

Page i

INTEGRATED CIRCUITS, SILICON MONOLITHIC, OPERATIONAL AMPLIFIER, BUFFER, BASED ON TYPE LM118

ESCC Detail Specification No. 9101/006

ISSUE 1 October 2002

ESCC Detail Specification

PAGE	ii
ISSUE	1

LEGAL DISCLAIMER AND COPYRIGHT

European Space Agency, Copyright © 2002. All rights reserved.

The European Space Agency disclaims any liability or responsibility, to any person or entity, with respect to any loss or damage caused, or allleged to be caused, directly or indirectly by the use and application of this ESCC publication.

This publication, without the prior permission of the European Space Ageny and provided that it is not used for a commercial purpose, may be:

- copied in whole in any medium without alteration or modification.
- copied in part, in any medium, provided that the ESCC document identification, comprising the ESCC symbol, document number and document issue, is removed.

european space agency agence spatiale européenne

Pages 1 to 35

OPERATIONAL AMPLIFIER, BUFFER, BASED ON TYPE LM 118

ESA/SCC Detail Specification No. 9101/006

space components coordination group

		Approved by			
Issue/Rev.	Date	SCCG Chairman	ESA Director General or his Deputy		
Issue 1	March 1984	-	-		
Revision 'A'	September 1984	-	-		
Revision 'B'	December 1987	-	-01		
Revision 'C'	December 1991	Pomomens	t. lat		

Rev. 'C'

PAGE 2

ISSUE 1

DOCUMENTATION CHANGE NOTICE

DOCUMENTATION CHANGE NOTICE							
Rev. Letter	Rev. Date	CHANGE Reference Item	Approved DCR No.				
'A'	Sep. '84	P1. Cover page P2. DCN P6. Table 1(b) : Note 1 amended P7. Figure 1 : Figure amended	None None 22294 22294				
'B'	Dec. '87	P1. Cover page P2. DCN P12. Para. 4.2.2 : Condition added Para. 4.2.3 : "Para. 12" entry deleted P32. Table 5 : Amended P33. Figure 5 : Amended	None None 22608 22608 22365 22365				
'C'	Dec. '91	P1. Cover page P2. DCN P12. Para. 4.2.2 : Deviation deleted, "None." added P13. Para. 4.2.4 : Deviation deleted, "None." added Para. 4.2.5 : Deviation deleted, "None." added	None None 21048 22919 22919				
		This specification has been transferred from hardcopy to electronic format. The content is unchanged but minor differences in presentation exist.					

PAGE 3

ISSUE 1

TABLE OF CONTENTS

1.	GENERAL	Page 5
4.4		-
1.1	Scope	5
1.2 1.3	Component Type Variants	5
	Maximum Ratings	5
1.4 1.5	Parameter Derating Information Physical Dimensions	5
1.6	Pin Assignment	5
1.7	Truth Table	5
1.8	Circuit Schematic	5 5
1.9	Functional Diagram	5
1.5	i unctional Diagram	5
2.	APPLICABLE DOCUMENTS	12
3.	TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS	12
4.	REQUIREMENTS	12
4.1	General	12
4.2	Deviations from Generic Specification	12
4.2.1	Deviations from Special In-process Controls	12
4.2.2	Deviations from Final Production Tests (Chart II)	12
4.2.3	Deviations from Burn-in Tests (Chart III)	13
4.2.4	Deviations from Qualification, Environmental and Endurance Tests (Chart IV)	13
4.2.5	Deviations from Lot Acceptance Tests (Chart V)	13
4.3	Mechanical Requirements	13
4.3.1	Dimension Check	13
4.3.2	Weight	13
4.4	Materials and Finishes	13
4.4.1	Case	13
4.4.2	Lead Material and Finish	13
4.5	Marking	14
4.5.1	General	14
4.5.2	Lead Identification	14
4.5.3	The SCC Component Number	14
4.5.4	Traceability Information	14
4.5.5	Marking of Small Components	14
4.6	Electrical Characteristics	15
4.6.1	Electrical Measurements at Room Temperature	15
4.6.2	Electrical Measurements at High and Low Temperatures	15

PAGE 4

		<u>Page</u>
4.6.3	Circuits for Electrical Measurements	15
4.7	Burn-in Tests	15
4.7.1	Parameter Drift Values	15
4.7.2	Conditions for Burn-in	15
4.7.3	Electrical Circuits for Burn-in	15
4.8	Environmental and Endurance Tests	34
4.8.1	Electrical Measurements on Completion of Environmental Tests	34
4.8.2	Electrical Measurements at Intermediate Points During Endurance Tests	34
4.8.3	Electrical Measurements on Completion of Endurance Tests	34
4.8.4	Conditions for Operating Life Tests	34
4.8.5	Electrical Circuits for Operating Life Tests	34
4.8.6	Conditions for High Temperature Storage Test	34
TABLE	<u>:s</u>	
1(a)	Type Variants	6
1(b)	Maximum Ratings	6
2	Electrical Measurements at Room Temperature	16
3	Electrical Measurements at High and Low Temperatures	20
4	Parameter Drift Values	32
5	Conditions for Burn-in and Operating Life Test	32
6	Electrical Measurements on Completion of Environmental Tests and at Intermediate Points during Endurance Testing	35
FIGUR	<u>IES</u>	
1	Device Dissipation Derating with Temperature	7
2	Physical Dimensions	8
3(a)	Pin Assignment	9
3(b)	Circuit Schematic	10
3(c)	Functional Diagram	11
4(a)	Input Offset Voltage	26
4(b)	Input (Plus) Bias Current	26
4(c)	Input (Minus) Bias Current	27
4(d)	Input Offset Current	27
4(e)	Supply Current	28
4(f)	Power Supply Rejection Ratio	28
4 (g)	Common Mode Rejection Ratio	29
4(h)	Input Offset Adjust Voltage	29
4 (i)	Short Circuit Output Current	30
4(j)	Output Voltage Swing and Open Loop Voltage Gain	30
4(k)	Dynamic Test Measurement Circuit	31
5	Electrical Circuit for Burn-in and Operating Life Test	33

APPENDICES (Applicable to specific Manufacturers only) None.

PAGE

5

ISSUE 1

1. **GENERAL**

1.1 SCOPE

This specification details the ratings, physical and electrical characteristics, test and inspection data for a silicon monolithic, operational amplifier, based on Type LM118. It shall be read in conjunction with ESA/SCC Generic Specification No. 9000, the requirements of which are supplemented herein.

1.2 COMPONENT TYPE VARIANTS

Variants of the basic type integrated circuits specified herein, which are also covered by this specification, are given in Table 1(a).

1.3 MAXIMUM RATINGS

The maximum ratings, which shall not be exceeded at any time during use or storage, applicable to the integrated circuits specified herein, are as scheduled in Table 1(b).

1.4 PARAMETER DERATING INFORMATION

As per Figure 1.

1.5 PHYSICAL DIMENSIONS

As per Figure 2.

1.6 PIN ASSIGNMENT

As per Figure 3(a).

1.7 TRUTH TABLE

Not applicable.

1.8 CIRCUIT SCHEMATIC

As per Figure 3(b).

1.9 FUNCTIONAL DIAGRAM

As per Figure 3(c).

Rev. 'A'

PAGE 6

ISSUE 1

TABLE 1(a) - TYPE VARIANTS

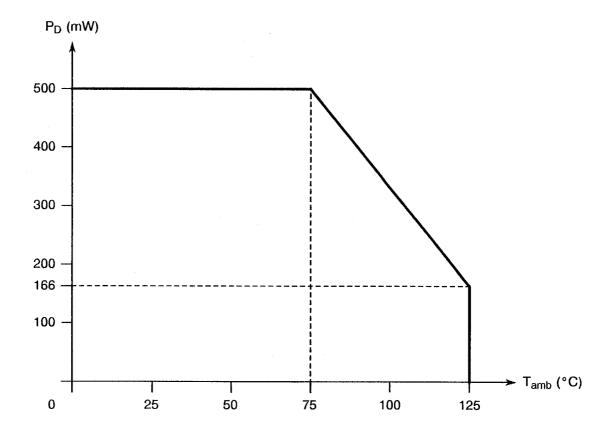
DASH No.	CASE	FIGURE	LEAD MATERIAL AND FINISH
-01	TO99	2	D2

TABLE 1(b) - MAXIMUM RATINGS

No.	CHARACTERISTICS	SYMBOL	MAXIMUM RATINGS	UNITS	REMARKS
1	Supply Voltage Range	V _{CC}	±20	V	
2	Input Voltage Range	V _I	± 15	V	
3	Input Current Range	l _{ID}	-0.1 to +10	mA	
4	Power Dissipation - Type Variant 01	P _D	500	mW	Note 1
5	Operating Temperature Range (Ambient)	T _{op}	-55 to +125	°C	
8	Storage Temperature Range	T _{stg}	-55 to +150	°C	
9	Soldering Temperature	T _{sol}	+ 300	°C	Note 2
10	Junction Temperature	T _j	+ 150	°C	

NOTES

- 1. Derate above T_{amb} = +75°C at 6.67mW/°C. See Figure 1.
- 2. Duration 10 seconds maximum at a distance of not less than 1.5mm from the can. The same lead shall not be resoldered until 3 minutes have elapsed.

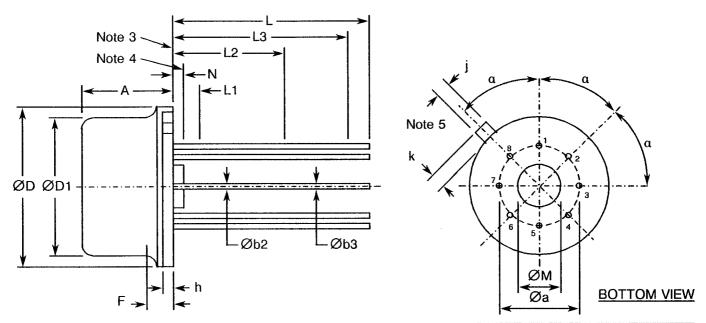


Rev. 'A'

PAGE 7

ISSUE 1

FIGURE 1 - DEVICE DISSIPATION DERATING WITH TEMPERATURE



PAGE 8

ISSUE 1

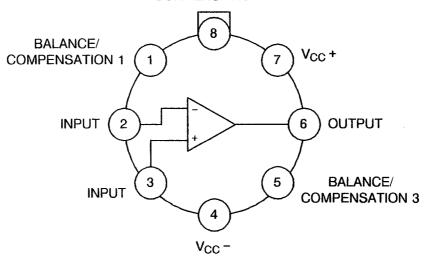
FIGURE 2 - PHYSICAL DIMENSIONS

TO99 PACKAGE

CVMPOL	N	IILLIMETRES	3		INCHES		DEGR.	NOTES
SYMBOL	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	NOM.	NOTES
Øa	-	5.08 (6)	-	•	0.200 (6)	-		1
Α	4.20	-	4.69	0.165	-	0.185		
Øb2	0.407	-	0.508	0.016	-	0.020		
Øb3	-	-	0.53	-	-	0.021		:
ØD	8.51	-	9.39	0.335	-	0.370		
ØD1	7.75	-	8.50	0.305	-	0.335		
F	-	-	1.27	-	-	0.050		
h	0.15	-	1.01	0.06	-	0.040		
j	0.712	-	0.863	0.028	-	0.034		
k	0.74	-	1.14	0.029	-	0.045		2
L	12.50	-	14.50	0.492	-	0.071		ē.
L1	-	-	1.27	-	-	0.050		
L2	6.35	-	-	0.250	-	-		
L3	12.70	-	-	0.500	-	-		
ØМ	3.56	-	4.06	0.140	-	0.160		
N	0.26	-	1.01	0.010	-	0.040		
α]			45° (6)	1

NOTES

- 1. The section of each terminal, from a distance of 1.37mm (0.054 inch) to the reference plane, shall be located in a ring whose diameter is 0.99mm (0.039 inch), centred on the accurate geometrical point defining the terminal axis.
- 2. Measured from the D diameter.
- 3. Reference plane.
- 4. Base plane.
- 5. Reference index of Pin 8.
- 6. Accurate geometrical location.
- 7. The metric dimensions are calculated from the original dimensions in inches.


PAGE 9

ISSUE 1

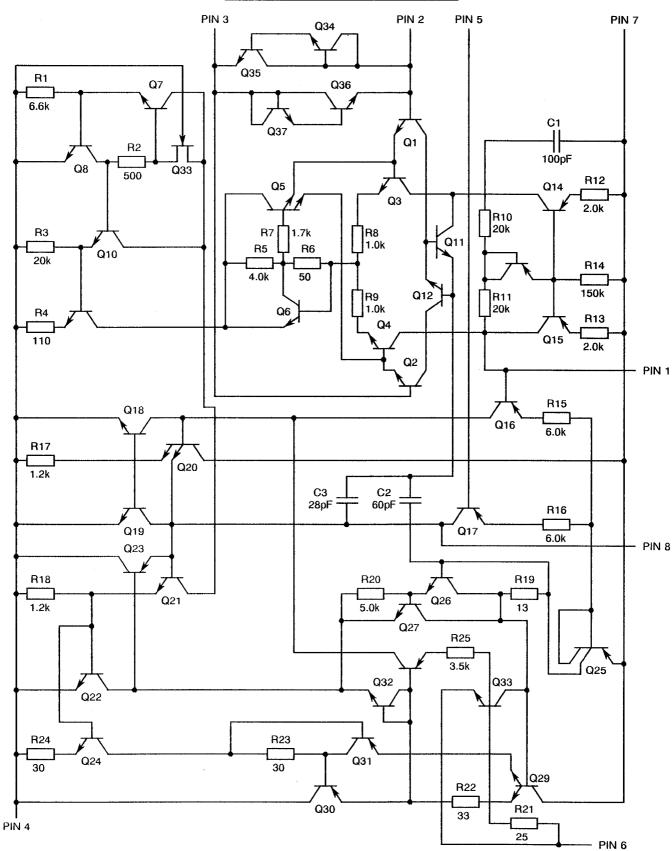
FIGURE 3(a) - PIN ASSIGNMENT

TO-99 PACKAGE

COMPENSATION 2

TOP VIEW

NOTES

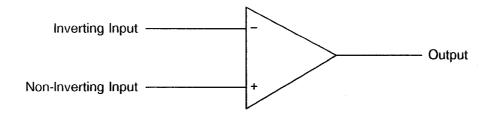

1. Pin 4 is connected to case.

PAGE 10

ISSUE

FIGURE 3(b) - CIRCUIT SCHEMATIC

NOTES


1. Pin numbers correspond to TO99 package pin assignments

PAGE 11

ISSUE 1

FIGURE 3(c) - FUNCTIONAL DIAGRAM

Rev. 'C'

PAGE 12

ISSUE 1

2. APPLICABLE DOCUMENTS

The following documents form part of this specification and shall be read in conjunction with it:-

- (a) ESA/SCC Generic Specification No. 9000 for Integrated Circuits.
- (b) MIL-STD-883, Test Methods and Procedures for Micro-electronics.

3. TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS

For the purpose of this specification, the terms, definitions, abbreviations, symbols and units specified in ESA/SCC Basic Specification No. 21300 shall apply. In addition, the following abbreviations are used:-

I_{OS} = Output Short Circuit Current.

I_i = Input Current.

I_{CC} = Supply Current.

4. REQUIREMENTS

4.1 GENERAL

The complete requirements for procurement of the integrated circuits specified herein are stated in this specification and ESA/SCC Generic Specification No. 9000 for Integrated Circuits. Deviations from the Generic Specification applicable to this specification only, are listed in Para. 4.2.

Deviations from the applicable Generic Specification and this Detail Specification, formally agreed with specific Manufacturers on the basis that the alternative requirements are equivalent to the ESA/SCC requirements and do not affect the components' reliability, are listed in the appendices attached to this specification.

4.2 <u>DEVIATIONS FROM GENERIC SPECIFICATION</u>

4.2.1 <u>Deviations from Special In-process Controls</u>

None.

4.2.2 <u>Deviations from Final Production Tests (Chart II)</u>

None.

4.2.3 Deviations from Burn-in Tests (Chart III)

Subpara. 7.1.1(a), "High Temperature Reverse Bias" test and subsequent electrical measurements related to this test shall be omitted.

Rev. 'C'

PAGE 13

ISSUE 1

4.2.4 <u>Deviations from Qualification, Environmental and Endurance Tests (Chart IV)</u>

None.

4.2.5 Deviations from Lot Acceptance Tests (Chart V)

None.

4.3 MECHANICAL REQUIREMENTS

4.3.1 Dimension Check

The dimensions of the integrated circuits specified herein shall be checked. They shall conform to those shown in Figure 2.

4.3.2 Weight

The maximum weight of the integrated circuits specified herein shall be 1.0 gram.

4.4 MATERIALS AND FINISHES

The materials and finishes shall be as specified herein. Where a definite material is not specified, a material which will enable the integrated circuits specified herein to meet the performance requirements of this specification shall be used. Acceptance or approval of any constituent material does not guarantee acceptance of the finished product.

4.4.1 <u>Case</u>

The case shall be hermetically sealed and have a metal body with hard glass seals or a ceramic body and the lids shall be welded, brazed, preform-soldered or glass frit-sealed.

4.4.2 <u>Lead Material and Finish</u>

The lead material shall be Type 'D' with Type '2' finish in accordance with ESA/SCC Basic Specification No. 23500.

PAGE 14

ISSUE

4.5 MARKING

4.5.1 General

The marking of components delivered to this specification shall be in accordance with ESA/SCC Basic Specification No. 21700. Each component shall be marked in respect of:-

- (a) Lead Identification.
- (b) The SCC Component Number.
- (c) Traceability Information.

4.5.2 Lead Identification

A tab shall be used to identify Pin No. 8. The pin numbering shall be read with the tab on the left-hand side (bottom view).

4.5.3 The SCC Component Number

Each component shall bear the SCC Component Number which shall be constituted and marked as follows:

	910100601B
Detail Specification Number	
Type Variant, as applicable ————————————————————————————————————	
Testing Level (B or C, as applicable) ————————————————————————————————————	

4.5.4 <u>Traceability Information</u>

Each component shall be marked in respect of traceability information in accordance with ESA/SCC Basic Specification No. 21700.

4.5.5 Marking of Small Components

When it is considered that the component is too small to accommodate the marking as specified above, as much as space permits shall be marked. The order of precedence shall be as follows:-

- (a) Lead Identification.
- (b) The SCC Component Number.
- (c) Traceability Information.

The marking information in full shall accompany each component in its primary package.

PAGE 15

ISSUE 1

4.6 ELECTRICAL CHARACTERISTICS

4.6.1 Electrical Measurements at Room Temperature

The parameters to be measured in respect of electrical characteristics are scheduled in Table 2. Unless otherwise specified, the measurements shall be performed at T_{amb} = +22 ±3 °C.

4.6.2 Electrical Measurements at High and Low Temperatures

The parameters to be measured at high and low temperatures are scheduled in Tables 3(a) and 3(b). The measurements shall be performed at $T_{amb} = +125$ °C and -55°C respectively.

4.6.3 Circuits for Electrical Measurements

Circuits and functional test sequence for use in performing the electrical measurements listed in Tables 2 and 3 of this specification are shown in Figure 4.

4.7 BURN-IN TESTS

4.7.1 Parameter Drift Values

The parameter drift values applicable to burn-in are specified in Table 4 of this specification. Unless otherwise stated, measurements shall be performed at T_{amb} = +22 ±3 °C. The parameter drift values (Δ) applicable to the parameters scheduled, shall not be exceeded. In addition to these drift value requirements, the appropriate limit value specified for a given parameter in Table 2 shall not be exceeded.

4.7.2 Conditions for Burn-in

The requirements for burn-in are specified in Section 7 of ESA/SCC Generic Specification No. 9000. The conditions for burn-in shall be as specified in Table 5 of this specification.

4.7.3 Electrical Circuits for Burn-in

Circuits for use in performing the burn-in tests are shown in Figure 5 of this specification.

PAGE 16

ISSUE 1

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - d.c. PARAMETERS

No	No. Characteristics	Characteristics Symbol Met	Test Method	thod Test Mea	Meas'd	Meas'd Test Conditions	Limits		Unit
110.	Ondractoristics	Cymbol	MIL-STD 883	Fig.	Value	rest conditions	Min	Max	Ullit
1	Input Offset Voltage	V _{IO1}	4001	4(a)	E ₁	$+V_{CC} = 35V, -V_{CC} = -5.0V$ $R_S = 0, V_{IN} = -15V$	-4.0	4.0	mV
2	Input Offset Voltage	V _{IO2}	4001	4(a)	E ₂	$+V_{CC} = 5.0V, -V_{CC} = -35V$ R _S = 0, V _{IN} = 15V	- 4.0	4.0	mV
3	Input Offset Voltage	V _{IO3}	4001	4(a)	E ₃	$+V_{CC} = 20V, -V_{CC} = -20V$ R _S = 0, V _{IN} = 0	-4.0	4.0	mV
4	Input Offset Voltage	V _{IO4}	4001	4(a)	E ₄	$+V_{CC} = 5.0V, -V_{CC} = -5.0V$ R _S = 0, V _{IN} = 0	-4.0	4.0	mΫ
5	Input Offset Voltage	V _{IO5}	4001	4(a)	E ₅	$+V_{CC} = 26.5V, -V_{CC} = -3.5V$ R _S = 0, V _{IN} = -11.5V	- 4.0	4.0	mV
6	Input Offset Voltage	V _{IO6}	4001	4(a)	E ₆	$+V_{CC} = 3.5V, -V_{CC} = -26.5V$ R _S = 0, V _{IN} = 11.5V	-4.0	4.0	mV
7	Input Offset Current	l _{lO1}	4001	4(d)	E ₇	$+V_{CC} = 26.5V, -V_{CC} = -3.5V$ R _S = 5.0k, V _{IN} = 11.5V	- 40	40	nA
8	Input Offset Current	I ₁₀₂	4001	4(d)	E ₈	$+V_{CC} = 3.5V, -V_{CC} = -26.5V$ R _S = 5.0k, V _{IN} = 11.5V	- 40	40	nA
9	Input Offset Current	1 ₁₀₃	4001	4(d)	E ₉	$+V_{CC} = 20V, -V_{CC} = -20V$ R _S = 5.0k, V _{IN} = 0	- 40	40	nA
10	Input Offset Current	I ₁₀₄	4001	4(d)	E ₁₀	$+V_{CC} = 5.0V, -V_{CC} = -5.0V$ R _S = 5.0k, V _{IN} = 0	- 40	40	nA

PAGE 17

ISSUE 1

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - d.c. PARAMETERS (CONT'D)

No.	Characteristics	Cumbal	Test Method	Test	Leet Conditions		nits	Unit	
NO.	Characteristics	Symbol	MIL-STD 883	Fig.	Value	rest Conditions	Min	Max	Unit
11	Input (Plus) Bias Current	I +1B1	4001	4(b)	E ₁₁	$+V_{CC} = 26.5V, -V_{CC} = -3.5V$ R _S = 5.0k, V _{IN} = -11.5V	1.0	250	nA
12	Input (Plus) Bias Current	I + IB2	4001	4(b)	E ₁₂	$+V_{CC} = 3.5V, -V_{CC} = -26.5V$ R _S = 5.0k, V _{IN} = 11.5V	1.0	250	nA
13	Input (Plus) Bias Current	I _{+ IB3}	4001	4(b)	E ₁₃	$+V_{CC} = 20V, -V_{CC} = -20V$ R _S = 5.0k, V _{IN} = 0	1.0	250	nA
14	Input (Plus) Bias Current	I _{+ IB4}	4001	4(b)	E ₁₄	$+V_{CC} = 5.0V, -V_{CC} = -5.0V$ R _S = 5.0k, V _{IN} = 0	1.0	250	nA
15	Input (Minus) Bias Current	I _{-1B1}	4001	4(c)	E ₁₅	$+V_{CC} = 26.5V, -V_{CC} = -3.5V$ R _S = 5.0k, V _{IN} = -11.5V	1.0	250	nA
16	Input (Minus) Bias Current	I -1B2	4001	4(c)	E ₁₆	$+V_{CC} = 3.5V, -V_{CC} = -26.5V$ R _S = 5.0k, V _{IN} = 11.5V	1.0	250	nA
17	Input (Minus) Bias Current	l _{-1B3}	4001	4(c)	E ₁₇	$+V_{CC} = 20V, -V_{CC} = -20V$ R _S = 5.0k, V _{IN} = 0	1.0	250	nA
18	Input (Minus) Bias Current	l _{– 184}	4001	4(c)	E ₁₈	$+V_{CC} = 5.0V, -V_{CC} = -5.0V$ R _S = 5.0k, V _{IN} = 0	1.0	250	nA
19	Power Supply Current	lcc	4005	4(e)	lcc	$+V_{CC} = 15V$, $-V_{CC} = -15V$ $R_S = 0$	-	8.0	mA
20	Power Supply Rejection Ratio (Plus)	+ PSRR	4003	4(f)	E ₁₉	$+V_{CC} = 10V, -V_{CC} = -20V$ R _S = 0, V _{IN} = 0V	70	-	dB
21	Power Supply Rejection Ratio (Minus)	- PSRR	4003	4(f)	E ₂₀	$+V_{CC} = 20V, -V_{CC} = -10V$ R _S = 0, V _{IN} = 0V	70	-	dB
22	Common Mode Rejection Ratio (Note 1)	CMRR	4003	4(g)	E ₁	$+V_{CC} = 35V, -V_{CC} = -5.0V$ R _S = 0, V _{IN} = -15V	80	-	dB
	(NOTE 1)				E ₂	$+V_{CC} = 5.0V, -V_{CC} = -35V$ R _S = 0, V _{IN} = 15V			

PAGE 18

ISSUE 1

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - d.c. PARAMETERS (CONT'D)

No.	Characteristics	Symbol	Test Method	Test	Meas'd	Test Conditions	Lin	nits	- Unit
INO.	Characteristics	Symbol	MIL-STD 883	Fig.	Value	rest Conditions	Min	Max	
23	Input Offset Adjust Voltage (Plus)	V _{IOADJ} +	-	4(h)	E ₂₁	$+V_{CC} = 20V, -V_{CC} = -20V$ R _S = 0, V _{IN} = 0V	7.0	-	mV
24	Input Offset Adjust Voltage (Minus)	V _{IOADJ} –	-	4(h)	E ₂₂	$+V_{CC} = 20V, -V_{CC} = -20V$ R _S = 0, V _{IN} = 0V	-	- 7.0	mV
25	Short Circuit Output Current (Plus)	l _{OS(+)}	3011	4(i)	los	$+V_{CC} = 15V, -V_{CC} = -15V$ R _S = 0, V _{IN} = -15V	- 60	-	mA
26	Short Circuit Output Current (Minus)	los(-)	3011	4(i)	los	$+V_{CC} = 15V, -V_{CC} = -15V$ R _S = 0, V _{IN} = 15V		60	mA
27	Output Voltage Swing (Plus)	V _{OPP(+)}	4004	4(j)	E ₂₃	$+V_{CC} = 15V, -V_{CC} = -15V$ $R_S = 0, V_{IN} = -15V$ $R_L = 2.0k$	12	•	V
28	Output Voltage Swing (Minus)	V _{OPP(-)}	4004	4(j)	E ₂₄	$+V_{CC} = 15V, -V_{CC} = -15V$ $R_S = 0, V_{IN} = 15V$ $R_L = 2.0k$	-	-12	V
29	Open Loop Voltage Gain (Plus)	+A _{VS}	4004	4(j)	E ₂₅	$+ V_{CC} = 15V, -V_{CC} = -15V$ $V_{IN} = -10V, R_L = 2.0k$	50	-	V/mV
30	Open Loop Voltage Gain (Minus)	-A _{VS}	4004	4(j)	E ₂₆	$+ V_{CC} = 15V, - V_{CC} = -15V$ $V_{IN} = 10V, R_L = 2.0k$	50	-	V/mV
31	Open Loop Voltage Gain	A _{VS}	4004	4(j)	E ₂₇	$+V_{CC} = 5.0V, -V_{CC} = -5.0V$ $V_{IN} = -2.0V, R_L = 2.0k$	10	-	V/mV
32					E ₂₈	$+V_{CC} = 5.0V, -V_{CC} = -5.0V$ $V_{IN} = 2.0V, R_L = 2.0k$			

PAGE 19

ISSUE 1

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - a.c. PARAMETERS

No.	Characteristics	Symbol	Test Method MIL-STD 883	Test Fig.	Test Conditions	Lin	nits	Unit
	Ond dotonous					Min	Max	
32	Slew Rate (Plus)	SR(+)	4002	4(k)	+ V _{CC} = ±20V V _{IN} = See Figure 4(k) R _L = 2.0k	50	-	V/µs
33	Slew Rate (Minus)	SR(-)	4002	4(k)	+ V _{CC} = ±20V V _{IN} = See Figure 4(k) R _L = 2.0k	50	-	V/µs

NOTES

- Calculated from Test Nos. 1 and 2.
 The temperature coefficient of Input Offset Voltage is calculated only for components of Level 'B'.

PAGE 20

ISSUE 1

TABLE 3(a) - ELECTRICAL MEASUREMENTS AT HIGH TEMPERATURE, +125(+0-5) °C

No.	Characteristics	Symbol	Test Method	Test	Meas'd	Test Conditions	Lin	nits	Unit
INO.	Ondracteristics	Symbol	MIL-STD 883	Fig.	Value	rest Conditions	Min	Max	Offic
1	Input Offset Voltage	V _{IO1}	4001	4(a)	E ₁	$+V_{CC} = 35V, -V_{CC} = -5.0V$ R _S = 0, V _{IN} = -15V	-6.0	6.0	mV
2	Input Offset Voltage	V _{IO2}	4001	4(a)	E ₂	$+V_{CC} = 5.0V, -V_{CC} = -35V$ R _S = 0, V _{IN} = 15V	- 6.0	6.0	mV
3	Input Offset Voltage	V _{IO3}	4001	4(a)	E ₃	$+V_{CC} = 20V, -V_{CC} = -20V$ R _S = 0, V _{IN} = 0	-6.0	6.0	mV
4	Input Offset Voltage	V _{IO4}	4001	4(a)	E ₄	$+V_{CC} = 5.0V, -V_{CC} = -5.0V$ R _S = 0, V _{IN} = 0	-6.0	6.0	mV
5	Input Offset Voltage	V _{IO5}	4001	4(a)	E ₅	$+V_{CC} = 26.5V, -V_{CC} = 3.5V$ R _S = 0, V _{IN} = -11.5V	-6.0	6.0	mV
6	Input Offset Voltage	V _{IO6}	4001	4(a)	E ₆	$+V_{CC} = 3.5V, -V_{CC} = -26.5V$ R _S = 0, V _{IN} = 11.5V	-6.0	6.0	mV
7	Input Offset Current	l ₁₀₁	4001	4(d)	E ₇	$+V_{CC} = 26.5V, -V_{CC} = -3.5V$ R _S = 5.0k, $V_{IN} = -11.5V$	- 40	40	nA
8	Input Offset Current	l _{IO2}	4001	4(d)	E ₈	$+V_{CC} = 3.5V, -V_{CC} = -26.5V$ R _S = 5.0k, V _{IN} = 11.5V	- 40	40	nA
9	Input Offset Current	lюз	4001	4(d)	E ₉	$+V_{CC} = 5.0V, -V_{CC} = -5.0V$ R _S = 5.0k, V _{IN} = 0	- 40	40	nA
10	Input Offset Current	104	4001	4(d)	E ₁₀	$+V_{CC} = 5.0V, -V_{CC} = -5.0V$ R _S = 5.0k, V _{IN} = 0	- 40	40	nA

PAGE 21

ISSUE 1

TABLE 3(a) - ELECTRICAL MEASUREMENTS AT HIGH TEMPERATURE, + 125(+0-5) °C (CONT'D)

No.	Ob avantoviation	Curaha al	Test Method	Test	Meas'd	Test Conditions	Lin	nits	Unit
INO.	Characteristics	Symbol	MIL-STD 883	Fig.	Value	rest Conditions	Min	Max	Uriit
11	Input (Plus) Bias Current	+1B1	4001	4(b)	E ₁₁	$+V_{CC} = 26.5V, -V_{CC} = -3.5V$ R _S = 5.0k, V _{IN} = -11.5V	1.0	250	nA
12	Input (Plus) Bias Current	I +1B2	4001	4(b)	E ₁₂	+ V _{CC} = 3.5V, - V _{CC} = -26.5V R _S = 5.0k, V _{IN} = 11.5V		250	nA
13	Input (Plus) Bias Current	I +1B3	4001	4(b)	E ₁₃	$+V_{CC} = 20V, -V_{CC} = -20V$ R _S = 5.0k, V _{IN} = 0	1.0	250	nA
14	Input (Plus) Bias Current	l _{+ IB4}	4001	4(b)	E ₁₄	$+V_{CC} = 5.0V, -V_{CC} = -5.0V$ R _S = 5.0k, V _{IN} = 0	1.0	250	nA
15	Input (Minus) Bias Current	I _{-IB1}	4001	4(c)	E ₁₅	$+V_{CC} = 26.5V, -V_{CC} = -3.5V$ R _S = 5.0k, $V_{IN} = -11.5V$	1.0	250	nA
16	Input (Minus) Bias Current	I _{-IB2}	4001	4(c)	E ₁₆	$+V_{CC} = 3.5V, -V_{CC} = -26.5V$ R _S = 5.0k, V _{IN} = 11.5V	1.0	250	nA
17	Input (Minus) Bias Current	I - _{1B3}	4001	4(c)	E ₁₇	$+V_{CC} = 20V, -V_{CC} = -20V$ R _S = 5.0k, V _{IN} = 0	1.0	250	nA
18	Input (Minus) Bias Current	I -1B4	4001	4(c)	E ₁₈	$+V_{CC} = 5.0V, -V_{CC} = -5.0V$ R _S = 5.0k, V _{IN} = 0	1.0	250	nA
19	Power Supply Current	lcc	4005	4(e)	lcc	$+V_{CC} = 15V$, $-V_{CC} = -15V$ $R_S = 0$	-	7.0	mA
20	Power Supply Rejection Ratio (Plus)	+PSRR	4003	4(f)	E ₁₉	$+V_{CC} = 10V, -V_{CC} = -20V$ R _S = 0, V _{IN} = 0V	70	-	dB
21	Power Supply Rejection Ratio (Minus)	- PSRR	4003	4(f)	E ₂₀	$+V_{CC} = 20V, -V_{CC} = -10V$ R _S = 0, V _{IN} = 0V	70		dB
22	Common Mode Rejection Ratio (Note 1)	CMRR	4003	4(g)	E ₁	$+V_{CC} = 35V, -V_{CC} = -5.0V$ R _S = 0, V _{IN} = -15V	80	-	dB
	(NOTE 1)				E ₂	$+V_{CC} = 5.0V, -V_{CC} = -35V$ R _S = 0, V _{IN} = 15V			

PAGE 22

ISSUE 1

TABLE 3(a) - ELECTRICAL MEASUREMENTS AT HIGH TEMPERATURE, + 125(+0-5) °C (CONT'D)

No.	Characteristics	Symbol	Test Method	Test	Meas'd	Test Conditions	Lin	nits	Unit
INO.	Orial acteristics	J	MIL-STD 883	Fig.	Value	rest conditions	Min	Max	Offic
25	Short Circuit Output Current (Plus)	l _{OS(+)}	3011	4(i)	los	$+V_{CC} = 15V, -V_{CC} = -15V$ R _S = 0, V _{IN} = -15V	- 60		mA
26	Short Circuit Output Current (Minus)	los(-)	3011	4(i)	los	$+V_{CC} = 15V$, $-V_{CC} = -15V$ $R_S = 0$, $V_{IN} = 15V$	-	60	mA
27	Output Voltage Swing (Plus)	V _{OPP(+)}	4004	4(j)	E ₂₃	$+V_{CC} = 15V, -V_{CC} = -15V$ $R_S = 0, V_{IN} = -15V$ $R_L = 2.0k$	12	1	V
28	Output Voltage Swing (Minus)	V _{OPP(-)}	4004	4(j)	E ₂₄	$+V_{CC} = 15V, -V_{CC} = -15V$ $R_S = 0, V_{IN} = 15V$ $R_L = 2.0k$		- 12	٧
29	Open Loop Voltage Gain (Plus)	+A _{VS}	4004	4(j)	E ₂₅	$+V_{CC} = 15V, -V_{CC} = -15V$ $V_{IN} = -10V, R_L = 2.0k$	32	-	V/mV
30	Open Loop Voltage Gain (Minus)	- A _{VS}	4004	4(j)	E ₂₆	$+V_{CC} = 15V, -V_{CC} = -15V$ $V_{IN} = 10V, R_L = 2.0k$	32	-	V/mV
34	Temperature Coefficient for Input Offset Voltage (Note 2)	<u>ΔV_{IO}</u> ΔΤ	Calculate $\Delta V_{IO}/\Delta T = V_{IO} $ (Test 3, Table 3(a) (mV) $-V_{IO}$ (Test 3, Table 2 (mV) $ \times 10 $			- 50	50	μV/ °C	

PAGE 23

ISSUE 1

TABLE 3(b) - ELECTRICAL MEASUREMENTS AT LOW TEMPERATURE, -55(+5-0) °C

No.	Characteristics	Symbol	Test Method	Test		Test Conditions	Lin	nits	Unit
140.	Onaracteristics	Gymbol	MIL-STD 883	Fig.	Value	rest conditions	Min	Max	Offic
1	Input Offset Voltage	V _{IO1}	4001	4(a)	E ₁	E_1 + $V_{CC} = 35V$, $-V_{CC} = -5.0V$ $R_S = 0$, $V_{IN} = -15V$		6.0	mV
2	Input Offset Voltage	V _{IO2}	4001	4(a)	E ₂	$+V_{CC} = 5.0V, -V_{CC} = -35V$ R _S = 0, V _{IN} = 15V	- 6.0	6.0	mV
3	Input Offset Voltage	V _{IO3}	4001	4(a)	E ₃	$+V_{CC} = 20V, -V_{CC} = -20V$ R _S = 0, V _{IN} = 0	-6.0	6.0	mV
4	Input Offset Voltage	V _{IO4}	4001	4(a)	E ₄	$+V_{CC} = 5.0V, -V_{CC} = -5.0V$ R _S = 0, V _{IN} = 0	- 6.0	6.0	mV
5	Input Offset Voltage	V _{IO5}	4001	4(a)	E ₅	$+V_{CC} = 26.5V, -V_{CC} = -3.5V$ R _S = 0, V _{IN} = -11.5V	-6.0	6.0	mV
6	Input Offset Voltage	V _{IO6}	4001	4(a)	E ₆	$+V_{CC} = 3.5V, -V_{CC} = -26.5V$ R _S = 0, V _{IN} = 11.5V	-6.0	6.0	mV
7	Input Offset Current	l ₁₀₁	4001	4(d)	E ₇	$+V_{CC} = 26.5V$, $-V_{CC} = -3.5V$ R _S = 5.0k, $V_{IN} = 11.5V$	- 80	80	nA
8	Input Offset Current	l _{IO2}	4001	4(d)	E ₈	$+V_{CC} = 3.5V, -V_{CC} = -26.5V$ R _S = 5.0k, V _{IN} = 11.5V	- 80	80	nA
9	Input Offset Current	I _{IO3}	4001	4(d)	E ₉	$+V_{CC} = 20V, -V_{CC} = -20V$ R _S = 5.0k, V _{IN} = 0	- 80	80	nA
10	Input Offset Current	104	4001	4(d)	E ₁₀	$+V_{CC} = 5.0V, -V_{CC} = -5.0V$ R _S = 5.0k, V _{IN} = 0	- 80	80	nA

PAGE 24

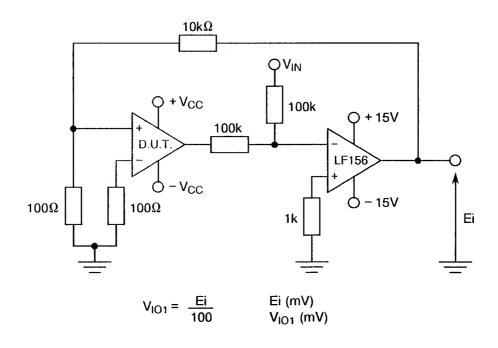
ISSUE 1

TABLE 3(b) - ELECTRICAL MEASUREMENTS AT LOW TEMPERATURE, -55(+5-0) °C (CONT'D)

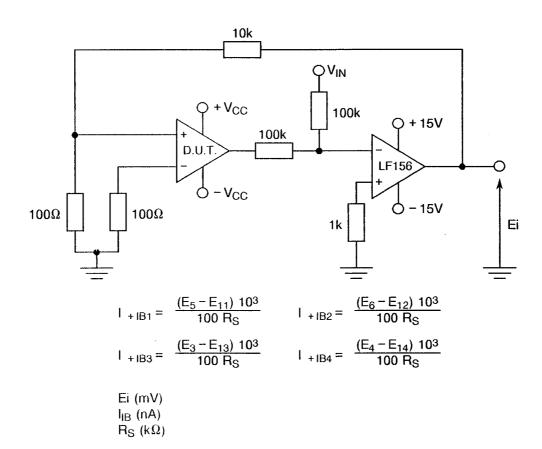
Na	Chavastaviatica	Cumbal	Test Method	Test	Meas'd	Test Conditions	Lin	nits	Unit
No.	Characteristics	Symbol	MIL-STD 883	Fig.	Value	rest Conditions	Min	Max	Unit
11	Input (Plus) Bias Current	I + (B1	4001	4(b)	E ₁₁	$+V_{CC} = 26.5V, -V_{CC} = -3.5V$ R _S = 5.0k, V _{IN} = -11.5V	1.0	400	nA
12	Input (Plus) Bias Current	I +1B2	4001	4(b)	E ₁₂	$+V_{CC} = 3.5V, -V_{CC} = -26.5V$ R _S = 5.0k, V _{IN} = 11.5V		400	nA
13	Input (Plus) Bias Current	I _{+ IB3}	4001	4(b)	E ₁₃	$+V_{CC} = 20V, -V_{CC} = -20V$ R _S = 5.0k, V _{IN} = 0	1.0	400	nA
14	Input (Plus) Bias Current	l _{+ IB4}	4001	4(b)	E ₁₄	$+V_{CC} = 5.0V, -V_{CC} = -5.0V$ R _S = 5.0k, V _{IN} = 0	1.0	400	nA
15	Input (Minus) Bias Current	l - _{IB1}	4001	4(c)	E ₁₅	$+V_{CC} = 26.5V, -V_{CC} = -3.5V$ R _S = 5.0k, $V_{IN} = -11.5V$	1.0	400	nA
16	Input (Minus) Bias Current	l _{– IB2}	4001	4(c)	E ₁₆	$+V_{CC} = 3.5V, -V_{CC} = -26.5V$ R _S = 5.0k, V _{IN} = 11.5V	1.0	400	nA
17	Input (Minus) Bias Current	l _{-1B3}	4001	4(c)	E ₁₇	$+V_{CC} = 20V, -V_{CC} = -20V$ R _S = 5.0k, V _{IN} = 0	1.0	400	nA
18	Input (Minus) Bias Current	I _{-1B4}	4001	4(c)	E ₁₈	$+V_{CC} = 5.0V, -V_{CC} = -5.0V$ R _S = 5.0k, V _{IN} = 0	1.0	400	nA
19	Power Supply Current	lcc	4005	4(e)	lcc	$+V_{CC} = 15V$, $-V_{CC} = -15V$ $R_S = 0$	-	9.0	mA
20	Power Supply Rejection Ratio (Plus)	+PSRR	4003	4(f)	E ₁₉	$+V_{CC} = 10V, -V_{CC} = -20V$ R _S = 0, V _{IN} = 0V	70	-	dB
21	Power Supply Rejection Ratio (Minus)	- PSRR	4003	4(f)	E ₂₀	$+V_{CC} = 20V, -V_{CC} = -10V$ $R_S = 0, V_{IN} = 0V$	70	-	dB
22	Common Mode Rejection Ratio (Note 1)	CMRR	4003	4(g)	E ₁	$+V_{CC} = 35V, -V_{CC} = -5.0V$ R _S = 0, V _{IN} = -15V	80	-	dB
	(NOTE 1)				E ₂	$+V_{CC} = 5.0V, -V_{CC} = -35V$ R _S = 0, V _{IN} = 15V			

PAGE 25

ISSUE 1


TABLE 3(b) - ELECTRICAL MEASUREMENTS AT LOW TEMPERATURE, -55(+5-0) °C (CONT'D)

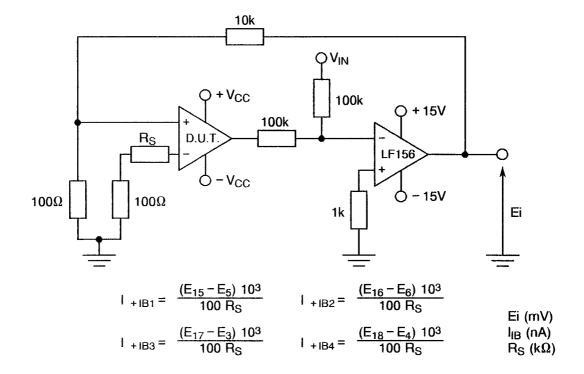
No.	Characteristics	Symbol	Test Method	Test	Meas'd	Test Conditions	Lin	nits	Unit
NO.	Characteristics	Symbol	MIL-STD 883	Fig.	Value	rest Conditions	Min	Max	Unit
25	Short Circuit Output Current (Plus)	l _{OS(+)}	3011	4(i)	los	$+V_{CC} = 15V, -V_{CC} = -15V$ R _S = 0, V _{IN} = -15V	- 70	-	mA
26	Short Circuit Output Current (Minus)	l _{OS(-)}	3011	4(i)	los	$+V_{CC} = 15V, -V_{CC} = -15V$ $R_S = 0, V_{IN} = 15V$	•	- 70	mA
27	Output Voltage Swing (Plus)	V _{OPP(+)}	4004	4(j)	E ₂₃	$+V_{CC} = 15V, -V_{CC} = -15V$ $R_S = 0, V_{IN} = -15V$ $R_L = 2.0k$	12	-	V
28	Output Voltage Swing (Minus)	V _{OPP(-)}	4004	4(j)	E ₂₄	$+V_{CC} = 15V, -V_{CC} = -15V$ $R_S = 0, V_{IN} = 15V$ $R_L = 2.0k$		- 12	٧
29	Open Loop Voltage Gain (Plus)	+ A _{VS}	4004	4(j)	E ₂₅	$+V_{CC} = 15V, -V_{CC} = -15V$ $V_{IN} = -10V, R_{L} = 2.0k$	32	-	V/mV
30	Open Loop Voltage Gain (Minus)	- A _{VS}	4004	4(j)	E ₂₆	$+ V_{CC} = 15V, - V_{CC} = -15V$ $V_{IN} = 10V, R_{L} = 2.0k$	32	-	V/mV
34	Temperature Coefficient for Input Offset Voltage (Note 2)	<u>Δ</u> V _{IO} ΔΤ	Calculate $\Delta V_{IO}/\Delta T = V_{IO} $ (Test 3, Table 3(a) (mV) $-V_{IO}$ (Test 3, Table 2 (mV) $ \times 12.5 $				- 50	50	μV/ °C

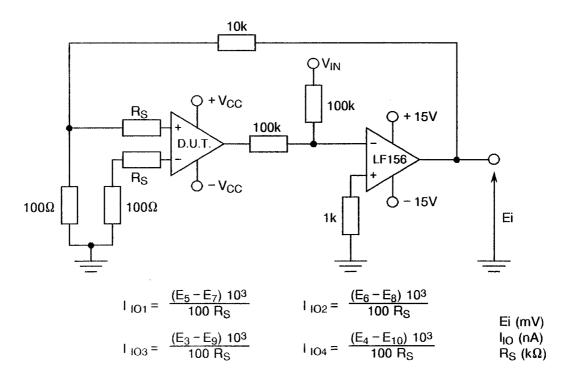

PAGE 26

ISSUE 1

FIGURE 4(a) - INPUT OFFSET VOLTAGE

FIGURE 4(b) - INPUT (PLUS) BIAS CURRENT

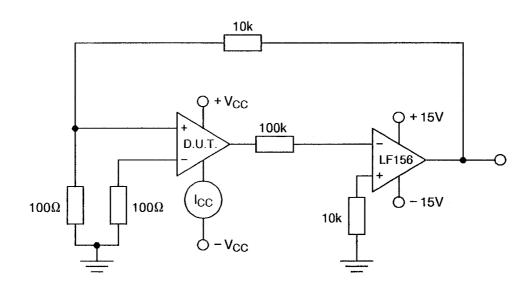


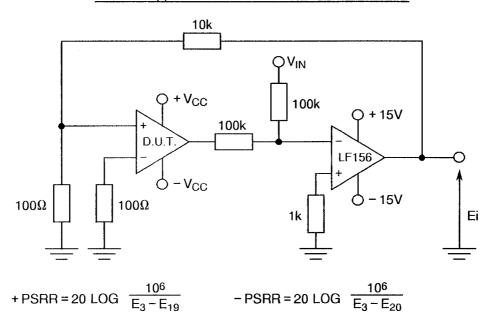

PAGE 27

ISSUE 1

FIGURE 4(c) - INPUT (MINUS) BIAS CURRENT

FIGURE 4(d) - INPUT OFFSET CURRENT



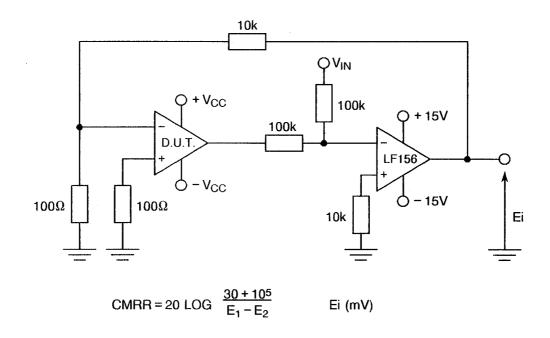

PAGE 28

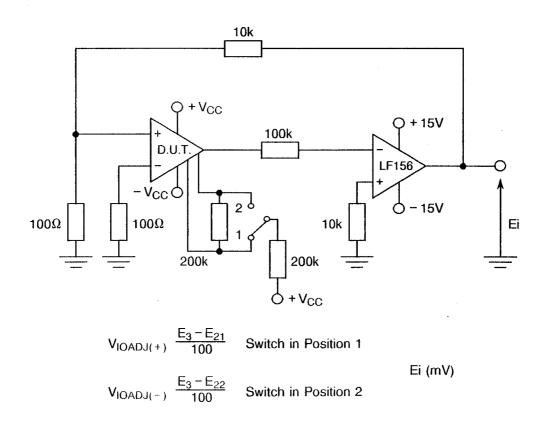
ISSUE 1

FIGURE 4(e) - SUPPLY CURRENT

FIGURE 4(f) - POWER SUPPLY REJECTION RATIO

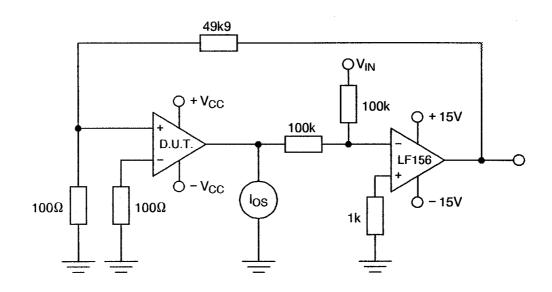
NOTES

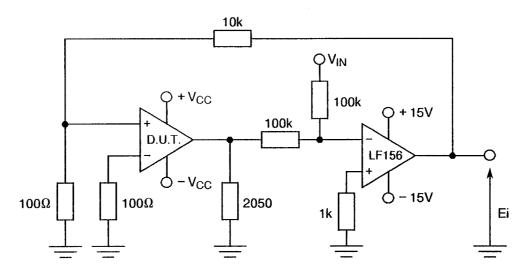

1. Ei are voltages measured in millivolt to four digits accuracy.


PAGE 29

ISSUE 1

FIGURE 4(g) - COMMON MODE REJECTION RATIO


FIGURE 4(h) - INPUT OFFSET ADJUST VOLTAGE


PAGE 30

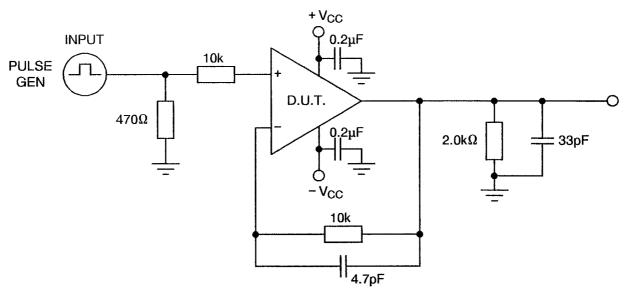
ISSUE 1

FIGURE 4(i) - SHORT CIRCUIT OUTPUT CURRENT

FIGURE 4(j) - OUTPUT VOLTAGE SWING - OPEN LOOP VOLTAGE GAIN

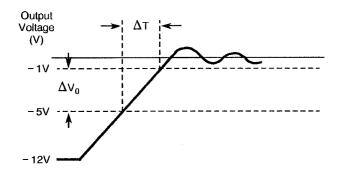
 $V_{OUT} = (E_{23}, E_{24})$ in Volts

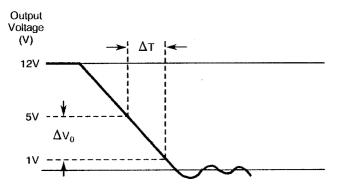
$$+A_{VS} = \frac{10}{E_3 - E_{25}}$$
 $-A_{VS} = \frac{10}{E_{26} - E_3}$


$$A_{VS} = \frac{4}{E_{28} - E_{27}}$$
 E_{25} , E_{26} , E_{27} , E_{28} in mV.

PAGE 31

ISSUE 1


FIGURE 4(k) - DYNAMIC TEST MEASUREMENT CIRCUIT - SLEW RATE


NOTES

- 1. Pulse Generator:
 - Rise time ≤ 10ns
 - Repetition rate 1.0kHz (max.)

 - SR -: V_{IN} from 12V to 0V. SR +: V_{IN} from 12V to 0V.

$$SR = \frac{\Delta V_0}{\Delta T_1 10^{-3}} \quad (V/\mu s)$$

Rev. 'B'

PAGE 32

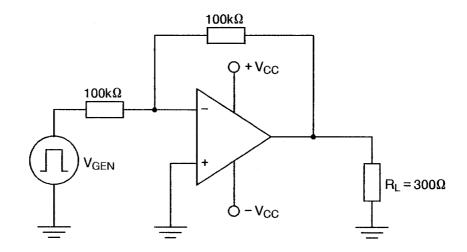
ISSUE 1

TABLE 4 - PARAMETER DRIFT VALUES

No.	CHARACTERISTICS	SYMBOL	SPEC. AND/OR TEST METHOD	TEST CONDITIONS	CHANGE LIMITS (Δ)	UNIT
1	Input Offset Voltage	V _{IO3}	As per Table 2	As per Table 2	± 1.5	mV
13	Input (Plus) Bias Current	l _{+ IB3}	As per Table 2	As per Table 2	± 20	nA
17	Input (Minus) Bias Current	I _{-1B3}	As per Table 2	As per Table 2	± 20	nA
9	Input Offset Current	l ₁₀₃	As per Table 2	As per Table 2	± 5.0	nA

TABLE 5 - CONDITIONS FOR BURN-IN AND OPERATING LIFE TEST

No.	CHARACTERISTICS	SYMBOL	CONDITION	UNIT
1	Ambient Temperature	T _{amb}	+ 125 ± 5	°C
2	Power Supply	V _{CC}	±20	V
3	Pulse Voltage	V _{GEN}	± 1.0	٧
4	Pulse Frequency Square Wave	F	5.0	Hz



Rev. 'B'

PAGE 33

ISSUE 1

FIGURE 5 - ELECTRICAL CIRCUIT FOR BURN-IN CIRCUIT AND OPERATING LIFE TEST

PAGE 34

ISSUE 1

4.8 ENVIRONMENTAL AND ENDURANCE TESTS

4.8.1 <u>Electrical Measurements on Completion of Environmental Tests</u>

The parameters to be measured on completion of environmental tests are scheduled in Table 6. Unless otherwise stated, the measurements shall be performed at T_{amb} = +22 ±3 °C.

4.8.2 <u>Electrical Measurements at Intermediate Points during Endurance Tests</u>

The parameters to be measured at intermediate points during endurance tests are as scheduled in Table 6 of this specification.

4.8.3 Electrical Measurements on Completion of Endurance Tests

The parameters to be measured on completion of endurance testing are as scheduled in Table 6 of this specification. Unless otherwise stated, the measurements shall be performed at T_{amb} = +22 ±3 °C.

4.8.4 Conditions for Operating Life Tests

The requirements for operating life testing are specified in Section 9 of ESA/SCC Generic Specification No. 9000. The conditions for operating life testing shall be as specified in Table 5 of this specification.

4.8.5 Electrical Circuits for Operating Life Tests

Circuits for use in performing the operating life tests are shown in Figure 5.

4.8.6 Conditions for High Temperature Storage Test

The requirements for the high temperature storage test are specified in ESA/SCC Generic Specification No. 9000. The conditions for high temperature storage shall be $T_{amb} = +150(+0-5)$ °C.

PAGE 35

ISSUE 1

TABLE 6 - ELECTRICAL MEASUREMENTS ON COMPLETION OF ENVIRONMENTAL TESTS AND AT INTERMEDIATE POINTS AND ON COMPLETION OF ENDURANCE TESTING

No.	CHARACTERISTICS	SYMBOL	SPEC. AND/OR	TEST	LIM	ITS	UNIT
IVO.	CHARACTERISTICS	STIVIDOL	TEST METHOD	CONDITIONS	MIN	MAX	UNIT
3	Input Offset Voltage	V _{IO3}	As per Table 2	As per Table 2	- 4.0	4.0	mV
9	Input Offset Current	Поз	As per Table 2	As per Table 2	- 40	40	nA
13	Input (Plus) Bias Current	1 + IB3	As per Table 2	As per Table 2	1.0	250	nA
17	Input (Minus) Bias Current	I _{- IB3}	As per Table 2	As per Table 2	1.0	250	nA
19	Supply Current	lcc	As per Table 2	As per Table 2	-	8.0	mA
20	Supply Voltage Rejection Ratio (Plus)	+ PSRR	As per Table 2	As per Table 2	70	-	dB
21	Supply Voltage Rejection Ratio (Minus)	- PSRR	As per Table 2	As per Table 2	70	-	dB
22	Common Mode Rejection Ratio	CMRR	As per Table 2	As per Table 2	80	-	dB