

Page i

INTEGRATED CIRCUITS, SILICON MONOLITHIC, BIPOLAR OPERATIONAL AMPLIFIERS, BASED ON TYPE LM11

ESCC Detail Specification No. 9101/022

ISSUE 1 October 2002

ESCC Detail Specification

PAGE	ii
ISSUE	1

LEGAL DISCLAIMER AND COPYRIGHT

European Space Agency, Copyright © 2002. All rights reserved.

The European Space Agency disclaims any liability or responsibility, to any person or entity, with respect to any loss or damage caused, or allleged to be caused, directly or indirectly by the use and application of this ESCC publication.

This publication, without the prior permission of the European Space Ageny and provided that it is not used for a commercial purpose, may be:

- copied in whole in any medium without alteration or modification.
- copied in part, in any medium, provided that the ESCC document identification, comprising the ESCC symbol, document number and document issue, is removed.

european space agency agence spatiale européenne

Pages 1 to 31

INTEGRATED CIRCUITS, SILICON MONOLITHIC, BIPOLAR OPERATIONAL AMPLIFIERS, BASED ON TYPE LM11

ESA/SCC Detail Specification No. 9101/022

space components coordination group

		Approved by				
lssue/Rev.	Date	SCCG Chairman	ESA Director General or his Deputy			
Issue 1	March 1987	-	1-01			
Revision 'A'	December 1991	To nomen's	1. las			

Rev. 'A'

PAGE 2

ISSUE 1

DOCUMENTATION CHANGE NOTICE

	DOCUMENTATION CHANGE NOTICE							
Rev. Letter	Rev. Date	CHANGE Reference Item	Approved DCR No.					
'A'	Dec. '91	P1. Cover page P2. DCN P3. T of C : Para. 4.3.3 deleted P6. Table 1(a) : Variant 03 added Table 1(b) : No. 5, Characteristics amended P7. Figure 1 : Note deleted P11. Para. 4.2.2 : Deviation deleted, "None." added P12. Para. 4.2.4 : Deviation deleted, "None." added Para. 4.2.5 : Deviation deleted, "None." added Para. 4.3.3 : Paragraph deleted P13. Para. 4.4.2 : Paragraph amended	None None 22913 22913 22913 21048 22919 22919 22921 22921					
		This specification has been transferred from hardcopy to electronic format. The content is unchanged but minor differences in presentation exist.						

Rev. 'A'

PAGE 3

ISSUE 1

TABLE OF CONTENTS

		n
1.	<u>GENERAL</u>	<u>Page</u> 5
1.1	Scope	5
1.2	Type Variants	5
1.3	Maximum Ratings	5
1.4	Parameter Derating Information	5
1.5	Physical Dimensions	5
1.6	Pin Assignment	5
1.7	Truth Table	5
1.8	Circuit Schematic	5
1.9	Functional Diagram	5
2.	APPLICABLE DOCUMENTS	11
3.	TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS	11
4.	REQUIREMENTS	11
4.1	General	11
4.2	Deviations from Generic Specification	11
4.2.1	Deviations from Special In-process Controls	11
4.2.2	Deviations from Final Production Tests (Chart II)	11
4.2.3	Deviations from Burn-in Tests (Chart III)	12
4.2.4	Deviations from Qualification, Environmental and Endurance Tests (Chart IV)	12
4.2.5	Deviations from Lot Acceptance Tests (Chart V)	12
4.3	Mechanical Requirements	12
4.3.1	Dimension Check	12
4.3.2	Weight	12
4.4	Materials and Finishes	12
4.4.1	Case	12
4.4.2	Lead Material and Finish	13
4.5	Marking	13
4.5.1	General	13
4.5.2	Lead Identification	13
4.5.3	The SCC Component Number	13
4.5.4	Traceability Information	13
4.5.5	Marking of Small Components	14
4.6	Electrical Measurements	14
4.6.1	Electrical Measurements at Room Temperature	14

PAGE 4 ISSUE 1

		<u>Page</u>
4.6.2	Electrical Measurements at High and Low Temperatures	14
4.6.3	Circuits for Electrical Measurements	14
4.7	Burn-in Tests	14
4.7.1	Parameter Drift Values	14
4.7.2	Conditions for Burn-in	15
4.7.3	Electrical Circuits for Burn-in	15
4.8	Environmental and Endurance Tests	30
4.8.1	Electrical Measurements on Completion of Environmental Tests	30
4.8.2	Electrical Measurements at Intermediate Points During Endurance Tests	30
4.8.3	Electrical Measurements on Completion of Endurance Tests	30
4.8.4	Conditions for Operating Life Tests	30
4.8.5	Electrical Circuits for Operating Life Tests	30
4.8.6	Conditions for High Temperature Storage Test	30
TABLE	<u>:S</u>	
1(a)	Type Variants	6
1(b)	Maximum Ratings	6
2	Electrical Measurements at Room Temperature - d.c. Parameters	16
2	Electrical Measurements at Room Temperature - a.c. Parameters	18
3(a)	Electrical Measurements at High Temperature	19
3(b)	Electrical Measurements at Low Temperature	21
4	Parameter Drift Values	29
5	Conditions for Burn-in	29
6	Electrical Measurements on Completion of Environmental Tests and at Intermediate Points and on Completion of Endurance Testing	31
FIGUR	<u>ES</u>	
1	Device Dissipation Derating with Temperature	7
2	Physical Dimensions	8
3(a)	Pin Assignment	9
3(b)	Truth Table	N/A
3(c)	Circuit Schematic	9
3(d)	Functional Diagram	10
4(a)	Input Offset Voltage	23
4(b)	Input Offset Current	23
4(c)	Input (Plus) Bias Current	24
4(d)	Input (Minus) Bias Current	24
4(e)	Supply Current	25
4(f)	Short Circuit Output Current	25
4(g)	Open Loop Voltage Gain	26
4(h)	Power Supply Rejection Ratio	26
4(i)	Common Mode Rejection Ratio	27
4(j) 5	Dynamic Test Measurement Circuit	28 29
~	CHARLES CALLED BY CHILDRA	

APPENDICES (Applicable to specific Manufacturers only) None.

PAGE

5

ISSUE 1

1. **GENERAL**

1.1 SCOPE

This specification details the ratings, physical and electrical characteristics, test and inspection data for a silicon monolithic, bipolar operational amplifier, based on Type LM11. It shall be read in conjunction with ESA/SCC Generic Specification No. 9000, the requirements of which are supplemented herein.

1.2 <u>TYPE VARIANTS</u>

Variants of the basic type integrated circuits specified herein, which are also covered by this specification, are given in Table 1(a).

1.3 MAXIMUM RATINGS

The maximum ratings, which shall not be exceeded at any time during use or storage, applicable to the integrated circuits specified herein, are as scheduled in Table 1(b).

1.4 PARAMETER DERATING INFORMATION

As per Figure 1.

1.5 PHYSICAL DIMENSIONS

As per Figure 2.

1.6 PIN ASSIGNMENT

As per Figure 3(a).

1.7 TRUTH TABLE (FIGURE 3(b))

Not applicable.

1.8 <u>CIRCUIT SCHEMATIC</u>

As per Figure 3(c).

1.9 FUNCTIONAL DIAGRAM

As per Figure 3(d).

Rev. 'A'

PAGE 6

ISSUE 1

TABLE 1(a) - TYPE VARIANTS

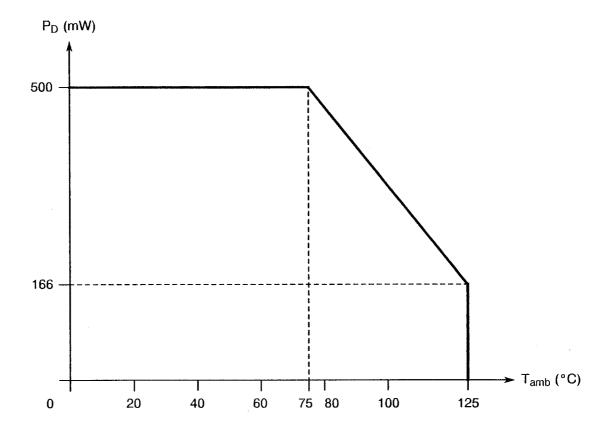
VARIANT	CASE	FIGURE	LEAD MATERIAL AND FINISH
-01	TO99	2	D2
-02	TO99	2	D3 or D4
-03	TO99	2	D9

TABLE 1(b) - MAXIMUM RATINGS

No.	CHARACTERISTICS	SYMBOL	MAXIMUM RATINGS	UNITS	REMARKS
1	Supply Voltage Range	Vs	±20	٧	
2	Differential Input Voltage Range	V _{ID}	±30	V	Note 1
3	Input Voltage Range	V _I	± 15	V	Note 2
4	Input Current Range	l _i	-0.1 to +10	mA	
5	Device Power Dissipation	P_{D}	500	mW	Note 3
6	Output Short Circuit Duration		Indefinite		Note 4
7	Operating Temperature Range	T _{amb}	-55 to +125	°C	
8	Storage Temperature Range	T _{stg}	-55 to +150	°C	
9	Soldering Temperature	T _{sol}	+ 300	°C	Note 5
10	Junction Temperature	Τ _J	+ 150	°C	

NOTES

- 1. The inputs are shunted with back-to-back diodes for overvoltage protection. Therefore, excessive current will flow if a differential voltage in excess of 1.0V is applied between the inputs, unless some limiting resistance is used.
- 2. If the supply voltage is less than +15V, the maximum input voltage is equal to the supply voltage.
- 3. Derate above $T_{amb} = +75$ °C at 6.60mW/°C.
- 4. Continuous short circuit is allowed for an ambient temperature of +70°C and a case temperature of +125°C.
- 5. Duration: ≤5 seconds.

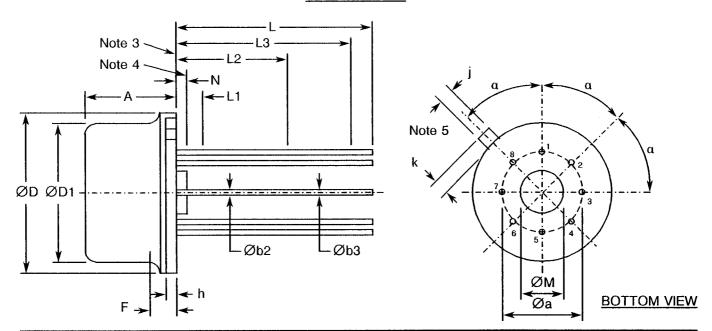


Rev. 'A'

PAGE 7

ISSUE 1

FIGURE 1 - DEVICE DISSIPATION DERATING WITH TEMPERATURE



PAGE 8

ISSUE 1

FIGURE 2 - PHYSICAL DIMENSIONS

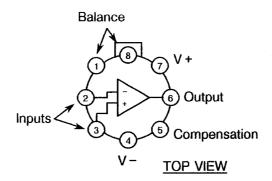
TO99 PACKAGE

CVMBOL	MILLIMETRES			INCHES		DEGR.	NOTES	
SYMBOL	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	NOM.	NOTES
Øa	-	5.08 (*)	-	-	0.200 (*)	•		1
Α	4.20	-	4.69	0.165	-	0.185		
Øb2	0.407	-	0.508	0.016	-	0.020		
Øb3	-	-	0.53	-	-	0.021		
ØD	8.51	-	9.39	0.335	-	0.370		
ØD1	7.75	-	8.50	0.305	-	0.335		
F	-	-	1.27	-	-	0.050		
h	0.15	-	1.01	0.006	-	0.040		
j	0.712	-	0.863	0.028	-	0.034		
k	0.74	-	1.14	0.029	-	0.045		2
L	12.50	-	14.50	0.492	-	0.071		
L1	-	-	1.27	-	-	0.050		
L2	6.35	-	-	0.250	-	-		
L3	12.70	-	-	0.500	-	-		
ØМ	3.56	-	4.06	0.140	-	0.160		
N	0.26	<u>-</u>	1.01	0.010		0.040		
α							45° (*)	1

NOTES

- 1. The section of each terminal, from a distance of 1.37mm (0.054 inch) to the reference plane, shall be located in a ring whose diameter is 0.99mm (0.039 inch), centred on the accurate geometrical point defining the terminal axis.
- 2. Measured from the D diameter.
- 3. Reference plane.
- 4. Base plane.
- 5. Reference index of Pin 8.
 - * = accurate geometrical location.

The metric dimensions are calculated from the original dimensions in inches.

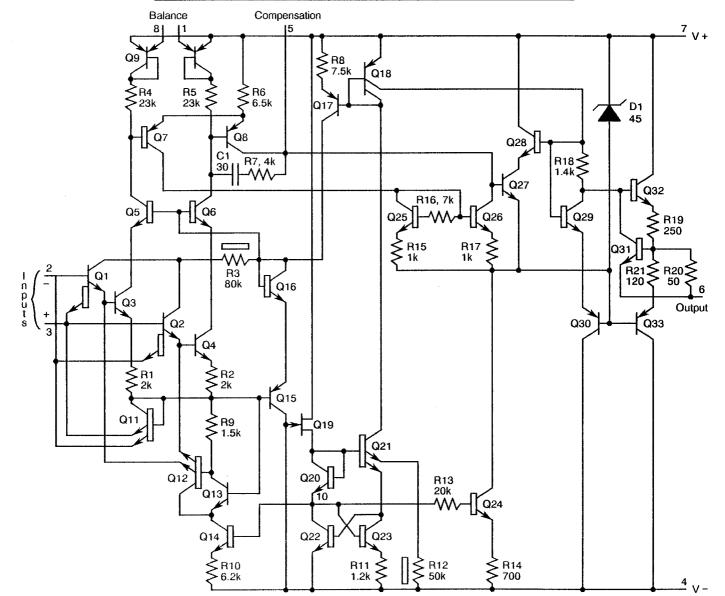

PAGE

ISSUE 1

9

FIGURE 3(a) - PIN ASSIGNMENT

TO-99 PACKAGE

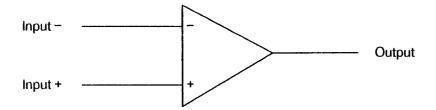

NOTES

1. Pin 4 connected to case.

FIGURE 3(b) - TRUTH TABLE

Not applicable.

FIGURE 3(c) - CIRCUIT SCHEMATIC (FOR INFORMATION ONLY)



PAGE 10

ISSUE 1

FIGURE 3(d) - FUNCTIONAL DIAGRAM

Rev. 'A'

PAGE 11

ISSUE 1

2. APPLICABLE DOCUMENTS

The following documents form part of this specification and shall be read in conjunction with it:-

- (a) ESA/SCC Generic Specification No. 9000 for Integrated Circuits.
- (b) MIL-STD-883, Test Methods and Procedures for Micro-electronics.

3. TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS

For the purpose of this specification, the terms, definitions, abbreviations, symbols and units specified in ESA/SCC Basic Specification No. 21300 shall apply. In addition, the following abbreviations are used:-

OS = Overshoot.

I_{OS} = Output Short Circuit Current.

I_{CC} = Supply Current.

4. REQUIREMENTS

4.1 GENERAL

The complete requirements for procurement of the integrated circuits specified herein are stated in this specification and ESA/SCC Generic Specification No. 9000 for Integrated Circuits. Deviations from the Generic Specification applicable to this specification only, are listed in Para. 4.2.

Deviations from the applicable Generic Specification and this Detail Specification, formally agreed with specific Manufacturers on the basis that the alternative requirements are equivalent to the ESA/SCC requirements and do not affect the components' reliability, are listed in the appendices attached to this specification.

4.2 DEVIATIONS FROM GENERIC SPECIFICATION

4.2.1 Deviations from Special In-process Controls

None.

4.2.2 <u>Deviations from Final Production Tests (Chart II)</u>

None.

Rev. 'A'

PAGE 12

ISSUE 1

4.2.3 Deviations from Burn-in Tests (Chart III)

Subpara. 7.1.1(a), "High Temperature Reverse Bias" test and subsequent electrical measurements related to this test shall be omitted.

4.2.4 Deviations from Qualification, Environmental and Endurance Tests (Chart IV)

None.

4.2.5 Deviations from Lot Acceptance Tests (Chart V)

None.

4.3 MECHANICAL REQUIREMENTS

4.3.1 Dimension Check

The dimensions of the integrated circuits specified herein shall be checked. They shall conform to those shown in Figure 2.

4.3.2 Weight

The maximum weight of the integrated circuits specified herein shall be 1.5 grammes.

4.4 MATERIALS AND FINISHES

The materials and finishes shall be as specified herein. Where a definite material is not specified, a material which will enable the integrated circuits specified herein to meet the performance requirements of this specification shall be used. Acceptance or approval of any constituent material does not guarantee acceptance of the finished product.

4.4.1 <u>Case</u>

The case shall be hermetically sealed and have a metal body with hard glass seals and the lids shall be welded.

Rev. 'A'

PAGE 13

ISSUE 1

4.4.2 Lead Material and Finish

The lead material shall be Type 'D' with either Type '2', Type '3 or 4' or Type '9' finish in accordance with ESA/SCC Basic Specification No. 23500. (See Table 1(a) for Type Variants).

4.5 MARKING

4.5.1 General

The marking of components delivered to this specification shall be in accordance with ESA/SCC Basic Specification No. 21700. Each component shall be marked in respect of:-

- (a) Lead Identification.
- (b) The SCC Component Number.
- (c) Traceability Information.

4.5.2 <u>Lead Identification</u>

An index shall be located at the top of the package in the position defined in Note 5 to Figure 2. Alternatively, a tab shall be used to identify Pin No. 1. The pin numbering shall be read with the index or tab on the left-hand side.

4.5.3 The SCC Component Number

Each component shall bear the SCC Component Number which shall be constituted and marked as follows:

	910102201B
Detail Specification Number	
Type Variant, as applicable ————————————————————————————————————	
Testing Level (B or C, as applicable)	

4.5.4 Traceability Information

Each component shall be marked in respect of traceability information in accordance with ESA/SCC Basic Specification No. 21700.

PAGE 14

ISSUE 1

4.5.5 Marking of Small Components

When it is considered that the component is too small to accommodate the marking as specified above, as much as space permits shall be marked. The order of precedence shall be as follows:-

- (a) Lead Identification.
- (b) The SCC Component Number.
- (c) Traceability Information.

The marking information in full shall accompany each component in its primary package.

4.6 ELECTRICAL MEASUREMENTS

4.6.1 Electrical Measurements at Room Temperature

The parameters to be measured in respect of electrical characteristics are scheduled in Table 2. Unless otherwise specified, the measurements shall be performed at T_{amb} = +22 ±3 °C.

4.6.2 Electrical Measurements at High and Low Temperatures

The parameters to be measured at high and low temperatures are scheduled in Tables 3(a) and 3(b). The measurements shall be performed at $T_{amb} = +125(+0-5)$ and -55(+5-0) °C respectively.

4.6.3 <u>Circuits for Electrical Measurements</u>

Circuits for use in performing the electrical measurements listed in Tables 2 and 3 of this specification are shown in Figure 4.

4.7 BURN-IN TESTS

4.7.1 Parameter Drift Values

The parameter drift values applicable to burn-in are specified in Table 4 of this specification. Unless otherwise stated, measurements shall be performed at T_{amb} = +22±3 °C. The parameter drift values (Δ) applicable to the parameters scheduled, shall not be exceeded. In addition to these drift value requirements, the appropriate limit value specified for a given parameter in Table 2 shall not be exceeded.

PAGE 15

ISSUE 1

4.7.2 Conditions for Burn-in

The requirements for burn-in are specified in Section 7 of ESA/SCC Generic Specification No. 9000. The conditions for burn-in shall be as specified in Table 5 of this specification.

4.7.3 Electrical Circuits for Burn-in

Circuits for use in performing the burn-in tests are shown in Figure 5 of this specification.

PAGE 16

ISSUE 1

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - d.c. PARAMETERS

No.	Characteristics	Symbol	Test Method	Test	Meas'd	Test Conditions	Lin	nits	Unit
INU.	Oridiacteristics	Symbol	MIL-STD 883	Fig.	Value	rest Conditions	Min	Max	
1	Input Offset Voltage	V _{IO1}	4001	4(a)	E ₁ (V)	+ V _{CC} = 20V, - V _{CC} = -20V V _{IN} = 0V	-	0.3	mV
2	Input Offset Voltage	V _{IO2}	4001	4(a)	E ₂ (V)	$+V_{CC} = 2.5V, -V_{CC} = -2.5V$ $V_{IN} = 0V$,	0.3	mV
3	Input Offset Current	l ₁₀₁	4001	4(b)	E ₃ (V)	$+V_{CC} = 20V, -V_{CC} = -20V$ C _S = 10nF, V _{IN} = 0V	-	10	рА
4	Input Offset Current	l ₁₀₂	4001	4(b)	E ₄ (V)	$+V_{CC} = 2.5V, -V_{CC} = -2.5V$ C _S = 10nF, V _{IN} = 0V	-	10	рА
5	Input (Plus) Bias Current	I +IB1	4001	4(c)	E ₅ (V)	$+V_{CC} = 20V, -V_{CC} = -20V$ $C_S = 10nF, V_{IN} = 0V$	-	50	рА
6	Input (Plus) Bias Current	I + IB2	4001	4(c)	E ₆ (V)	$+V_{CC} = 2.5V, -V_{CC} = -2.5V$ C _S = 10nF, V _{IN} = 0V	-	50	рА
7	Input (Minus) Bias Current	l _{-iB1}	4001	4(d)	E ₇ (V)	$+V_{CC} = 20V, -V_{CC} = -20V$ $C_S = 10nF, V_{IN} = 0V$	-	50	рΑ
8	Input (Minus) Bias Current	l _{- IB2}	4001	4(d)	E ₈ (V)	$+V_{CC} = 2.5V, -V_{CC} = -2.5V$ C _S = 10nF, V _{IN} = 0V		50	рА
9	Power Supply Current	lcc	4005	4(e)	lcc	$+V_{CC} = 20V, -V_{CC} = -20V$	_	0.6	mA
10	Short Circuit Output Current (Plus)	los(+)	3011	4(f)	los	+ V _{CC} = 15V, - V _{CC} = - 15V V _{IN} = - 15V Note 1	- 15	-	mA
11	Short Circuit Output Current (Minus)	I _{OS(-)}	3011	4(f)	los	+ V _{CC} = 15V, - V _{CC} = - 15V V _{IN} = + 15V Note 1	-	15	mA
12	Open Loop Voltage Gain (Plus)	+A _{VS}	4004	4(g)	E ₉ (V)	$+ V_{CC} = 15V, - V_{CC} = -15V$ $V_{IN} = -12V, I_{OUT} = -2.0mA$	100	<u>-</u>	V/mV
13	Open Loop Voltage Gain (Minus)	-A _{VS}	4004	4(g)	E ₁₀ (V)	+ V _{CC} = 15V, - V _{CC} = - 15V V _{IN} = + 12V, I _{OUT} = 2.0mA	100	-	V/mV
14	Open Loop Voltage Gain (Plus)	+A _{VS}	4004	4(g)	E ₁₁ (V)	$+ V_{CC} = 15V, - V_{CC} = -15V$ $V_{IN} = -12V, I_{OUT} = -0.5mA$	250	-	V/mV
15	Open Loop Voltage Gain (Minus)	- A _{VS}	4004	4(g)	E ₁₂ (V)	$+ V_{CC} = 15V, - V_{CC} = -15V$ $V_{IN} = +12V, I_{OUT} = +0.5mA$	250	•	V/mV

PAGE 17

ISSUE 1

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - d.c. PARAMETERS (CONT'D)

No. C	Characteristics	Symbol	Test Method	1	Meas'd	Test Conditions	Limits		Unit
NO.	Characteristics	Symbol	MIL-STD 883	Fig.	Value	rest Conditions	Min	Max	Onit
16	Power Supply Rejection Ratio (Plus)	+ PSRR	4003	4(h)	E ₁₃ (V)	+ V _{CC} = 2.5V, - V _{CC} = -20V V _{IN} = 0V	100	1	dB
17	Power Supply Rejection Ratio (Minus)	- PSRR	4003	4(h)	E ₁₄ (V)	$+V_{CC} = 20V, -V_{CC} = -2.5V$ $V_{IN} = 0V$	100	-	dB
18	Common Mode Rejection Ratio	CMRR	4003	4(i)	E ₁₅ (V)	+ V _{CC} = 28V, - V _{CC} = -2.0V V _{IN} = -13V	110	-	dB
19	Common Mode Rejection Ratio	CMRR	4003	4(i)	E ₁₆ (V)	$+V_{CC} = 1.0V, -V_{CC} = -29V$ $V_{IN} = 14V$	110	-	dB

PAGE 18

ISSUE 1

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - a.c. PARAMETERS

No.	Characteristics	Symbol	Test Method	Test	Test Conditions	Limits		Unit
NO.	Ondi acteristics	Symbol	MIL-STD 883	Fig.	rest conditions	Min	Max	Offic
22	Slew Rate (Plus)	SR(+)	4002	4(j)	$+V_{CC} = \pm 20V$ $V_{IN} = -5.0k$ to $+5.0V$ square $R_L = 10k$ Note 2	0.1	-	V/µs
23	Slew Rate (Minus)	SR(-)	4002	4(j)	V _{CC} = ±20V V _{IN} = -5.0k to +5.0V square R _L = 10k Note 2	0.1	-	V/µs
24	Rise Time	RT	4002	4(j)	$V_{CC} = \pm 20V$ $V_{IN} = 50 \text{mV}$ $R_L = 10 \text{k}$ Note 2	-	1000	ns
25	Overshoot	os	4002	4(j)	V_{CC} = ±20V V_{IN} = 50mV R_L = 10k Note 2	-	40	%

NOTES

1. For sampling inspections and end-point tests, the duration of measurement of I_{OS} shall be 5 seconds minimum.

For other tests, this duration may be reduced to be consistent with automatic test procedures provided that the same limits are maintained.

2. Sample Test Inspection Level = II; AQL = 2.5%.

PAGE 19

ISSUE 1

TABLE 3(a) - ELECTRICAL MEASUREMENTS AT HIGH TEMPERATURE, + 125(+0-5) °C

NI.	Characteristics	Combat	Test Method	Test	Meas'd	Test Conditions	Lim	nits	Unit
No.		Symbol	MIL-STD 883	Fig.	Value	rest Conditions	Min	Max	
1	Input Offset Voltage	V _{IO1}	4001	4(a)	E ₁ (V)	$+V_{CC} = 20V, -V_{CC} = -20V$ $V_{IN} = 0V$	-	0.6	mV
2	Input Offset Voltage	V _{IO2}	4001	4(a)	E ₂ (V)	+ V _{CC} = 2.5V, - V _{CC} = -2.5V V _{IN} = 0V		0.6	mV
3	Input Offset Current	l ₁₀₁	4001	4(b)	E ₃ (V)	$+V_{CC} = 20V, -V_{CC} = -20V$ C _S = 10nF, $V_{IN} = 0V$	-	30	рA
4	Input Offset Current	l ₁₀₂	4001	4(b)	E ₄ (V)	$+V_{CC} = 2.5V, -V_{CC} = -2.5V$ C _S = 10nF, V _{IN} = 0V	-	30	pΑ
5	Input (Plus) Bias Current	l _{+IB1}	4001	4(c)	E ₅ (V)	$+V_{CC} = 20V, -V_{CC} = -20V$ $C_S = 10nF, V_{IN} = 0V$	-	150	рA
6	Input (Plus) Bias Current	I +1B2	4001	4(c)	E ₆ (V)	$+V_{CC} = 2.5V, -V_{CC} = -2.5V$ C _S = 10nF, V _{IN} = 0V	-	150	рA
7	Input (Minus) Bias Current	l _{-IB1}	4001	4(d)	E ₇ (V)	$+V_{CC} = 20V, -V_{CC} = -20V$ C _S = 10nF, V _{IN} = 0V	-	150	рA
8	Input (Minus) Bias Current	I _{-1B2}	4001	4(d)	E ₈ (V)	$+V_{CC} = 2.5V, -V_{CC} = -2.5V$ C _S = 10nF, V _{IN} = 0V	-	150	рΑ
9	Power Supply Current	Icc	4005	4(e)	lcc	$+V_{CC} = 20V, -V_{CC} = -20V$	-	0.8	mA
10	Short Circuit Output Current (Plus)	l _{OS(+)}	3011	4(f)	los	$+V_{CC} = 15V, -V_{CC} = -15V$ $V_{IN} = -15V$ Note 1	- 15	-	mA
11	Short Circuit Output Current (Minus)	l _{OS(-)}	3011	4(f)	los	$+V_{CC} = 15V, -V_{CC} = -15V$ $V_{IN} = +15V$ Note 1	•	15	mA
12	Open Loop Voltage Gain (Plus)	+ A _{VS}	4004	4(g)	E ₉ (V)	$+ V_{CC} = 15V, - V_{CC} = -15V$ $V_{IN} = -12V, I_{OUT} = -2.0mA$	50	-	V/mV
13	Open Loop Voltage Gain (Minus)	-A _{VS}	4004	4(g)	E ₁₀ (V)	$+ V_{CC} = 15V, - V_{CC} = -15V$ $V_{IN} = + 12V, I_{OUT} = 2.0mA$	50	-	V/mV

PAGE 20

ISSUE 1

TABLE 3(a) - ELECTRICAL MEASUREMENTS AT HIGH TEMPERATURE, + 125(+0-5) °C (CONT'D)

Mo	Chamatariatica	Symbol	Test Method	Test	Fest Meas'd Fig. Value	Test Conditions	Limits		l lait
No.	Characteristics		MIL-STD 883	Fig.		rest Conditions	Min	Max	Unit
26	Temperature Coefficient for Input Offset Voltage	<u>ΔV</u> 10 ΔΤ		Calculate ΔV _{IO} /ΔT = V _{IO} (Test 1, Table 3(a) (mV) -V _{IO} (Test 1, Table 2 (mV) ×10				3.0	μV/ °C
27	Temperature Coefficient for Input (Plus) Bias Current	<u>ΔI + IB</u> ΔΤ	_{+1B1}	Calculate $\Delta I_{+ B} = \Delta T$				1.5	pA⁄ °C
28	Temperature Coefficient for Input (Minus) Bias Current	<u>Δ1 _{- IB}</u> ΔΤ		Calculate <u>ΔI _{- IB} =</u> ΔT I _{- IB1} (Test 7, Table 3(a) (pA) - I _{- IB1} (Test 7, Table 2 (pA) /100			-	1.5	pA⁄ °C

PAGE 21

ISSUE 1

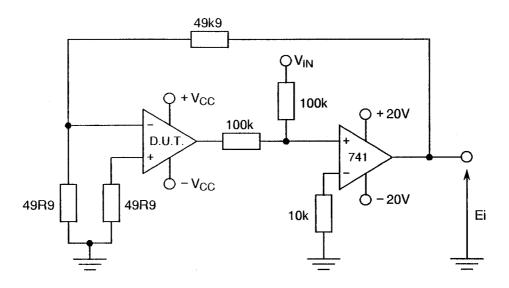
TABLE 3(b) - ELECTRICAL MEASUREMENTS AT LOW TEMPERATURE, -55(+5-0) °C

	Characteristics	Sympol	Test Method	Test	Meas'd Value	Took Conditions	Limits		Llmia
No.			MIL-STD 883	Fig.		Test Conditions	Min	Max	Unit
1	Input Offset Voltage	V _{IO1}	4001	4(a)	E ₁ (V)	$+V_{CC} = 20V, -V_{CC} = -20V$ $V_{IN} = 0V$	-	0.6	mV
2	Input Offset Voltage	V _{IO2}	4001	4(a)	E ₂ (V)	$+V_{CC} = 2.5V, -V_{CC} = -2.5V$ $V_{IN} = 0V$	-	0.6	mV
3	Input Offset Current	l _{IO1}	4001	4(b)	E ₃ (V)	$+V_{CC} = 20V, -V_{CC} = -20V$ C _S = 10nF, V _{IN} = 0V	-	30	рА
4	Input Offset Current	102	4001	4(b)	E ₄ (V)	$+V_{CC} = 2.5V, -V_{CC} = -2.5V$ C _S = 10nF, V _{IN} = 0V	-	30	рΑ
5	Input (Plus) Bias Current	I + IB1	4001	4(c)	E ₅ (V)	$+V_{CC} = 20V, -V_{CC} = -20V$ C _S = 10nF, V _{IN} = 0V	-	150	рA
6	Input (Plus) Bias Current	I +1B2	4001	4(c)	E ₆ (V)	$+V_{CC} = 2.5V, -V_{CC} = -2.5V$ $C_S = 10nF, V_{IN} = 0V$	-	150	рА
7	Input (Minus) Bias Current	l -IB1	4001	4(d)	E ₇ (V)	$+V_{CC} = 20V, -V_{CC} = -20V$ $C_S = 10nF, V_{IN} = 0V$	-	150	рА
8	Input (Minus) Bias Current	l _{-1B2}	4001	4(d)	E ₈ (V)	$+V_{CC} = 2.5V, -V_{CC} = -2.5V$ $C_S = 10nF, V_{IN} = 0V$	-	150	рА
9	Power Supply Current	lcc	4005	4(e)	lcc	$+V_{CC} = 20V, -V_{CC} = -20V$	-	0.8	mA
10	Short Circuit Output Current (Plus)	I _{OS(+)}	3011	4(f)	los	$+V_{CC} = 15V, -V_{CC} = -15V$ $V_{IN} = -15V$ Note 1	- 15	•	mA
11	Short Circuit Output Current (Minus)	I _{OS(-)}	3011	4(f)	los	$+V_{CC} = 15V, -V_{CC} = -15V$ $V_{IN} = +15V$ Note 1	-	15	mA
12	Open Loop Voltage Gain (Plus)	+A _{VS}	4004	4(g)	E ₉ (V)	$+ V_{CC} = 15V, - V_{CC} = -15V$ $V_{IN} = -12V, I_{OUT} = -2.0mA$	50	-	V/mV
13	Open Loop Voltage Gain (Minus)	-A _{VS}	4004	4(g)	E ₁₀ (V)	$+ V_{CC} = 15V, - V_{CC} = -15V$ $V_{IN} = +12V, I_{OUT} = 2.0mA$	50	-	V/mV

PAGE 22

ISSUE 1

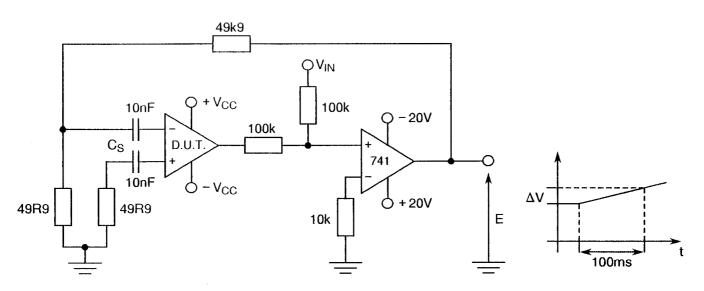
TABLE 3(b) - ELECTRICAL MEASUREMENTS AT LOW TEMPERATURE, -55(+5-0) °C (CONT'D)


No.	Characteristics	Symbol	Test Method	Test	Meas'd	Test Conditions	Lim	Unit	
INO.	Characteristics		MIL-STD 883	Fig.	Value	rest Conditions	Min	Max	Offic
26	Temperature Coefficient for Input Offset Voltage	<u>ΔV_{IO}</u> ΔΤ	V _{IO} (Te	Calculate ΔV _{IO} /ΔT = V _{IO} (Test 1, Table 3(b) (mV) - V _{IO} (Test 1, Table 2 (mV) ×12.5				3.0	μV/ °C
27	Temperature Coefficient for Input (Plus) Bias Current	<u>ΔΙ _{+ ΙΒ}</u> ΔΤ	_{+ iB1}	Calculate $\Delta I_{+ B} = \Delta T$ $I_{+ B1} \text{ (Test 5, Table 3(b) (pA)}$ $-I_{+ B1} \text{ (Test 5, Table 2 (pA) } / 80$				1.5	pA⁄ °C
28	Temperature Coefficient for Input (Minus) Bias Current	<u>ΔI _{- IB}</u> ΔΤ	_{- IB1}	Calculate <u>ΔI _{- IB} =</u> ΔT I _{- IB1} (Test 7, Table 3(b) (pA) - I _{- IB1} (Test 7, Table 2 (pA) /80				1.5	pA∕ °C

PAGE 23

ISSUE

FIGURE 4(a) - INPUT OFFSET VOLTAGE



 V_{IO1} (mV) = E_1 (V), V_{IO2} (mV) = E_2 (V)

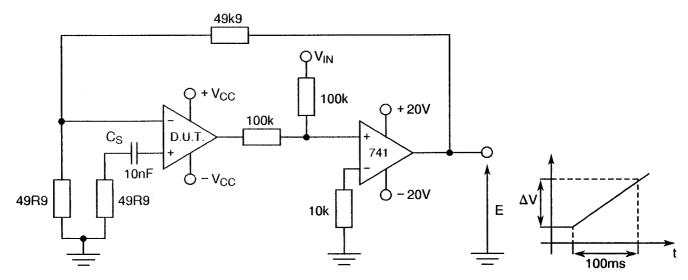
NOTES

1. All resistors to be 0.1% tolerance.

FIGURE 4(b) - INPUT OFFSET CURRENT

 I_{OI1} (pA) = $\Delta V_5 \times 100$, I_{IO2} (pA) = $\Delta V_6 \times 100$

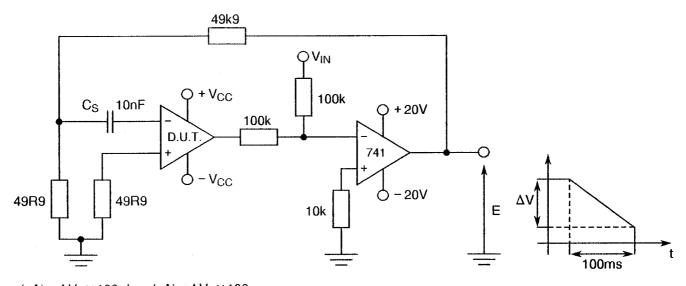
NOTES


- 1. All resistors to be 0.1% tolerance.
- 2. C_S 0.1% tolerance.

PAGE 24

ISSUE

FIGURE 4(c) - INPUT (PLUS) BIAS CURRENT



 $I_{+ \text{ IB1}} \text{ (pA)} = \Delta V_1 \times 100, \ I_{+ \text{ IB2}} \text{ (pA)} = \Delta V_2 \times 100$

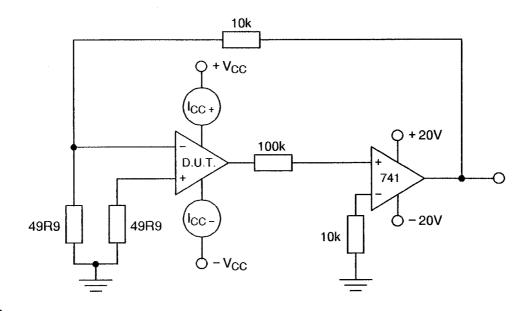
NOTES

- 1. All resistors to be 0.1% tolerance.
- 2. C_S 0.1% tolerance.

FIGURE 4(d) - INPUT (MINUS) BIAS CURRENT

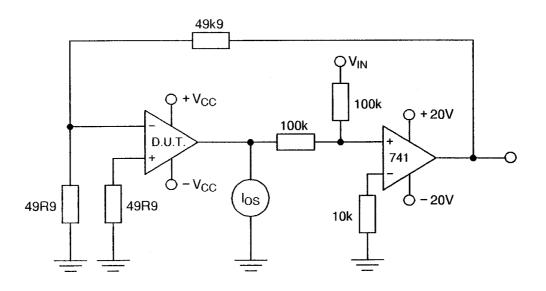
 I_{IO1} (pA) = $\Delta V_3 \times 100$, I_{IO2} (pA) = $\Delta V_4 \times 100$

NOTES


- 1. All resistors to be 0.1% tolerance.
- 2. C_S 0.1% tolerance.

PAGE 25

ISSUE 1

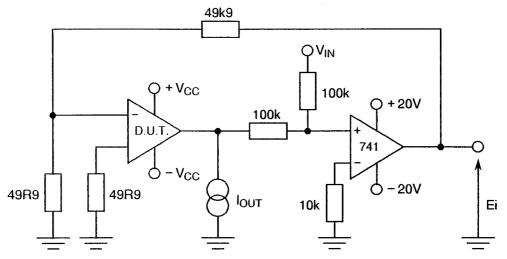

FIGURE 4(e) - SUPPLY CURRENT

NOTES

1. All resistors to be 0.1% tolerance.

FIGURE 4(f) - SHORT CIRCUIT OUTPUT CURRENT

NOTES

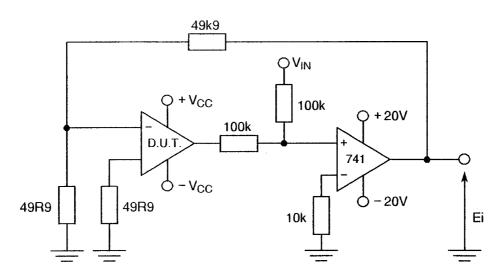

1. All resistors to be 0.1% tolerance.

PAGE 26

ISSUE 1

FIGURE 4(g) - OPEN LOOP VOLTAGE GAIN

1.
$$V_{IN} = +12V$$


2.
$$+A_{VS} = \frac{12}{E_1 - E_9} + A_{VS} = \frac{12}{E_2 - E_{11}}$$

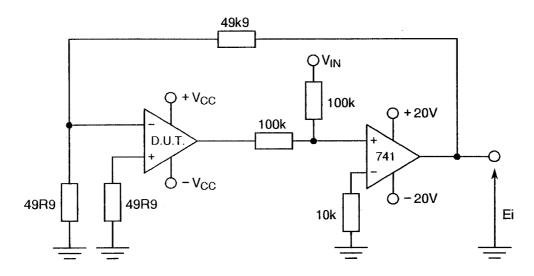
3.
$$-A_{VS} = \frac{12}{E_{10} - E_1}$$
 $-A_{VS} = \frac{12}{E_{12} - E_2}$

NOTES

- 1. E₉, E₁₀, E₁₁ and E₁₂ are in Volts.
- 2. All resistors to be 0.1% tolerance.

FIGURE 4(h) - POWER SUPPLY REJECTION RATIO

+ PSRR(μ V/V) = ((E₁ (V) - E₁₃ (V)) 10³) / 17.5, - PSRR(μ V/V) = ((E₁ (V) - E₁₄ (V)) 10³) / 17.5


NOTES

- 1. All resistors to be 0.1% tolerance.
- 2. E₁ is measured to 4 digits accuracy.

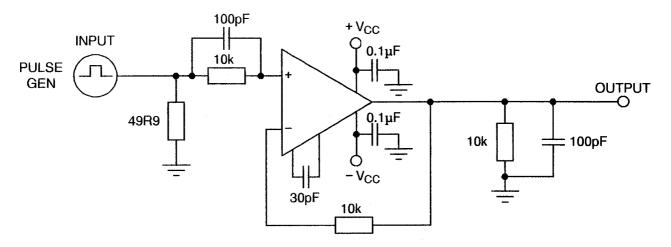
PAGE 27

ISSUE 1

FIGURE 4(i) - COMMON MODE REJECTION RATIO

CMRR (dB) = 20 LOG
$$\frac{27.10^3}{E_{15} \text{ (V)} - E_{16} \text{ (V)}}$$

NOTES


1. Resistors of $49R9\Omega$ at inputs shall be of 0.01% tolerance matched to 0.01%. Remaining resistors shall be of 0.1% tolerance.

PAGE 28

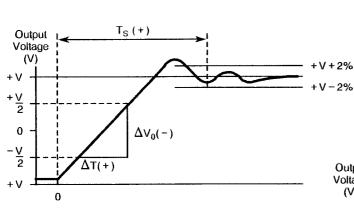
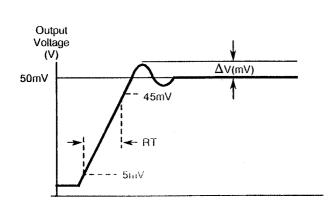
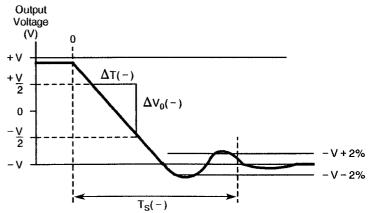

ISSUE 1

FIGURE 4(j) - DYNAMIC TEST MEASUREMENT CIRCUIT

NOTES


- 1. Pulse Generator:
 - Rise time ≤10ns
 - Repetition rate 1.0kHz (max.)
 - Pulse voltage: -5.0V to +5.0V for slew rate measurement
 - Pulse voltage: 50mV for rise time and overshoot measurement



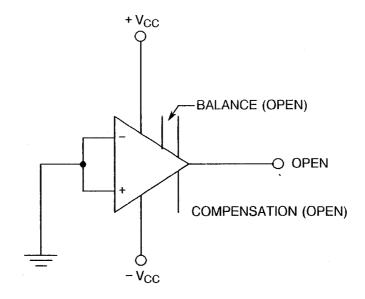
$$SR = \left| \frac{\Delta V_0}{\Delta T} \right| (V/\mu s)$$

$$RT = t (\mu s)$$

$$OS = \frac{\Delta V}{50} \times 100(\%)$$

PAGE 29

ISSUE 1


TABLE 4 - PARAMETER DRIFT VALUES

No.	CHARACTERISTICS	SYMBOL	SPEC. AND/OR TEST METHOD	TEST CONDITIONS	CHANGE LIMITS (Δ)	UNIT
1	Input Offset Voltage Change	V _{iO1}	As per Table 2	As per Table 2	± 0.15	mV
3	Input Offset Current Change	401	As per Table 2	As per Table 2	± 10	рΑ
5	Input Bias Current Change	l _{+ IB1}	As per Table 2	As per Table 2	± 20	рΑ

TABLE 5 - CONDITIONS FOR BURN-IN

No.	CHARACTERISTICS	SYMBOL	CONDITION	UNIT
1	1 Ambient Temperature		+ 125 ± 5	°C
2	Supply Voltage	V _{CC}	±20	V

FIGURE 5 - ELECTRICAL CIRCUIT FOR BURN-IN

PAGE 30

ISSUE 1

4.8 <u>ENVIRONMENTAL AND ENDURANCE TESTS</u>

4.8.1 Electrical Measurements on Completion of Environmental Tests

The parameters to be measured on completion of environmental tests are scheduled in Table 6. Unless otherwise stated, the measurements shall be performed at $T_{amb} = +22 \pm 3$ °C.

4.8.2 Electrical Measurements at Intermediate Points during Endurance Tests

The parameters to be measured at intermediate points during endurance tests are as scheduled in Table 6 of this specification. Unless otherwise stated, the measurements shall be performed at $T_{amb} = +22 \pm 3$ °C.

4.8.3 <u>Electrical Measurements on Completion of Endurance Tests</u>

The parameters to be measured on completion of endurance testing are as scheduled in Table 6 of this specification. Unless otherwise stated, the measurements shall be performed at T_{amb} = +22 ± 3 °C.

4.8.4 <u>Conditions for Operating Life Tests</u>

The requirements for operating life testing are specified in Section 9 of ESA/SCC Generic Specification No. 9000. The conditions for operating life testing shall be as specified in Table 5 of this specification.

4.8.5 Electrical Circuits for Operating Life Tests

Circuits for use in performing the operating life tests are shown in Figure 5 of this specification.

4.8.6 <u>Conditions for High Temperature Storage Test</u>

The requirements for the high temperature storage test are specified in ESA/SCC Generic Specification No. 9000. The conditions for high temperature storage shall be $T_{amb} = +150(+0-5)$ °C.

PAGE 31

ISSUE 1

TABLE 6 - ELECTRICAL MEASUREMENTS ON COMPLETION OF ENVIRONMENTAL TESTS AND AT INTERMEDIATE POINTS AND ON COMPLETION OF ENDURANCE TESTING

No.	CHARACTERISTICS	SYMBOL	SPEC. AND/OR	TEST	LIM	LINUT	
INO.	CHARACTERISTICS	STWIDOL	TEST METHOD	CONDITIONS	MIN	MAX	UNIT
1	Input Offset Voltage	V _{IO1}	As per Table 2	As per Table 2	•	0.3	mV
3	Input Offset Current	101	As per Table 2	As per Table 2	_	10	рΑ
5	Input Bias Current	I + IB1	As per Table 2	As per Table 2	+	50	ρΑ
9	Power Supply Current	lcc	As per Table 2	As per Table 2	-	0.6	mA
12	Open Loop Voltage Gain	+ A _{VS}	As per Table 2	As per Table 2	100	-	V/mV