Temperature 3 Physical Dimensions			
4.8.3 Electrical Measurements on Completion of Endurance Tests 4.8.4 Conditions for Operating Life Tests 31 4.8.5 Electrical Circuits for Operating Life Tests 31 4.8.6 Conditions for High Temperature Storage Test 31 TABLES 1(a) Type Variants 7 1(b) Maximum Ratings 7 2 Electrical Measurements at Room Temperature, d.c. Parameters 19 3(a) Electrical Measurements at High Temperature 22 3(b) Electrical Measurements at Low Temperature 23 4 Parameter Drift Values 5 Conditions for Burn-in 6 Electrical Measurements on Completion of Environmental Tests and at Intermediate Points and on Completion of Environmental Testing FIGURES 1 Device Dissipation Derating with Temperature 8 Physical Dimensions 9			
4.8.4 Conditions for Operating Life Tests 4.8.5 Electrical Circuits for Operating Life Tests 31 4.8.6 Conditions for High Temperature Storage Test 31 TABLES 1(a) Type Variants 1(b) Maximum Ratings 7 2 Electrical Measurements at Room Temperature, d.c. Parameters 19 3(a) Electrical Measurements at High Temperature 22 3(b) Electrical Measurements at Low Temperature 23 4 Parameter Drift Values 5 Conditions for Burn-in 6 Electrical Measurements on Completion of Environmental Tests and at Intermediate Points and on Completion of Environmental Testing FIGURES 1 Device Dissipation Derating with Temperature 2 Physical Dimensions 3 Device Dissipation Derating with Temperature 8 Physical Dimensions		-	
4.8.5 Electrical Circuits for Operating Life Tests 4.8.6 Conditions for High Temperature Storage Test 1(a) Type Variants 1(b) Maximum Ratings 7 1(b) Maximum Ratings 7 2 Electrical Measurements at Room Temperature, d.c. Parameters 19 3(a) Electrical Measurements at High Temperature 22 3(b) Electrical Measurements at Low Temperature 23 4 Parameter Drift Values 5 Conditions for Burn-in 6 Electrical Measurements on Completion of Environmental Tests and at Intermediate Points and on Completion of Environmental Testing FIGURES 1 Device Dissipation Derating with Temperature 8 2 Physical Dimensions 9		·	
4.8.6 Conditions for High Temperature Storage Test TABLES 1(a) Type Variants 7 1(b) Maximum Ratings 7 2 Electrical Measurements at Room Temperature, d.c. Parameters 19 3(a) Electrical Measurements at High Temperature 22 3(b) Electrical Measurements at Low Temperature 23 4 Parameter Drift Values 30 5 Conditions for Burn-in 30 6 Electrical Measurements on Completion of Environmental Tests and at Intermediate Points and on Completion of Environmental Testing FIGURES 1 Device Dissipation Derating with Temperature 8 2 Physical Dimensions 9			
TABLES 1(a) Type Variants 7 1(b) Maximum Ratings 7 2 Electrical Measurements at Room Temperature, d.c. Parameters 19 3(a) Electrical Measurements at High Temperature 22 3(b) Electrical Measurements at Low Temperature 23 4 Parameter Drift Values 30 5 Conditions for Burn-in 30 6 Electrical Measurements on Completion of Environmental Tests and at Intermediate Points and on Completion of Environmental Testing FIGURES 1 Device Dissipation Derating with Temperature 8 2 Physical Dimensions 9		· · · · · · · · · · · · · · · · · · ·	
1(a) Type Variants 7 1(b) Maximum Ratings 7 2 Electrical Measurements at Room Temperature, d.c. Parameters 19 3(a) Electrical Measurements at High Temperature 22 3(b) Electrical Measurements at Low Temperature 23 4 Parameter Drift Values 30 5 Conditions for Burn-in 30 6 Electrical Measurements on Completion of Environmental Tests and at Intermediate Points and on Completion of Environmental Testing FIGURES 1 Device Dissipation Derating with Temperature 8 2 Physical Dimensions 9	4.8.6	Conditions for high remperature Storage rest	31
1 (b) Maximum Ratings 2 Electrical Measurements at Room Temperature, d.c. Parameters 3(a) Electrical Measurements at High Temperature 3(b) Electrical Measurements at Low Temperature 4 Parameter Drift Values 5 Conditions for Burn-in 6 Electrical Measurements on Completion of Environmental Tests and at Intermediate Points and on Completion of Environmental Testing FIGURES 1 Device Dissipation Derating with Temperature 2 Physical Dimensions 7 7 7 7 7 7 8 9	TABLES	<u>s</u>	
1 (b) Maximum Ratings 2 Electrical Measurements at Room Temperature, d.c. Parameters 3(a) Electrical Measurements at High Temperature 3(b) Electrical Measurements at Low Temperature 4 Parameter Drift Values 5 Conditions for Burn-in 6 Electrical Measurements on Completion of Environmental Tests and at Intermediate Points and on Completion of Environmental Testing FIGURES 1 Device Dissipation Derating with Temperature 2 Physical Dimensions 7 7 7 7 7 7 8 9	1(a)	Type Variants	7
Electrical Measurements at Room Temperature, d.c. Parameters 3(a) Electrical Measurements at High Temperature 3(b) Electrical Measurements at Low Temperature 4 Parameter Drift Values 5 Conditions for Burn-in 6 Electrical Measurements on Completion of Environmental Tests and at Intermediate Points and on Completion of Environmental Testing FIGURES 1 Device Dissipation Derating with Temperature 2 Physical Dimensions 9	. ,		
3(a) Electrical Measurements at High Temperature 22 3(b) Electrical Measurements at Low Temperature 23 4 Parameter Drift Values 30 5 Conditions for Burn-in 30 6 Electrical Measurements on Completion of Environmental Tests and at Intermediate 32 Points and on Completion of Environmental Testing FIGURES 1 Device Dissipation Derating with Temperature 8 2 Physical Dimensions 9			19
3(b) Electrical Measurements at Low Temperature 23 4 Parameter Drift Values 30 5 Conditions for Burn-in 30 6 Electrical Measurements on Completion of Environmental Tests and at Intermediate 32 Points and on Completion of Environmental Testing FIGURES 1 Device Dissipation Derating with Temperature 8 Physical Dimensions 9	3(a)	Electrical Measurements at High Temperature	22
4 Parameter Drift Values 30 5 Conditions for Burn-in 30 6 Electrical Measurements on Completion of Environmental Tests and at Intermediate 32 Points and on Completion of Environmental Testing FIGURES 1 Device Dissipation Derating with Temperature 8 2 Physical Dimensions 9		Electrical Measurements at Low Temperature	23
Electrical Measurements on Completion of Environmental Tests and at Intermediate Points and on Completion of Environmental Testing FIGURES Device Dissipation Derating with Temperature Physical Dimensions 8		Parameter Drift Values	30
Points and on Completion of Environmental Testing FIGURES Device Dissipation Derating with Temperature 8 Physical Dimensions 9	5	Conditions for Burn-in	30
FIGURES 1 Device Dissipation Derating with Temperature 8 2 Physical Dimensions 9	6		32
1 Device Dissipation Derating with Temperature 8 2 Physical Dimensions 9		Points and on Completion of Environmental Testing	
Physical Dimensions 9	FIGUR	<u>≣S</u>	
Physical Dimensions 9	1	Device Dissipation Derating with Temperature	8
		· · · · · · · · · · · · · · · · · · ·	
3(a) Pin Assignment 12	3(a)	Pin Assignment	12
3(b) Truth Table N/A		· · · · · · · · · · · · · · · · · · ·	
3(c) Circuit Schematic 12			
3(d) Functional Diagram 13			
4(a) Input Offset Voltage 24			
4(b) Input Offset Current 24	• •	,	

Rev. 'A'

PAGE 5

ISSUE 4

		<u>Page</u>
4(c)	Input (Plus) Bias Current	25
4(d)	Input (Minus) Bias Current	25
4(e)	Supply Current	26
4(f)	Short Circuit Output Current	26
4 (g)	Output Voltage Swing and Open Loop Voltage Gain	27
4(h)	Power Supply Rejection Ratio	27
4 (i)	Common Mode Rejection Ratio	28
4(j)	Dynamic Test Measurement Circuit	29
5	Electrical Circuit for Burn-in and Operating Life Test	30
APPE	NDICES (Applicable to specific Manufacturers only)	
'A'	Agreed Deviations for Thomson-CSF/DCI (F)	33
'R'	Agreed Deviations for Motorola (F)	34

PAGE 6

ISSUE 4

1. **GENERAL**

1.1 SCOPE

This specification details the ratings, physical and electrical characteristics, test and inspection data for a silicon monolithic, bipolar operational amplifier, based on Type LM108A. It shall be read in conjunction with ESA/SCC Generic Specification No. 9000, the requirements of which are supplemented herein.

1.2 COMPONENT TYPE VARIANTS

Variants of the basic type integrated circuits specified herein, which are also covered by this specification, are given in Table 1(a).

1.3 MAXIMUM RATINGS

The maximum ratings, which shall not be exceeded at any time during use or storage, applicable to the integrated circuits specified herein, are as scheduled in Table 1(b).

1.4 PARAMETER DERATING INFORMATION

As per Figure 1.

1.5 PHYSICAL DIMENSIONS

As per Figure 2.

1.6 PIN ASSIGNMENT

As per Figure 3(a).

1.7 TRUTH TABLE (FIGURE 3(b))

Not applicable.

1.8 CIRCUIT SCHEMATIC

As per Figure 3(c).

1.9 FUNCTIONAL DIAGRAM

As per Figure 3(d).

Rev. 'D'

PAGE 7 ISSUE 4

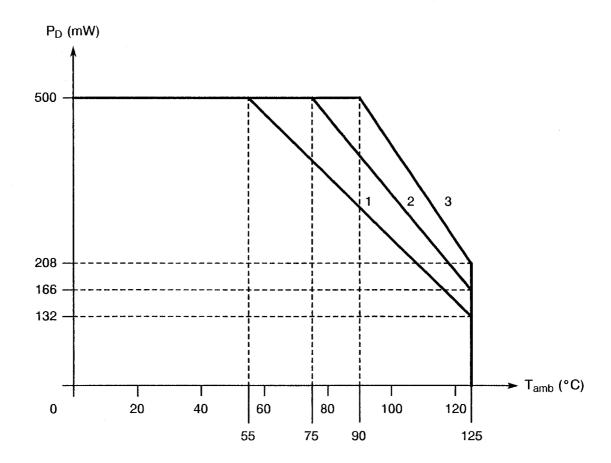
TABLE 1(a) - TYPE VARIANTS

VARIANT	CASE	FIGURE	LEAD MATERIAL AND/OR FINISH
01	FLAT	2(a)	D2
02	FLAT	2(a)	D3 or D4
03	TO99	2(b)	D2
04	TO99	2(b)	D3 or D4
05	DIL	2(c)	D2
06	DIL	2(c)	D3 or D4
07	TO99	2(b)	D9
08	CHIP CARRIER	2(d)	2

TABLE 1(b) - MAXIMUM RATINGS

No.	CHARACTERISTICS	SYMBOL	MAXIMUM RATINGS	UNITS	REMARKS
1	Supply Voltage	٧ _S	± 22	V	
2	Differential Input Voltage Range	V _{ID}	±30	V	Note 1
3	Input Voltage Range	V _I	± 15	٧	Note 2
4	Input Current Range	l _l	-0.1 to +10	mA	
5	Device Power Dissipation - Type Variants 01-02-08 - Type Variants 03-04-07 - Type Variants 05-06	P _D	500	mW	Note 3 Note 4 Note 5
6	Output Short Circuit Duration	_	Indefinite	-	Note 6
7	Operating Temperature Range	T _{amb}	-55 to +125	°C	
8	Storage Temperature Range	T _{stg}	- 55 to + 150	°C	
9	Soldering Temperature	T _{sol}	+300	°C	Note 7
10	Junction Temperature	Tj	+ 150	°C	

- 1. The inputs are shunted with back-to-back diodes for overvoltage protection. Therefore, excessive current will flow if a differential voltage in excess of 1.0V is applied between the inputs, unless some limiting resistance is used.
- 2. If the supply voltage is less than +15V, the maximum input voltage is equal to the supply voltage.
- 3. Derate above $T_{amb} = +55$ °C at 5.26mW/°C. See Figure 1.
- 4. Derate above $T_{amb} = +75$ °C at 6.67mW/°C. See Figure 1.
- 5. Derate above T_{amb} = +90°C at 8.33mW/°C. See Figure 1.
- 6. Continuous short circuit is allowed for an ambient temperature of +70°C and a case temperature of +125°C.
- 7. Duration: ≤5 seconds.



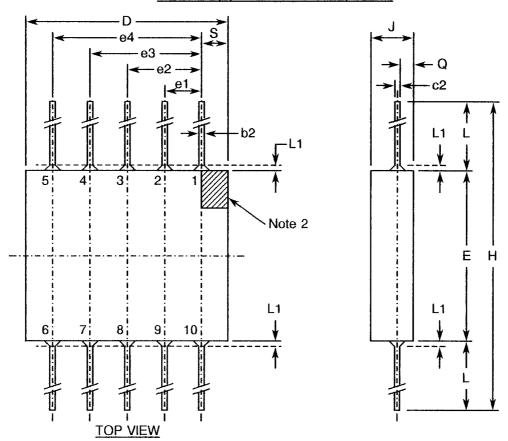
Rev. 'D'

PAGE 8

ISSUE 4

FIGURE 1 - DEVICE DISSIPATION DERATING WITH TEMPERATURE

- 1. Derating for type variants 01, 02 and 08.
- Derating for type variants 03, 04 and 07.
 Derating for type variants 05 and 06.


Rev. 'D'

PAGE 9

ISSUE

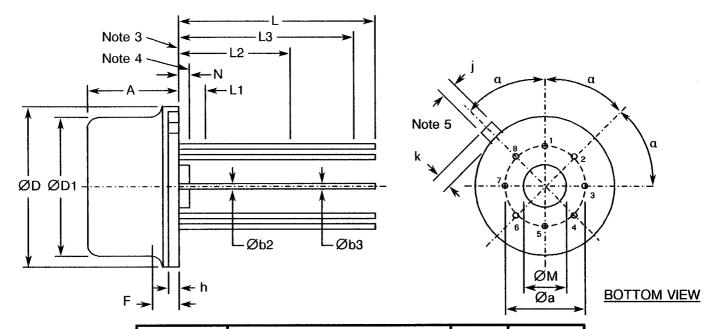
FIGURE 2 - PHYSICAL DIMENSIONS

FIGURE 2(a) - FLAT PACKAGE, 10-PIN

The metric dimensions are calculated from the original dimensions in inches.

SYMBOL	MILLIM	MILLIMETRES	
STIVIBOL	MIN.	MAX.	NOTES
b2	0.254	0.482	
c2	0.077	0.152	
D	6.10	6.98	
E	6.10	6.60	
e1	1.15	1.39	1
e2	2.42	2.66	1
e3	3.69	3.93	1
e4	4.96	5.20	1
Н	13.72	19.81	
J	0.77	1.77	:
L	3.81	6.60	
L1	-	0.38	
· Q	0.13	0.83	
S	0.52	0.86	

- The space between terminals has to be measured at a distance of 0.76mm maximum from where the terminals emerge from the case.
- 2. The top face and Pin No. 1 are marked.


Rev. 'D'

PAGE 10

ISSUE 4

FIGURE 2 - PHYSICAL DIMENSIONS (CONTINUED)

FIGURE 2(b) - TO99 PACKAGE, 8-PIN

SYMBOL	V	ILLIMETRES	3	DEGR.	NOTES	
STINIBUL	MIN.	NOM.	MAX.	NOM.	MOLES	
Øa	-	5.08 (*)	-		1	
Α	4.20	-	4.69			
Øb2	0.407	-	0.508			
Øb3		-	0.53	-		
ØD	8.51	-	9.39			
ØD1	7.75	-	8.50			
F	-	-	1.27			
h	0.15	-	1.01			
j	0.712	-	0.863			
k	0.74	-	1.14		2	
L	12.50	-	14.50			
L1	-	-	1.27			
L2	6.35	-	-	l '		
L3	12.70	-	-			
ØМ	3.56	-	4.06			
N	0.26	_	1.01			
α				45° (*)	1	

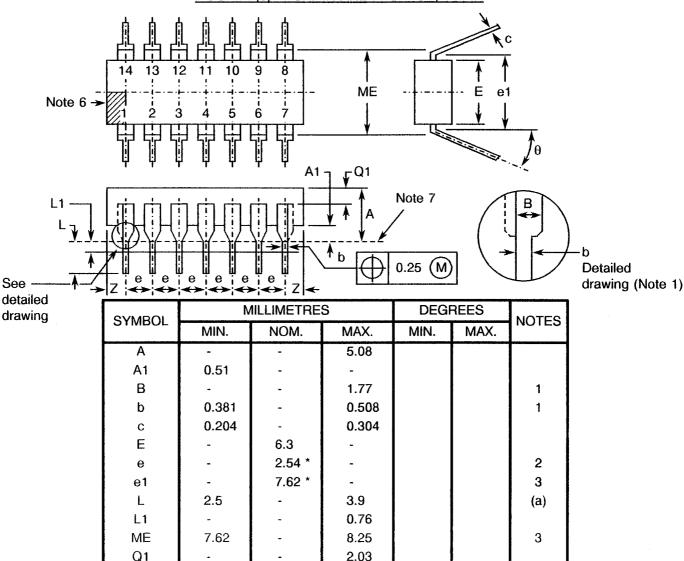
NOTES

- 1. The section of each terminal, from a distance of 1.37mm to the reference plane, shall be located in a ring whose diameter is 0.99mm, centred on the accurate geometrical point defining the terminal axis.
- 2. Measured from the D diameter.
- 3. Reference plane.
- 4. Base plane.
- 5. Reference index of Pin 8.
 - * = accurate geometrical location.

The metric dimensions are calculated from the original dimensions in inches.

Rev. 'D'

4


5

PAGE 11

ISSUE 4

FIGURE 2 - PHYSICAL DIMENSIONS (CONTINUED)

NOTES

1. The lead profile is not required for transition from B to b. The outline of the extreme outputs in the case of F.105A may differ from that of the others, as shown in the Figure.

0

15

- 2. The space between leads is measured on the area L1.
- 3. Measured when the value of the angle θ is zero.
- 4. Case F.105: Z between e/2 and e (1.27mm < Z < 2.54mm). Case F.105A: Z less than e/2 (Z < 1.27mm).

7×2

- 5. n = quantity of leads.
- 6. Area for visible reference mark on top face.

Z

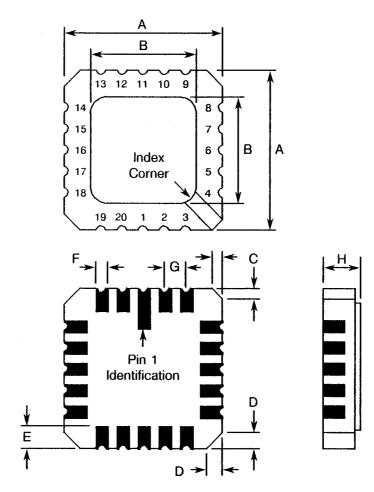
θ

n=

- 7. Base plane.
 - * = accurate geometrical location.
- (a) Recommended dimensions for the future: minimum 3.0mm.

maximum 3.9mm.

The metric dimensions are calculated from the original dimensions in inches.


Rev. 'D'

PAGE 12

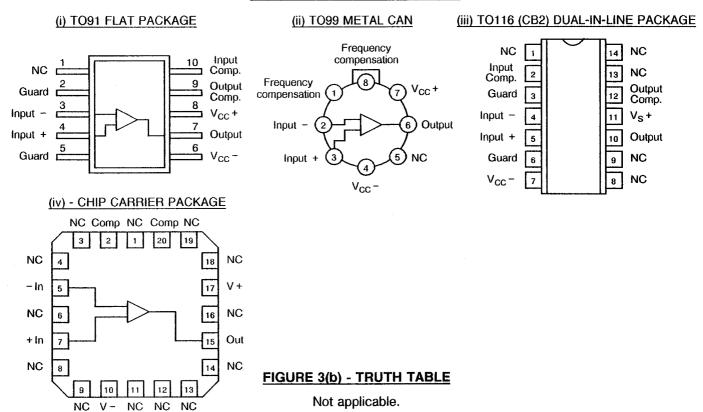
ISSUE 4

FIGURE 2 - PHYSICAL DIMENSIONS (CONTINUED)

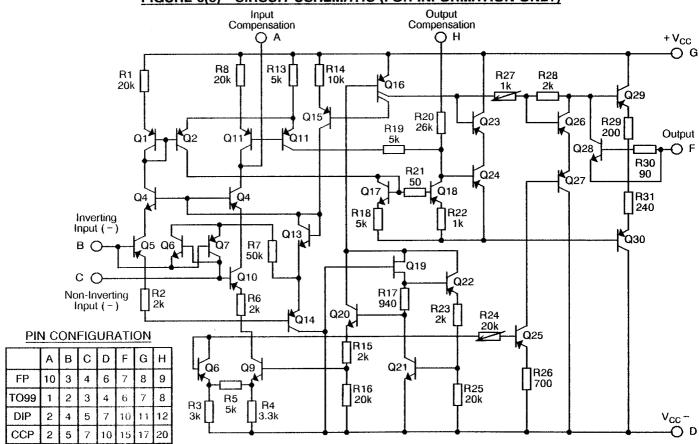
FIGURE 2(d) - CHIP CARRIER PACKAGE, 20-TERMINAL

SYMBOL	MILLIM	NOTEO	
STIVIBUL	MIN.	MAX.	NOTES
Α	8.69	9.09	-
В	7.80	9.09	-
С	0.25	0.51	4
D	0.89	1.14	5
E	1.14	1.40	2
F	0.56	0.71	2 ،
G	1.27 TYPICAL		1, 3
Н	1.63 2.54		-

- The true position pin or terminal spacing is 1.27mm between centrelines. Each pin or terminal centreline shall be located within ±0.13mm of its true longitudinal position relative to Pins 1 and the highest pin number.
- 2. All terminals.
- 3. 16 spaces.
- 4. Index corner only 2 dimensions.
- 5. 3 non-index corners 6 dimensions.



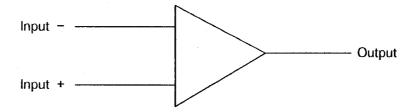
Rev. 'D'


PAGE 12A

ISSUE 4

FIGURE 3(a) - PIN ASSIGNMENT

FIGURE 3(c) - CIRCUIT SCHEMATIC (FOR INFORMATION ONLY)



PAGE 13

ISSUE 4

FIGURE 3(d) - FUNCTIONAL DIAGRAM

Rev. 'C'

PAGE 14

ISSUE 4

2. APPLICABLE DOCUMENTS

The following documents form part of this specification and shall be read in conjunction with it:-

- (a) ESA/SCC Generic Specification No. 9000 for Integrated Circuits.
- (b) MIL-STD-883, Test Methods and Procedures for Micro-electronics.

3. TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS

For the purpose of this specification, the terms, definitions, abbreviations, symbols and units specified in ESA/SCC Basic Specification No. 21300 shall apply. In addition, the following abbreviations are used:-

 K_{OV} = Overshoot.

S_{VR} = Supply Voltage Rejection Ratio.

V_{OM} = Maximum Range of Output Voltage.

I_{OS} = Output Short Circuit Current.

I_I = Input Current.I_{CC} = Supply Current.

4. REQUIREMENTS

4.1 GENERAL

The complete requirements for procurement of the integrated circuits specified herein are stated in this specification and ESA/SCC Generic Specification No. 9000 for Integrated Circuits. Deviations from the Generic Specification applicable to this specification only, are listed in Para. 4.2.

Deviations from the applicable Generic Specification and this Detail Specification, formally agreed with specific Manufacturers on the basis that the alternative requirements are equivalent to the ESA/SCC requirements and do not affect the components' reliability, are listed in the appendices attached to this specification.

4.2 DEVIATIONS FROM GENERIC SPECIFICATION

4.2.1 Deviations from Special In-process Controls

None.

4.2.2 Deviations from Final Production Tests (Chart II)

None.

Rev. 'D'

PAGE 15

ISSUE 4

4.2.3 Deviations from Burn-in Tests (Chart III)

Subpara. 7.1.1(a), "High Temperature Reverse Bias" test and subsequent electrical measurements related to this test shall be omitted.

4.2.4 Deviations from Qualification, Environmental and Endurance Tests (Chart IV)

None.

4.2.5 Deviations from Lot Acceptance Tests (Chart V)

None.

4.3 MECHANICAL REQUIREMENTS

4.3.1 **Dimension Check**

The dimensions of the integrated circuits specified herein shall be checked. They shall conform to those shown in Figure 2.

4.3.2 Weight

The maximum weight of the integrated circuits specified herein shall be for:-

Variants 01 and 02: Variants 03, 04 and 07: 1.50 grammes.

0.35 grammes.

Variants 05 and 06:

2.00 grammes.

Variant 08:

0.60 grammes.

4.4 MATERIALS AND FINISHES

The materials and finishes shall be as specified herein. Where a definite material is not specified, a material which will enable the integrated circuits specified herein to meet the performance requirements of this specification shall be used. Acceptance or approval of any constituent material does not guarantee acceptance of the finished product.

Rev. 'D'

PAGE 16

ISSUE 4

910100502R

4.4.1 <u>Case</u>

The case shall be hermetically sealed and have a metal body with hard glass seals or a ceramic body and the lids shall be welded, brazed, preform-soldered or glass frit-sealed.

4.4.2 Lead Material and Finish

For flat, TO99 and dual-in-line packages, the lead material shall be Type 'D' with either Type '2', Type '3 or 4' or Type '9' finish in accordance with ESA/SCC Basic Specification No. 23500. For chip carrier packages, the finish shall be Type '2' in accordance with ESA/SCC Basic Specification No. 23500. (See Table 1(a) for Type Variants).

4.5 MARKING

4.5.1 General

The marking of components delivered to this specification shall be in accordance with ESA/SCC Basic Specification No. 21700. Each component shall be marked in respect of:-

- (a) Lead Identification.
- (b) The SCC Component Number.
- (c) Traceability Information.

4.5.2 Lead Identification

For flat and dual-in-line packages, an index shall be located at the top of the package in the position defined in Note 2 to Figure 2(a) and Note 6 to Figure 2(c) or, alternatively, a tab may be used to identify Pin No. 1. The pin numbering shall be read with the index or tab on the left-hand side. For TO99 packages, a tab shall be used to identify Pin No. 8 as defined in Note 5 to Figure 2(b). For chip carrier packages, the index shall be as defined in Note 4 to Figure 2(d).

4.5.3 The SCC Component Number

Each component shall bear the SCC Component Number which shall be constituted and marked as follows:

Detail Specification Number	\prod
Type Variant, as applicable ————————————————————————————————————	 ┛╽
Festing Level (B or C, as applicable)	

4.5.4 Traceability Information

Each component shall be marked in respect of traceability information in accordance with ESA/SCC Basic Specification No. 21700.

PAGE 17

ISSUE 4

4.5.5 Marking of Small Components

When it is considered that the component is too small to accommodate the marking as specified above, as much as space permits shall be marked. The order of precedence shall be as follows:-

- (a) Lead Identification.
- (b) The SCC Component Number.
- (c) Traceability Information.

The marking information in full shall accompany each component in its primary package.

4.6 <u>ELECTRICAL CHARACTERISTICS</u>

4.6.1 Electrical Measurements at Room Temperature

The parameters to be measured in respect of electrical characteristics are scheduled in Table 2. Unless otherwise specified, the measurements shall be performed at T_{amb} = +22 ±3 °C.

4.6.2 <u>Electrical Measurements at High and Low Temperatures</u>

The parameters to be measured at high and low temperatures are scheduled in Tables 3(a) and 3(b). The measurements shall be performed at T_{amb} = +125°C and -55°C respectively.

4.6.3 <u>Circuits for Electrical Measurements</u>

Circuits for use in performing the electrical measurements listed in Tables 2 and 3 of this specification are shown in Figure 4.

4.7 BURN-IN TESTS

4.7.1 Parameter Drift Values

The parameter drift values applicable to burn-in are specified in Table 4 of this specification. Unless otherwise stated, measurements shall be performed at T_{amb} = +22 ±3 °C. The parameter drift values (Δ) applicable to the parameters scheduled, shall not be exceeded. In addition to these drift value requirements, the appropriate limit value specified for a given parameter in Table 2 shall not be exceeded.

PAGE 18

ISSUE 4

4.7.2 <u>Conditions for Burn-in</u>

The requirements for burn-in are specified in Section 7 of ESA/SCC Generic Specification No. 9000. The conditions for burn-in shall be as specified in Table 5 of this specification.

4.7.3 Electrical Circuits for Burn-in

Circuits for use in performing the burn-in tests are shown in Figure 5 of this specification.

PAGE 19

ISSUE 4

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - d.c. PARAMETERS

	0	0 1 1	Test Method	Test	Meas'd	To a Constitue	Lim	nits	11-21
No.	Characteristics	Symbol	MIL-STD 883	Fig.	Value	Test Conditions	Min	Max	Unit
1	Input Offset Voltage	V _{IO1}	4001	4(a)	E ₁ (V)	$+V_{CC} = 20V, -V_{CC} = -20V$ $V_{IN} = 0V$	•	0.5	mV
2	Input Offset Voltage	V _{IO2}	4001	4(a)	E ₂ (V)	$+V_{CC} = 5.0V, -V_{CC} = -5.0V$ $V_{IN} = 0V$	-	0.5	mV
3	Input Offset Current	l ₁₀₁	4001	4(b)	E ₃ (V)	$+V_{CC} = 20V, -V_{CC} = -20V$ R _S = 5.0M, V _{IN} = 0V	-	0.2	nA
4	Input Offset Current	102	4001	4(b)	E ₄ (V)	$+V_{CC} = 5.0V, -V_{CC} = -5.0V$ R _S = 5.0M, V _{IN} = 0V	-	0.2	nA
5	Input (Plus) Bias Current	I + IB1	4001	4(c)	E ₅ (V)	$+V_{CC} = 20V, -V_{CC} = -20V$ R _S = 5.0M, V _{IN} = 0V	_	2.0	nA
6	Input (Plus) Bias Current	l +1B2	4001	4(c)	E ₆ (V)	$+V_{CC} = 5.0V, -V_{CC} = -5.0V$ R _S = 5.0M, V _{IN} = 0V	-	2.0	nA
7	Input (Minus) Bias Current	I _{-IB1}	4001	4(d)	E ₇ (V)	$+V_{CC} = 20V, -V_{CC} = -20V$ R _S = 5.0M, V _{IN} = 0V	-	2.0	nA
8	Input (Minus) Bias Current	I _{-1B2}	4001	4(d)	E ₈ (V)	$+V_{CC} = 5.0V, -V_{CC} = -5.0V$ R _S = 5.0k, V _{IN} = 0V	-	2.0	nA
9	Power Supply Current	lcc(-)	4005	4(e)	lcc	$+V_{CC} = 20V, -V_{CC} = -20V$	•	0.6	mA
10	Short Circuit Output Current (Plus)	l _{OS(+)}	3011	4(f)	los	+ V _{CC} = 15V, - V _{CC} = - 15V V _{IN} = - 15V Note 1	- 15	-2.0	mA
11	Short Circuit Output Current (Minus)	l _{OS(-)}	3011	4(f)	los	$+ V_{CC} = 15V, -V_{CC} = -15V$ $V_{IN} = +15V$ Note 1	2.0	15	mA
12	Open Loop Voltage Gain (Plus)	+A _{VS}	4004	4 (g)	E ₉ (V)	$+V_{CC} = 20V, -V_{CC} = -20V$ $V_{IN} = -15V, R_{L} = 10k$	80	-	V/mV
13	Open Loop Voltage Gain (Minus)	- A _{VS}	4004	4(g)	E ₁₀ (V)	+ V _{CC} = 20V, - V _{CC} = -20V V _{IN} = +15V, R _L = 10k	80	-	V/mV

NOTES: See Page 21.

Rev. 'D'

PAGE 20

ISSUE 4

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - d.c. PARAMETERS (CONT'D)

No.	Characteristics	Sumb at	Test Method	Test	Meas'd	Test Conditions	Lim	nits	Unit
NO.	Characteristics	Symbol	MIL-STD 883	Fig.	Value	rest Conditions	Min	Max	Offic
14	Open Loop Voltage Gain (Plus)	+A _{VS}	4004	4(g)	E ₁₁ (V)	$+ V_{CC} = +5.0V, - V_{CC} = -5.0V$ $V_{IN} = -2.0V, R_{L} = 10k$	20	ı	V/mV
15	Open Loop Voltage Gain (Minus)	-A _{VS}	4004	4(g)	E ₁₂ (V)	$+V_{CC} = +5.0V, -V_{CC} = -5.0V$ $V_{IN} = +2.0V, R_L = 10k$	20	-	V/mV
16	Power Supply Rejection Ratio (Plus)	+ PSRR	4003	4(h)	E ₁₃ (V)	$+V_{CC} = 10V, -V_{CC} = -20V$ $V_{IN} = 0V$	- 100	100	μV/V
17	Power Supply Rejection Ratio (Minus)	- PSRR	4003	4(h)	E ₁₄ (V)	$+V_{CC} = 20V, -V_{CC} = -10V$ $V_{IN} = 0V$	- 100	100	μV/V
18	Common Mode Rejection Ratio	CMRR	4003	4(i)	E ₁₅ (V)	$+V_{CC} = 35V, -V_{CC} = -5.0V$ $V_{IN} = -15V$	96	-	dB
19	:				E ₁₆ (V)	$+V_{CC} = 5.0V, -V_{CC} = -35V$ $V_{IN} = 15V$			
20	Output Voltage Swing (Plus)	V _{OUT(+)}	4004	4(g)	E ₁₇ (V)	+ V _{CC} = 20V, - V _{CC} = -20V V _{IN} = -20V, R _L = 10k	18	-	٧
21	Output Voltage Swing (Minus)	V _{OUT(-)}	4004	4(g)	E ₁₈ (V)	$+ V_{CC} = 20V, - V_{CC} = -20V$ $V_{IN} = +20V, R_{L} = 10k$	-	- 18	V

NOTES: See Page 21.

PAGE 21

ISSUE 4

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - a.c. PARAMETERS

No	No. Characteristics	Test Aracteristics Symbol Method Test Attacks Test Attacks Test Test	Test Conditions	Lin	Unit			
INO.	Ondiactenstics	Symbol	MIL-STD 883	Fig.	rest conditions	Min	Max	Uill
22	Slew Rate (Plus)	SR(+)	4002	4(j)	+V _{CC} = ±20V V _{IN} = -5.0V to +5.0V square R _L = 10k Note 2	0.1	-	V/µs
23	Slew Rate (Minus)	SR(-)	4002	4(j)	+ V _{CC} = ± 20V V _{IN} = -5.0V to +5.0V square R _L = 10k Note 2	0.1	-	V/µs
24	Rise Time	RT	4002	4(j)	V_{CC} = ±20V, V_{IN} =50mV R _L = 10k Note 2	-	1000	ns
25	Overshoot	os	4002	4(j)	V_{CC} = ±20V, V_{IN} =50mV R _L = 10k Note 2	-	40	%

- 1. For sampling inspections and end-point tests, the duration of measurement of I_{OS} shall be 5 seconds minimum. For other tests, this duration may be reduced to be consistent with automatic test procedures provided that the same limits are maintained.
- 2. Sample Test Inspection Level = II, AQL = 2.5%.

Rev. 'D'

PAGE 22 ISSUE 4

TABLE 3(a) - ELECTRICAL MEASUREMENTS AT HIGH TEMPERATURE, + 125(+0-5) °C

			Test Method	Test	Meas'd		Lin	nits	
No.	Characteristics	Symbol	MIL-STD 883	Fig.	Value	Test Conditions	Min	Max	Unit
1	Input Offset Voltage	V _{iO1}	4001	4(a)	E ₁ (V)	+ V _{CC} = 20V, - V _{CC} = -20V V _{IN} = 0V	-	1.0	mV
2	Input Offset Voltage	V _{IO2}	4001	4(a)	E ₂ (V)	$+V_{CC} = 5.0V, -V_{CC} = -5.0V$ $V_{IN} = 0V$	-	1.0	mV
3	Input Offset Current	l _{lO1}	4001	4(b)	E ₃ (V)	$+V_{CC} = 20V, -V_{CC} = -20V$ R _S = 5.0M, $V_{IN} = 0V$	-	0.2	nA
4	Input Offset Current	102	4001	4(b)	E ₄ (V)	$+V_{CC} = 5.0V, -V_{CC} = -5.0V$ R _S = 5.0M, V _{IN} = 0V	-	0.2	nA
5	Input (Plus) Bias Current	I _{+IB1}	4001	4(c)	E ₅ (V)	$+V_{CC} = 20V, -V_{CC} = -20V$ R _S = 5.0M, $V_{IN} = 0V$	-	2.0	nA
6	Input (Plus) Bias Current	I +1B2	4001	4(c)	E ₆ (V)	$+V_{CC} = 5.0V, -V_{CC} = -5.0V$ R _S = 5.0M, V _{IN} = 0V	-	2.0	nA
7	Input (Minus) Bias Current	l –IB1	4001	4(d)	E ₇ (V)	+ V _{CC} = 20V, - V _{CC} = -20V R _S = 5.0M, V _{IN} = 0V	-	2.0	nA
8	Input (Minus) Bias Current	I -1B2	4001	4(d)	E ₈ (V)	$+V_{CC} = 5.0V, -V_{CC} = -5.0V$ R _S = 5.0k, $V_{IN} = 0V$	-	2.0	nA
9	Power Supply Current	lcc(-)	4005	4(e)	lcc	$+V_{CC} = 20V, -V_{CC} = -20V$	-	0.8	mA
10	Short Circuit Output Current (Plus)	l _{OS(+)}	3011	4(f)	los	$+V_{CC} = 15V, -V_{CC} = -15V$ $V_{IN} = -15V$ Note 1	- 15	-	mA
11	Short Circuit Output Current (Minus)	los(-)	3011	4(f)	los	+ V _{CC} = 15V, - V _{CC} = - 15V V _{IN} = + 15V Note 1	-	15	mA
12	Open Loop Voltage Gain (Plus)	+A _{VS}	4004	4(g)	E ₉ (V)	+ V _{CC} = 20V, - V _{CC} = -20V V _{IN} = -15V, R _L = 10k	40	_	V/mV
13	Open Loop Voltage Gain (Minus)	- A _{VS}	4004	4(g)	E ₁₀ (V)	$+V_{CC} = 20V, -V_{CC} = -20V$ $V_{IN} = +15V, R_{L} = 10k$	40	<u>-</u>	V/mV
20	Output Voltage Swing (Plus)	V _{OUT(+)}	4004	4(g)	E ₁₇ (V)	+ V _{CC} = 20V, - V _{CC} = -20V V _{IN} = -20V, R _L = 10k	18	-	٧
21	Output Voltage Swing (Minus)	V _{OUT(-)}	4004	4(g)	E ₁₈ (V)	+ V _{CC} = 20V, - V _{CC} = -20V V _{IN} = +20V, R _L = 10k	-	- 18	٧

NOTES: See Page 21.

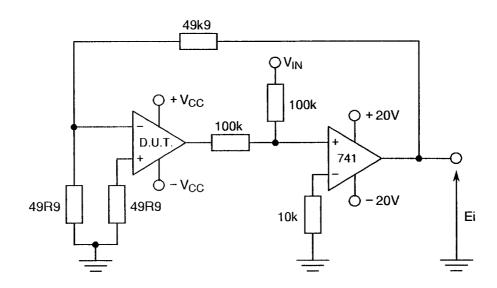
Rev. 'D'

PAGE 23

ISSUE 4

TABLE 3(b) - ELECTRICAL MEASUREMENTS AT LOW TEMPERATURE, -55(+5-0) °C

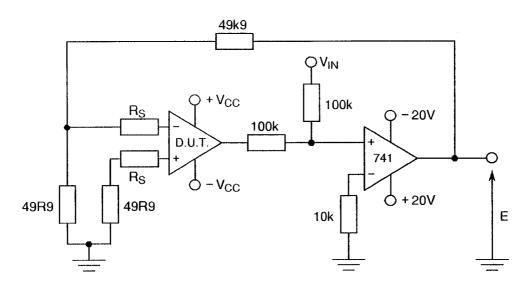
			Test Method	Test	Meas'd		Lin	nits	Unit
No.	Characteristics	Symbol	MIL-STD 883	Fig.	Value	Test Conditions	Min	1	
1	Input Offset Voltage	V _{IO1}	4001	4(a)	E ₁ (V)	$+ V_{CC} = 20V, -V_{CC} = -20V$ $V_{IN} = 0V$	-	1.0	mV
2	Input Offset Voltage	V _{IO2}	4001	4(a)	E ₂ (V)	$+V_{CC} = 5.0V, -V_{CC} = -5.0V$ $V_{IN} = 0V$	-	1.0	mV
3	Input Offset Current	l ₁₀₁	4001	4(b)	E ₃ (V)	$+ V_{CC} = 20V, -V_{CC} = -20V$ R _S = 5.0M, $V_{IN} = 0V$	-	0.4	nA
4	Input Offset Current	102	4001	4(b)	E ₄ (V)	$+ V_{CC} = 5.0V, -V_{CC} = -5.0V$ R _S = 5.0M, $V_{IN} = 0V$	_	0.4	nA
5	Input (Plus) Bias Current	_{+ IB1}	4001	4(c)	E ₅ (V)	$+V_{CC} = 20V, -V_{CC} = -20V$ R _S = 5.0M, $V_{IN} = 0V$	-	3.0	nA
6	Input (Plus) Bias Current	I +1B2	4001	4(c)	E ₆ (V)	$+V_{CC} = 5.0V, -V_{CC} = -5.0V$ R _S = 5.0M, $V_{IN} = 0V$	-	3.0	nA
7	Input (Minus) Bias Current	l –IB1	4001	4(d)	E ₇ (V)	$+V_{CC} = 20V, -V_{CC} = -20V$ R _S = 5.0M, $V_{IN} = 0V$	_	3.0	nA
8	Input (Minus) Bias Current	I _{-1B2}	4001	4(d)	E ₈ (V)	$+V_{CC} = 5.0V, -V_{CC} = -5.0V$ R _S = 5.0k, V _{IN} = 0V	-	3.0	nA
9	Power Supply Current	lcc(-)	4005	4(e)	lcc	$+V_{CC} = 20V, -V_{CC} = -20V$	-	1.6	mA
10	Short Circuit Output Current (Plus)	l _{OS(+)}	3011	4(f)	los	$+ V_{CC} = 15V, -V_{CC} = -15V$ $V_{IN} = -15V$ Note 1	– 15	-	mA
11	Short Circuit Output Current (Minus)	los(-)	3011	4(f)	los	$+ V_{CC} = 15V, -V_{CC} = -15V$ $V_{IN} = +15V$ Note 1	-	15	mA
12	Open Loop Voltage Gain (Plus)	+ A _{VS}	4004	4(g)	E ₉ (V)	$+V_{CC} = 20V, -V_{CC} = -20V$ $V_{IN} = -15V, R_{L} = 10k$	40	-	V/mV
13	Open Loop Voltage Gain (Minus)	- A _{VS}	4004	4(g)	E ₁₀ (V)	$+ V_{CC} = 20V, - V_{CC} = -20V$ $V_{IN} = +15V, R_{L} = 10k$	40	-	V/mV
20	Output Voltage Swing (Plus)	V _{OUT(+)}	4004	4(g)	E ₁₇ (V)	$+ V_{CC} = 20V, - V_{CC} = -20V$ $V_{IN} = -20V, R_{L} = 10k$	18	-	٧
21	Output Voltage Swing (Minus)	V _{OUT(-)}	4004	4(g)	E ₁₈ (V)	+ V _{CC} = 20V, - V _{CC} = -20V V _{IN} = +20V, R _L = 10k	-	- 18	٧


NOTES: See Page 21.

PAGE 24

ISSUE 4

FIGURE 4(a) - INPUT OFFSET VOLTAGE



 V_{IO1} (mV) = E_1 (V), V_{IO2} (mV) = E_2 (V).

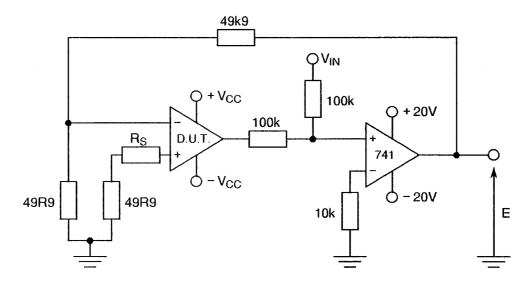
NOTES

1. All resistors to be 0.1% tolerance.

FIGURE 4(b) - INPUT OFFSET CURRENT

$$I_{IO1} \; (nA) = \; \frac{\left(E_1 \; (V) - E_3 \; (V) \right) \; 10^6}{R_S \; (k\Omega)} \qquad \qquad I_{IO2} \; (nA) = \; \frac{\left(E_2 \; (V) - E_4 \; (V) \right) \; 10^6}{R_S \; (k\Omega)}$$

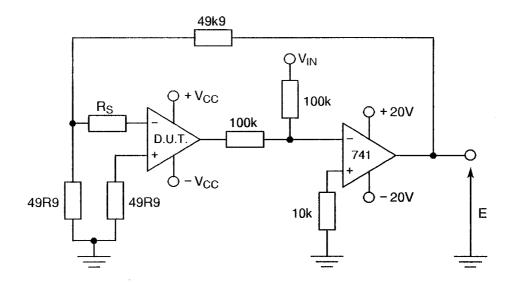
NOTES


1. All resistors to be 0.1% tolerance.

PAGE 25

ISSUE 4

FIGURE 4(c) - INPUT (PLUS) BIAS CURRENT



$$I_{+1B1} (nA) = \frac{(E_1 (V) - E_5 (V)) \ 10^6}{R_S (k\Omega)} \qquad I_{+1B2} (nA) = \frac{(E_2 (V) - E_6 (V)) \ 10^6}{R_S (k\Omega)}$$

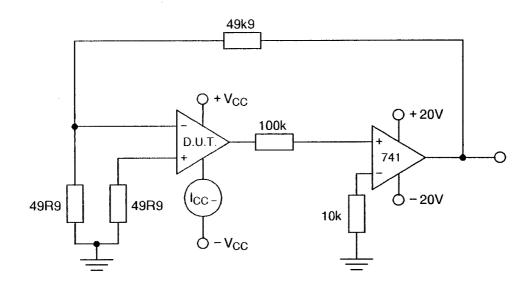
NOTES

1. All resistors to be 0.1% tolerance.

FIGURE 4(d) - INPUT (MINUS) BIAS CURRENT

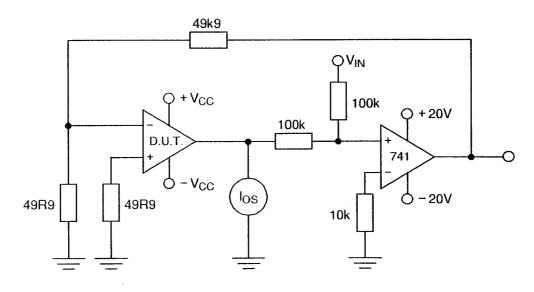
$$I_{-IB1} \; (nA) = \; \frac{(E_7 \; (V) - E_1 \; (V)) \; 10^6}{R_S \; (k\Omega)} \qquad I_{-IB2} \; (nA) = \; \frac{(E_8 \; (V) - E_2 \; (V)) \; 10^6}{R_S \; (k\Omega)}$$

NOTES


1. All resistors to be 0.1% tolerance.

PAGE 26

ISSUE 4

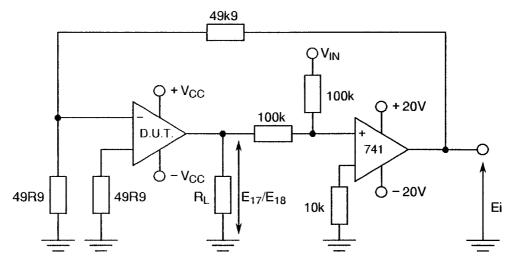

FIGURE 4(e) - SUPPLY CURRENT

NOTES

1. All resistors to be 0.1% tolerance.

FIGURE 4(f) - SHORT CIRCUIT OUTPUT CURRENT

NOTES

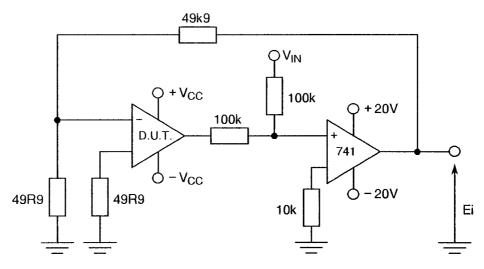

1. All resistors to be 0.1% tolerance.

PAGE 27

ISSUE 4

FIGURE 4(g) - OUTPUT VOLTAGE SWING - OPEN LOOP VOLTAGE GAIN

1.
$$V_{OUT} = (E_{17}, E_{18})$$


2.
$$+A_{VS} = \frac{15}{E_1 - E_9}$$
 , $+A_{VS} = \frac{2}{E_2 - E_{11}}$

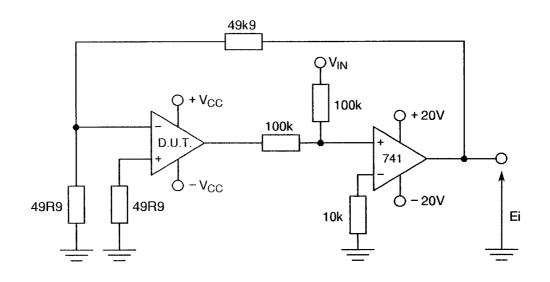
3.
$$-A_{VS} = \frac{15}{E_{10} - E_1}$$
, $-A_{VS} = \frac{2}{E_{12} - E_2}$

NOTES

- 1. E_9 , E_{10} , E_{11} , E_{12} is in Volts.
- 2. All resistors to be 0.1% tolerance.

FIGURE 4(h) - POWER SUPPLY REJECTION RATIO

+ PSRR $(\mu V/V) = (E_1 (V) - E_{13} (V)) 10^2$, - PSRR $(\mu V/V) = (E_1 (V) - E_{14} (V)) 10^2$


- 1. All resistors to be 0.1% tolerance.
- 2. Ei is measured to four digits accuracy.

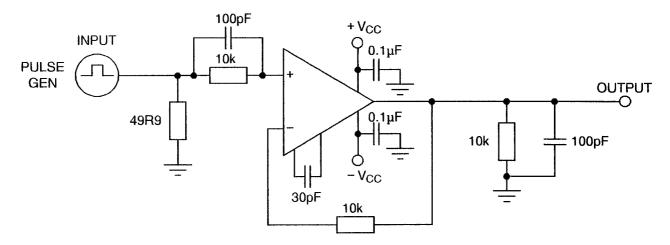
PAGE 28

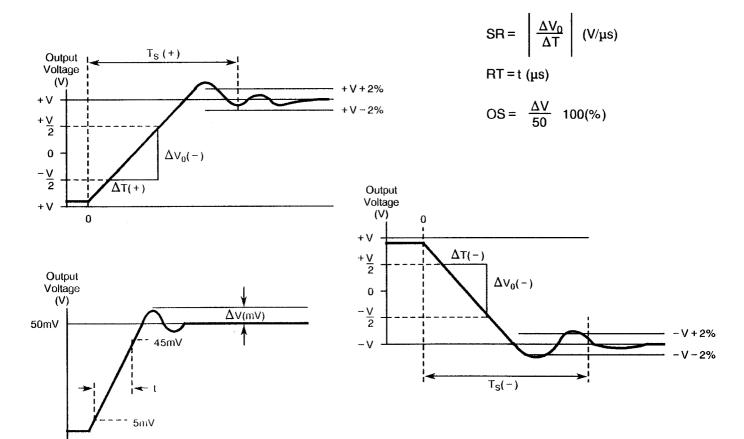
ISSUE 4

FIGURE 4(i) - COMMON MODE REJECTION RATIO

CMRR (dB) = 20 LOG
$$\frac{30.10^3}{E_{15} \text{ (V)} - E_{16} \text{ (V)}}$$

NOTES


1. Resistors of $49R9\Omega$ at inputs shall be of 0.01% tolerance matched to 0.001%. Remaining resistors shall be of 0.1% tolerance.


PAGE 29

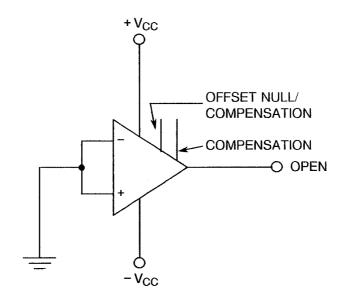
ISSUE 4

FIGURE 4(k) - DYNAMIC TEST MEASUREMENT CIRCUIT

- 1. Pulse Generator:
 - Rise time ≤ 10ns
 - Repetition rate 1.0kHz (max.)
 - Pulse voltage: -5.0V to +5.0V for slew rate measurement
 - Pulse voltage: 50mV for rise time and overshoot measurement

PAGE 30

ISSUE 4


TABLE 4 - PARAMETER DRIFT VALUES

No.	CHARACTERISTICS	SYMBOL	SPEC. AND/OR TEST METHOD	TEST CONDITIONS	CHANGE LIMITS (Δ)	UNIT
1	Input Offset Voltage Change	V _{IO}	As per Table 2	As per Table 2	± 0.25	mV
3	Input Offset Current Change	l _{lO}	As per Table 2	As per Table 2	± 0.2	nA
5	Input Bias Current Change	l _{IB}	As per Table 2	As per Table 2	± 0.4	nA

TABLE 5 - CONDITIONS FOR BURN-IN

No.	CHARACTERISTICS	SYMBOL	CONDITION	UNIT
1 Ambient Temperature		T _{amb}	+ 125 ± 5	°C
2	Supply Voltage	V _{CC}	±20	V

FIGURE 5 - BURN-IN CIRCUIT

PAGE 31

ISSUE 4

4.8 ENVIRONMENTAL AND ENDURANCE TESTS

4.8.1 Electrical Measurements on Completion of Environmental Tests

The parameters to be measured on completion of environmental tests are scheduled in Table 6. Unless otherwise stated, the measurements shall be performed at T_{amb} = +22 ± 3 °C.

4.8.2 Electrical Measurements at Intermediate Points during Endurance Tests

The parameters to be measured at intermediate points during endurance tests are as scheduled in Table 6 of this specification.

4.8.3 Electrical Measurements on Completion of Endurance Tests

The parameters to be measured on completion of endurance testing are as scheduled in Table 6 of this specification. Unless otherwise stated, the measurements shall be performed at T_{amb} = +22 ±3 °C.

4.8.4 Conditions for Operating Life Tests

The requirements for operating life testing are specified in Section 9 of ESA/SCC Generic Specification No. 9000. The conditions for operating life testing shall be as specified in Table 5 of this specification.

4.8.5 Electrical Circuits for Operating Life Tests

Circuits for use in performing the operating life tests are shown in Figure 5.

4.8.6 Conditions for High Temperature Storage Test

The requirements for the high temperature storage test are specified in ESA/SCC Generic Specification No. 9000. The conditions for high temperature storage shall be T_{amb} = +150(+0-5) °C.

PAGE 32

ISSUE 4

TABLE 6 - ELECTRICAL MEASUREMENTS ON COMPLETION OF ENVIRONMENTAL TESTS AND AT INTERMEDIATE POINTS AND ON COMPLETION OF ENDURANCE TESTING

No.	No. CHARACTERISTICS		SPEC. AND/OR	TEST	LIM	UNIT	
140.	CHARACTERISTICS	SYMBOL	TEST METHOD	CONDITIONS	MIN	MAX	UNIT
1	Input Offset Voltage	V _{IO}	As per Table 2	As per Table 2	-	0.5	mV
3	Input Offset Current	I _{IO}	As per Table 2	As per Table 2	-	0.2	nA
5	Input Bias Current	I _{IB}	As per Table 2	As per Table 2	-	2.0	nA
9	Power Supply Current	Icc	As per Table 2	As per Table 2	-	0.6	mA
12	Open Loop Voltage Gain	+A _{VS}	As per Table 2	As per Table 2	80	-	V/mV

PAGE 33

ISSUE 4

APPENDIX 'A'

Page 1 of 1

AGREED DEVIATIONS FOR THOMSON-CSF/DCI

ITEMS AFFECTED	DESCRIPTION OF DEVIATIONS
Tables 2, 3(a) and 3(b)	Tests 3 through to 8: I_{ID} and I_{IB} , change R_{S} condition to 1.0M Ω .

PAGE 34

ISSUE 4

APPENDIX 'B'

Page 1 of 1

AGREED DEVIATIONS FOR MOTOROLA (F)

ITEMS AFFECTED	DESCRIPTION OF DEVIATIONS
Table 2 (a.c.)	Tests 22 through to 25: Change V_{CC} condition to $V_{CC} = \pm 18V$.
Tables 2, 3(a) and 3(b)	Tests 3 through to 8: Change R_S condition to $R_S = 100k\Omega$.