

Page i

INTEGRATED CIRCUITS, SILICON MONOLITHIC,

BIPOLAR VOLTAGE COMPARATOR

BASED ON TYPE LM111

ESCC Detail Specification No. 9103/002

ISSUE 1 October 2002

Document Custodian: European Space Agency - see https://escies.org

LEGAL DISCLAIMER AND COPYRIGHT

European Space Agency, Copyright © 2002. All rights reserved.

The European Space Agency disclaims any liability or responsibility, to any person or entity, with respect to any loss or damage caused, or alleged to be caused, directly or indirectly by the use and application of this ESCC publication.

This publication, without the prior permission of the European Space Ageny and provided that it is not used for a commercial purpose, may be:

- copied in whole in any medium without alteration or modification.
- copied in part, in any medium, provided that the ESCC document identification, comprising the ESCC symbol, document number and document issue, is removed.

european space agency agence spatiale européenne

Pages 1 to 43

INTEGRATED CIRCUITS, SILICON MONOLITHIC,

BIPOLAR VOLTAGE COMPARATOR

BASED ON TYPE LM111

ESA/SCC Detail Specification No. 9103/002

kajeje

space components coordination group

		Approved by			
lssue/Rev.	Date	SCCG Chairman	ESA Director General or his Deputy		
Issue 3	February 1981	-	-		
Revision 'A'	June 1981	-	-		
Revision 'B'	September 1984	-	-		
Revision 'C'	December 1991	-			
Revision 'D'	October 1994	Tomance	Auron		

Rev. 'A'

2

DOCUMENTATION CHANGE NOTICE

Rev. Letter	Rev. Date	CHANGE Reference Item	Approved DCR No.
		 This issue supersedes Issue 2 and incorporates the modifications agreed on the basis of Policy DCR 21019 (Appendices to Detail Specifications), DCR 23058 (new Tables 2, 3(a), 3(b) and Figure 4 format), DCR 24006 (addition of Appendix 'A' for Thomson-CSF alternative circuit) and the following:- P7. Table 1(b) : Addition of power derating information and max. junction temperature P8. Figure 1 : Added P14. Figure 3(b) : Modification of Title P16. Para. 3 : Modification of abbreviations P20. Table 2 : Output leakage current limit amended I losTB test replaced by VosTB P21. Table 3(a) : Output leakage current limit amended I losTB test replaced by VosTB P24. Table 3(a) : II, Ios and AvD limits amended P25. Table 3(b) : Output leakage current limit deleted I losTB test replaced by VosTB P26. Table 3(b) : Output leakage current limit amended P37. Table 6 : Modification of AvD limits amended 	22104 22104 22104 22104 22104 22104 22104 22104 22104 22104 22104 22104 22104 22104 22104
'Α'	Jun. '81	P1. Cover page P2. DCN P21. Table 2 : Modification of Test 15 input conditions P22. Table 2 : Amendment of Title P24. Table 3(a) : Modification of test 15 input conditions P26. Table 3(b) : Modification of test 15 input conditions	None 23070 23070 23070 23070

Rev. 'D'

DOCUMENTATION CHANGE NOTICE

Rev. Letter	Rev. Date	Reference	CHANGE Item	Approved DCR No.
'B'	Sep. '84	P6. Table 1(a) : Lead P7. Table 1(b) : Note ame P8. Figure 1 : Ame P16. Para. 2 : MIL- Para. 4.2.2 : PINI P18. Para. 4.4.2 : Para P39 Appendix 'A' : Appendix P43 P39. Appendix 'A' : +Ve	STD-1276 deleted D test added agraph re-written endix for Thomson CSF (F) extended (5 new pages	None None 21025 22293 21025 22240 21025 24025 24025 23192
,C,	Dec. '91	P6. Table 1(a) : Vari P7. Table 1(b) : No. P16. Para. 4.2.2 : Dev P17. Para. 4.2.4 : Dev Para. 4.2.5 : Dev Para. 4.3.2 : Para Para. 4.3.3 : Para P18. Para. 4.4.2	a. 4.3.3 deleted iant 07 added 5, Characteristics amended to include Variant 07 <i>v</i> iation deleted, "None." added <i>v</i> iation deleted, "None." added <i>v</i> iation deleted, "None." added agraph amended to include Variant 07 agraph deleted agraph amended agraph amended to include Variant 07	None None 22912 22912 21048 22919 22919 22912 22912 22921 22912
'D'	Oct. '94	P7.Table 1(b):IterP8.Figure 1:NotP9.Figure 2(a):ImpP10.Figure 2(b):ImpP11.Figure 2(c):ImpP12/Figure 2(d):"CiP12AremP13.Figure 3(iii):P17.Para. 4.3.2:ValPara. 4.4.2:ValVal.Para. 4.5.2:ValThis specification has been.	 Variant 08, "Chip Carrier" added Item 5, Variant 08 added Note 1, Variant 08 added Imperial dimensions deleted, number of pins added "Chip Carrier Package" added, old Page 12 renumbered "12A" and Chip Carrier Package added Renumbered to 3(iv) Variant 08 added Variant 08 added and text rewritten Variant 08 added and text rewritten 	

	See	ESA/SCC Detail Specification No. 9103/002	Rev. 'C'	PAGE ISSUE	3 3
		TABLE OF CONTENTS		, ,	<u>Page</u>
1.	GENERAL				5
	Scope				5
	Component Type Varia	ints			5 5
1.3	Maximum Ratings				5
	Parameter Derating Inf	ormation			5
	Physical Dimensions				5
1.6 1.7	Pin Assignment Truth Table				5
	Circuit Schematic				5
1.0	Functional Diagram				5
	-	AENITO			16
2.	APPLICABLE DOCUL	<u>MENTS</u> IS, ABBREVIATIONS, SYMBOLS AND L	JNITS		16
3. 4.	REQUIREMENTS				16
4 .1	General				16
4.2	Deviations from Gener	ric Specification			16
4.2.1	Deviations from Speci	al In-process Controls			16
4.2.2	Deviations from Final	Production Tests (Chart II)			16
4.2.3	Deviations from Burn-	in Tests (Chart III)			17 17
4.2.4	Deviations from Qualif	ication, Environmental and Endurance Tes	sts (Chart IV)		17
4.2.5		cceptance Tests (Chart V)			17
4.3	Mechanical Requirem	ents			17
4.3.1	Dimension Check				17
4.3.2	Weight Materials and Finishes	、			17
4.4 4.4.1	Case	•			18
4.4.1	Lead Material and Fin	ish			18
4.5	Marking				18
4.5.1	General				18
4.5.2	Lead Identification				18
4.5.3	The SCC Component				18
4.5.4	Traceability Information				18 19
4.6	Electrical Characterist				19
4.6.1	Electrical Measureme	nts at Room Temperature			19
4.6.2	Circuits for Electrical	nts at High and Low Temperatures			19
4.6.3 4.7	Burn-in Tests	Measurements			19
4.7	Parameter Drift Value	s			19
4.7.1	Conditions for Burn-in				19
4.7.2	Electrical Circuits for				19
4.8	Environmental and Er	ndurance Tests			36
4.8.1	Electrical Measureme	nts on Completion of Environmental Tests			36
4.8.2	Electrical Measureme	ents at Intermediate Points During Enduran	ce Tests		36
4.8.3		ents on Completion of Endurance Tests			36 36
4.8.4	Conditions for Operat	ing Life Tests			36
4.8.5	Electrical Circuits for	Operating Life Tests			36
4.8.6	Conditions for High 1	emperature Storage Test			

C See	ESA/SCC Detail Specification No. 9103/002		PAGE ISSUE	4 3
-------	--	--	---------------	--------

TABLES

6 Type Variants 1(a) 7 Maximum Ratings 1(b) Electrical Measurements at Room Temperature, d.c. Parameters 20 2 Electrical Measurements at High Temperature 23 3(a) 25 Electrical Measurements at Low Temperature 3(b) 34 Parameter Drift Values 4 34 Conditions for Burn-in 5 Electrical Measurements on Completion of Environmental Tests and at Intermediate 37 6 Points and on Completion of Endurance Testing

FIGURES

1	Device Dissipation Derating with Temperature	8
2	Physical Dimensions	9
– 3(a)	Pin Schematics	12
3(b)	Circuit Schematic (for information only)	14
3(c)	Functional Diagram	15
4(a)	Input Offset Voltage	27
4(b)	Input Offset Current	27
4(c)	Input Bias Current	28
4(d)	Collector Output Voltage (Strobed)	28
	Output Leakage Current	29
4(e)	Input Leakage Current	29
4(f)		30
4(g)	Supply Current	30
4(h)	Short Circuit Output Current	31
4(i)	Saturation Voltage	31
4(j)	Differential Mode Voltage Gain (Collector Output)	32
4(k)	Differential Mode Voltage Gain (Emitter Output)	32
4(I)	Common Mode Rejection Ratio	33
4(m)	Response Time	
5	Electrical Circuit for Burn-in and Operating Life Test	35
APPE	NDICES (Applicable to specific Manufacturers only)	00
1 . 7	Themaon CSE: Alternative burn-in circuit	38

Thomson-CSF: Alternative burn-in circuit 'A'

1. <u>GENERAL</u>

1.1 <u>SCOPE</u>

This specification details the ratings, physical and electrical characteristics, test and inspection data for a silicon monolithic, bipolar voltage compatator, based on Type LM111. It shall be read in conjunction with ESA/SCC Generic Specification No. 9000, the requirements of which are supplemented herein.

1.2 COMPONENT TYPE VARIANTS

Variants of the basic type integrated circuits specified herein, which are also covered by this specification, are given in Table 1(a).

1.3 MAXIMUM RATINGS

The maximum ratings, which shall not be exceeded at any time during use or storage, applicable to the integrated circuits specified herein, are as scheduled in Table 1(b).

1.4 PARAMETER DERATING INFORMATION

As per Figure 1.

1.5 PHYSICAL DIMENSIONS

The physical dimensions of the integrated circuits specified herein are shown in Figure 2.

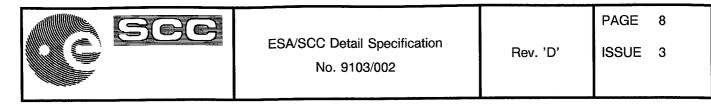
- 1.6 <u>PIN ASSIGNMENT</u> As per Figure 3(a).
- 1.7 <u>TRUTH TABLE</u> Not applicable.
- 1.8 CIRCUIT SCHEMATIC

As per Figure 3(b).

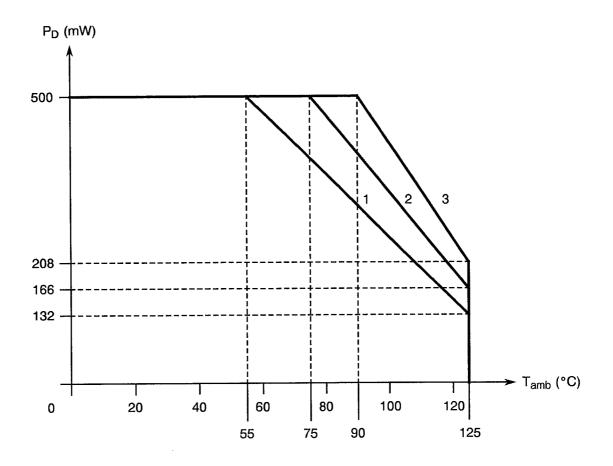
1.9 <u>FUNCTIONAL DIAGRAM</u> As per Figure 3(c).

TABLE 1(a) - TYPE VARIANTS

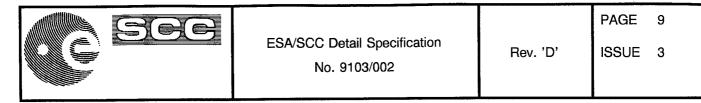
VARIANT	CASE	FIGURE	LEAD MATERIAL AND/OR FINISH
01	FLAT	2(a)	D2
02	FLAT	2(a)	D3 or D4
03	TO99	2(b)	D2
04	т099	2(b)	D3 or D4
05	DIL	2(c)	D2
06	DIL	2(c)	D3 or D4
07	ТО99	2(b)	D9
08	CHIP CARRIER	2(d)	2


Rev. 'D'

7


TABLE 1(b) - MAXIMUM RATINGS

No.	CHARACTERISTICS	SYMBOL	MAXIMUM RATINGS	UNITS	REMARKS
1	Supply Voltage Range	V _S	36	V	
2	Differential Input Voltage Range	V _{ID}	±30	V	
3	Voltage to Negative Supply Voltage	V 1-4 V 7-4	30 50	V	
4	Input Voltage Range	VI	± 15	V	Note 1
5	Device Power Dissipation - Type Variants 01-02-08 - Type Variants 03-04-07 - Type Variants 05-06	PD	500	mW	Note 2 Note 3 Note 4
6	Output Short Circuit Duration	-	10	sec.	
7	Operating Temperature Range	T _{amb}	-55 to +125	°C	
8	Storage Temperature Range	T _{stg}	- 55 to + 150	°C	
9	Soldering Temperature	T _{sol}	+ 300	°C	Note 5
10	Junction Temperature	Тj	+ 150	°C	


- 1. This rating applies to $\pm 15V$ supplies. The positive input voltage limit is 30V higher than the negative supply. The negative input voltage limit is equal to the negative supply voltage or 30V lower than the positive supply, whichever is less.
- 2. Derate above T_{amb} = +55°C at 5.26mW/°C.
- 3. Derate above T_{amb} = +75°C at 6.67mW/°C.
- 4. Derate above T_{amb} = +90°C at 8.33mW/°C.
- 5. Duration: 2 to 5 seconds

- 1. Derating for type variants 01, 02 and 08.
- 2. Derating for type variants 03 and 04.
- 3. Derating for type variants 05 and 06.

FIGURE 2 - PHYSICAL DIMENSIONS FIGURE 2(a) - FLAT PACKAGE, 10-PIN

٠D e4 e3 - Q e2 c2 <u>e</u>1 L1 ·b2 L -L1 3! 2! 5! 4! 1 Note 2 Е Н Ì L1 L1 7 8 9 10 6 t L TOP VIEW MILLIMETRES NOTES SYMBOL MIN. MAX. 0.254 0.482 b2 0.077 0.152 c2

6.10

6.10

1.15

2.42

3.69

4.96

13.72

0.77

3.81

0.13

0.51

NOTES

1. The space between terminals has to be measured at a distance of 0.76mm maximum away from the case.

6.98

6.60

1.39

2.66

3.93

5.20

19.81

1.77

6.60

0.38

0.88

0.88

1

1

1

1

2. The top face and Pin No. 1 are marked.

The metric dimensions are calculated from the original dimensions in inches.

D

E

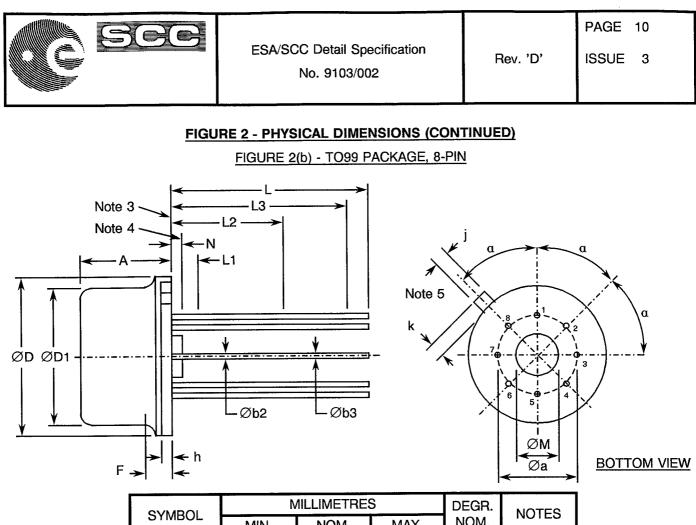
e1

e2

e3

e4

Н

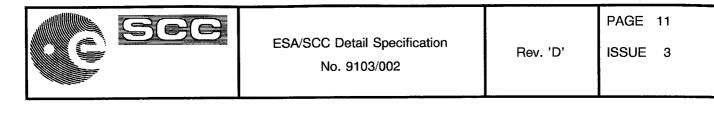

J

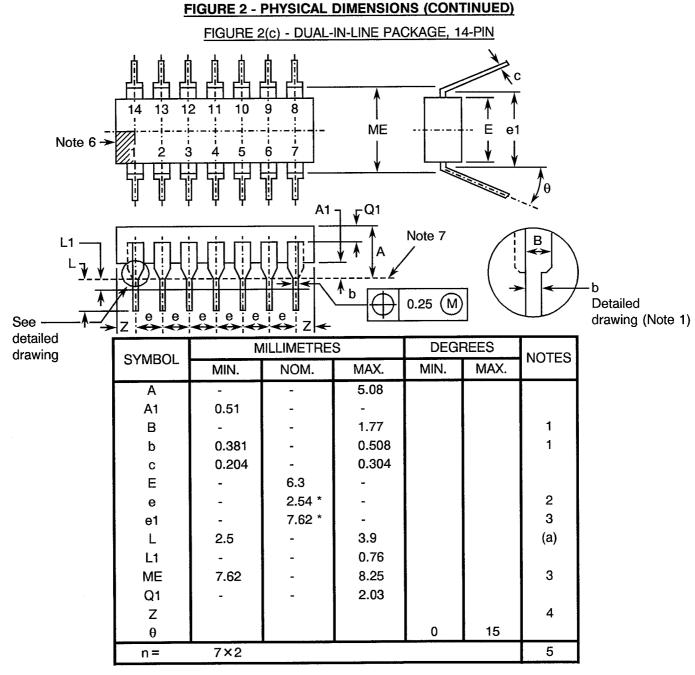
L

L1

Q

S


SYMBOL	N	IILLIMETRES	S	DEGR.	NOTES
MIN. NOM.		MAX.	NOM.	NOTES	
Øa	-	5.08 (*)	-		1
А	4.20	-	4.69		
Øb2	0.407	-	0.508		
Øb3	-	-	0.53		
ØD	8.51	-	9.39		
ØD1	7.75	-	8.50		
F	-	-	1.27		
h	0.15	-	1.01		
j	0.712	-	0.863		
k	0.74	-	1.14		2
L	12.50	-	14.50		
L1	. –	-	1.27		
L2	6.35	-	-		
L3	12.70	-	-		
ØM	3.56	- 1	4.06		
N	0.26	-	1.01		
α				45° (*)	1


NOTES

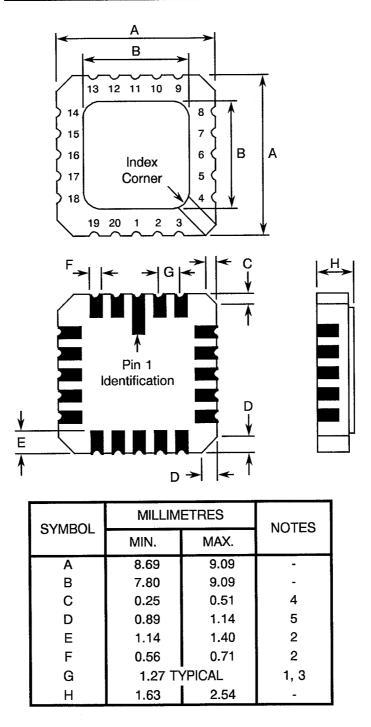
- 1. The section of each terminal, from a distance of 1.37mm to the reference plane, shall be located in a ring whose diameter is 0.99mm, centred on the accurate geometrical point defining the terminal axis.
- 2. Measured from the D diameter.
- 3. Reference plane.
- 4. Base plane.
- 5. Reference index of Pin 8.

* = accurate geometrical location.

The metric dimensions are calculated from the original dimensions in inches.

NOTES

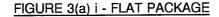
- 1. The lead profile is not required for transition from B to b. The outline of the extreme outputs in the case of F.105A may differ from that of the others, as shown in the Figure.
- 2. The space between leads is measured on the area L1.
- 3. Measured when the value of the angle $\boldsymbol{\theta}$ is zero.
- 4. Case F.105: Z between e/2 and e (1.27mm<Z<2.54mm). Case F.105A: Z less than e/2 (Z<1.27mm).
- 5. n = quantity of leads.
- 6. Area for visible reference mark on top face.
- 7. Base plane.
 - * = accurate geometrical location.
- (a) Recommended dimensions for the future: minimum 3.0mm.

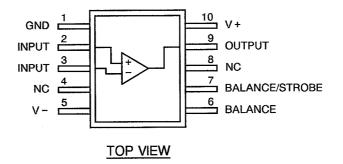

maximum 3.9mm.

PAGE 12

FIGURE 2 - PHYSICAL DIMENSIONS (CONTINUED)

FIGURE 2(d) - CHIP CARRIER PACKAGE, 20-TERMINAL




- 1. The true position pin or terminal spacing is 1.27mm between centrelines. Each pin or terminal centreline shall be located within ±0.13mm of its true longitudinal position relative to Pins 1 and the highest pin number.
- 2. All terminals.
- 3. 16 spaces.
- 4. Index corner only 2 dimensions.
- 5. 3 non-index corners 6 dimensions.

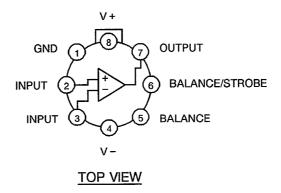

Rev. 'D'

FIGURE 3(a) - PIN SCHEMATICS

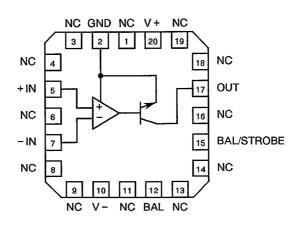
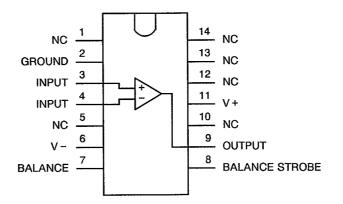


FIGURE 3(a) ii - TO99 PACKAGE

FIGURE 3(a) iii - CHIP CARRIER PACKAGE



PAGE 13

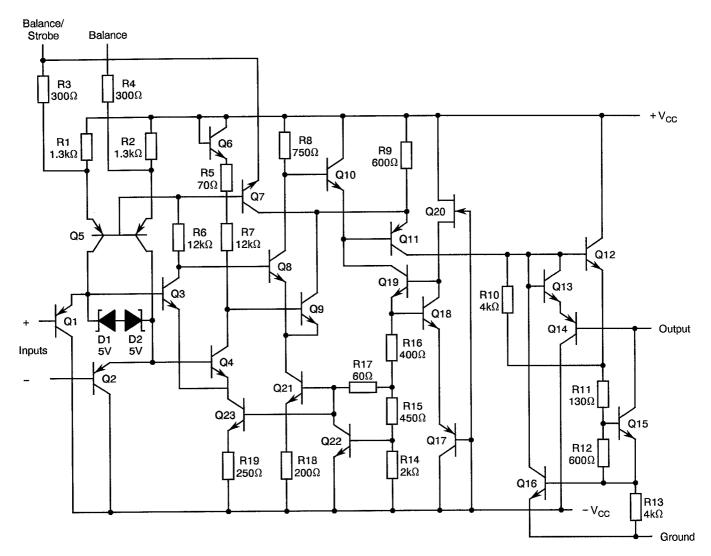

FIGURE 3(a) - PIN SCHEMATICS (CONTINUED)

FIGURE 3(a) iv - DUAL-IN-LINE PACKAGE

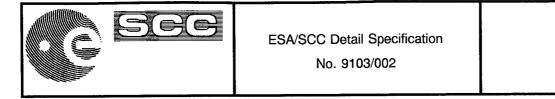
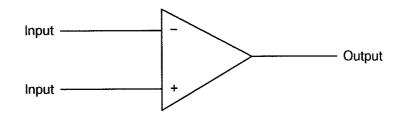


FIGURE 3(b) - CIRCUIT SCHEMATIC (FOR INFORMATION ONLY)



NOTES

1. All resistance values are nominal

FIGURE 3(c) - FUNCTIONAL DIAGRAM

Rev. 'C'

2. APPLICABLE DOCUMENTS

The following documents form part of this specification and shall be read in conjunction with it:-

- (a) ESA/SCC Generic Specification No. 9000 for Integrated Circuits.
- (b) MIL-STD-883, Test Methods and Procedures for Micro-electronics.

3. TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS

For the purpose of this specification, the terms, definitions, abbreviations, symbols and units specified in ESA/SCC Basic Specification No. 21300 shall apply. In addition, the following abbreviations are used:-

- I_{CC} = Supply Current.
- IOS = Output Short Circuit Current.
- IO = Output Leakage Current.
- II = Input Leakage Current.
- I_{STB} = Strobe Current.

 V_{OSTB} = Collector Output Voltage (strobe).

4. **REQUIREMENTS**

4.1 GENERAL

The complete requirements for procurement of the integrated circuits specified herein are stated in this specification and ESA/SCC Generic Specification No. 9000 for Integrated Circuits. Deviations from the Generic Specification applicable to this specification only, are listed in Para. 4.2.

Deviations from the applicable Generic Specification and this Detail Specification, formally agreed with specific Manufacturers on the basis that the alternative requirements are equivalent to the ESA/SCC requirements and do not affect the components' reliability, are listed in the appendices attached to this specification.

4.2 DEVIATIONS FROM GENERIC SPECIFICATION

The following deviations from ESA/SCC Generic Specification No. 9000 shall apply:-

4.2.1 Deviations from Special In-process Controls

None.

4.2.2 <u>Deviations from Final Production Tests (Chart II)</u> None.

4.2.3 Deviations from Burn-in Tests (Chart III)

Subpara. 7.1.1(a), "High Temperature Reverse Bias" test and subsequent electrical measurements related to this test shall be omitted.

4.2.4 <u>Deviations from Qualification, Environmental and Endurance Tests (Chart IV)</u> None.

4.2.5 <u>Deviations from Lot Acceptance Tests (Chart V)</u> None.

4.3 MECHANICAL REQUIREMENTS

4.3.1 Dimension Check

The dimensions of the integrated circuits specified herein shall be checked. They shall conform to those shown in Figure 2.

4.3.2 Weight

The maximum weight of the integrated circuits specified herein shall be for:-

Variants 01 and 02:0.35 grammes.Variants 03, 04 and 07:1.50 grammes.Variants 05 and 06:2.00 grammes.Variant 08:0.60 grammes.

4.4 MATERIALS AND FINISHES

The materials and finishes shall be as specified herein. Where a definite material is not specified, a material which will enable the integrated circuits specified herein to meet the performance requirements of this specification shall be used. Acceptance or approval of any constituent material does not guarantee acceptance of the finished product.

Rev. 'D'

PAGE 18

4.4.1 <u>Case</u>

The case shall be hermetically sealed and have a metal body with hard glass seals or a ceramic body and the lids shall be welded, brazed, preform-soldered or glass frit-sealed.

4.4.2 Lead Material and Finish

For flat, TO99 and dual-in-line packages, the lead material shall be Type 'D' with either Type '2', Type '3 or 4' or Type '9' finish in accordance with ESA/SCC Basic Specification No. 23500. For chip carrier packages, the finish shall be Type '2' in accordance with ESA/SCC Basic Specification No. 23500. (See Table 1(a) for Type Variants).

4.5 MARKING

4.5.1 General

The marking of components delivered to this specification shall be in accordance with ESA/SCC Basic Specification No. 21700. Each component shall be marked in respect of:-

- (a) Lead Identification.
- (b) The SCC Component Number.
- (c) Traceability Information.

4.5.2 Lead Identification

For flat and dual-in-line packages, an index shall be located at the top of the package as defined in Note 2 to Figure 2(a) and Note 6 to Figure 2(c) or, alternatively, a tab may be used to identify Pin No. 1. The pin numbering shall be read with the index or tab on the left-hand side. For TO99 packages, a tab shall be used to identify Pin No. 8 as defined in Note 5 to Figure 2(b). For chip carrier packages, the index shall be as defined in Note 4 to Figure 2(d).

4.5.3 The SCC Component Number

Each component shall bear the SCC Component Number which shall be constituted and marked as follows:

	<u>910300202</u> p
Detail Specification Number	
Type Variant, as applicable	
Testing Level (B or C, as applicable)	

4.5.4 Traceability Information

Each component shall be marked in respect of traceability information in accordance with ESA/SCC Basic Specification No. 21700.

4.5.5 Marking of Small Components

When it is considered that the component is too small to accommodate the marking as specified above, as much as space permits shall be marked. The order of precedence shall be as follows:-

- (a) Lead Identification.
- (b) The SCC Component Number.
- (c) Traceability Information.

The marking information in full shall accompany each component in its primary package.

4.6 ELECTRICAL CHARACTERISTICS

4.6.1 Electrical Measurements at Room Temperature

The parameters to be measured in respect of electrical characteristics are scheduled in Table 2. Unless otherwise specified, the measurements shall be performed at $T_{amb} = +22 \pm 3$ °C.

4.6.2 Electrical Measurements at High and Low Temperatures

The parameters to be measured at high and low temperatures are scheduled in Tables 3(a) and 3(b). The measurements shall be performed at T_{amb} = +125°C and -55°C respectively.

4.6.3 Circuits for Electrical Measurements

Circuits for use in performing the electrical measurements listed in Tables 2 and 3 of this specification are shown in Figure 4.

4.7 BURN-IN TESTS

4.7.1 Parameter Drift Values

The parameter drift values applicable to burn-in are specified in Table 4 of this specification. Unless otherwise stated, measurements shall be performed at $T_{amb} = +22 \pm 3$ °C. The parameter drift values (Δ) applicable to the parameters scheduled, shall not be exceeded. In addition to these drift value requirements, the appropriate limit value specified for a given parameter in Table 2 shall not be exceeded.

4.7.2 Conditions for Burn-in

The requirements for burn-in are specified in Section 7 of ESA/SCC Generic Specification No. 9000. The conditions for burn-in shall be as specified in Table 5 of this specification.

4.7.3 Electrical Circuits for Burn-in

Circuits for use in performing the burn-in tests are shown in Figure 5 of this specification.

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - d.c. PARAMETERS

			Test Method	Test	Meas'd	Tast Oanditiana	Lin	nits	
No.	Characteristics	Symbol	MIL-STD 883	Fig.	Value	Test Conditions	Min	Max	Unit
1	Input Offset Voltage	V _{IO1}	4001	4(a)	E ₁	$V_{CC} = \pm 15V, V_{IC} = 0$ $R_S = 50\Omega$	-	2.0	mV
2		V _{IO2}			E ₂	$V_{CC} = \pm 2.5V, V_{IC} = 0$ $R_{S} = 50\Omega$	-	2.0	
3		V _{IO3}			E ₃	$V_{CC} = \pm 15V, V_{IC} = 0$ R _S = 50Ω V _{BAL} = V _{BAL} /STB = + V _{CC}		2.0	
4	Input Offset Current	I _{IO1}	4001	4(b)	E ₄	$V_{CC} = \pm 15V, V_{IC} = 0$ $R_S = 100k\Omega$	-	10	nA
5	-	I ₁₀₂			E ₅	$V_{CC} = \pm 15V$, $V_{IC} = -14.5V$ $R_S = 100k\Omega$	-	10	
6		103			E ₆	$V_{CC} = \pm 15V, V_{IC} = 0$ $R_S = 100k\Omega$ $V_{BAL} = V_{BAL}/STB = + V_{CC}$	-	10	
7	Input Bias Current	l _{IB1}	4001	4(c)	E ₇	$V_{CC} = \pm 15V$ $V_{IN} = Open$ $R_1 = 0$ $R_2 = 100k\Omega$	-	100	nA
					E ₈	$V_{CC} = \pm 15V$ $V_{IN} = Open$ $R_1 = 100k\Omega$ $R_2 = 0$			
8		l _{IB2}			E9	$V_{CC} = \pm 15V$ $V_{IN} = -14.5V$ $R_1 = 0$ $R_2 = 100k\Omega$			
					E ₁₀	+ $V_{CC} = 29.5V$ - $V_{CC} = -0.5V$ $V_{IN} = -14.5V$ $R_1 = 100k\Omega$ $R_2 = 0$			
9	Collector Output Voltage (Strobed)	V _{O(STB)}	4001	4(d)	E ₁₁	$V_{CC} = \pm 15V$ $V_{IN1} = 15V$ $V_{IN2} = 0V$ $I_{STB} = -3.0mA$	14	-	V
10	Output Leakage Current	lo	4001	4(e)	lo	$V_{CC} = \pm 18V$ $V_{OUT} = 32V$ $V_{ID} = 5.0mV$ $R_L = 5.0k\Omega$	-	10	A

,

Rev. 'A'

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - d.c. PARAMETERS (CONT'D)

	Ohanadariatian	Cumphol	Test Method	Test	Meas'd	Test Conditions	Lin	nits	Unit
No.	Characteristics	Symbol	MIL-STD 883	Fig.	Value	Test Conditions	Min	Max	Unit
11	Input Leakage Current	l	-	4(f)	E ₁₂	$V_{CC} = \pm 18V$ $V_{OUT} = 32V$ $V_{IN1} = \pm 17V$ $V_{IN2} = -12V$	-	20	nA
12	Positive Supply Current	ICC1	3005	4(g)	+lcc	V _{CC} = ±15V	0.5	4.0	mA
13	Negative Supply Current	I _{CC2}	3005	4(g)	-I _{CC}	$V_{CC} = \pm 15V$	- 4.0	- 0.5	mA
14	Short Circuit Output Current	los	3011	4(h)	E ₁₃	$V_{CC} = \pm 15V$ $V_{OUT} = 5.0V$ $V_{IN1} = 125mV$ $V_{IN2} = 0$ Duration: 10ms	0	200	mA
15	Saturation Voltage	V _{OL1}	3007	4(i)	E ₁₄	+ V_{CC} = 4.5V - V_{CC} = 0 V_{IN1} = 0.506V V_{IN2} = 0.5V I_{OUT} = 8.0mA	-	0.4	V
16		V _{OL2}				$V_{CC} = \pm 15V$ $V_{IN1} = -14V$ $V_{IN2} = -14.005V$ $I_{OUT} = 50mA$	-	1.5	
17	Differential Mode Voltage Gain (Collector Output)	A _{VD}	4004	4(j)	E ₁₆	$V_{CC} = \pm 15V$ $V_{IN} = -30V$ $R_L = 1.0k\Omega$	80	-	V/mV
					E ₁₇	$V_{CC} = \pm 15V$ $V_{IN} = +10V$ $R_{L} = 1.0k\Omega$			
18	Differential Mode Voltage Gain (Emitter Output)	A _{VD}	4004	4(k)	E ₁₈	$V_{CC} = \pm 15V$ $V_{IN} = -10V$ $R_L = 600\Omega$	10	-	V/mV
					E ₁₉	$V_{CC} = \pm 15V$ $V_{IN} = +10V$ $R_{L} = 600\Omega$			
19	Common Mode Rejection Ratio	CMRR	4003	4(I)	E ₂₀	+ V _{CC} = 29.5V - V _{CC} = - 0.5V V _{IN} = - 14.5V	80	-	dB
					E ₂₁	$+ V_{CC} = 2.0V$ $- V_{CC} = -28V$ $V_{IN} = 13V$			

Rev. 'A'

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - a.c. PARAMETERS

	Characteriotics	Symbol	Test Method	Test	Test Meas'd	Test Conditions	Limits		Unit
No.	Characteristics	Symbol	MIL-STD 883	Fig.	Value	rest conditions	Min	Max	Unit
20	Response Time (Low to High) (Collector Output)	t _r	-	4(m)	-	$V_{CC} = \pm 15V$ $V_{OD} = -5.0mV$ $\Delta V_{IN} = 100mV$ Note 1	-	300	ns
21	Response Time (High to Low) (Collector Output)	t _f	-	4(m)	-	$V_{CC} = \pm 15V$ $V_{OD} = 5.0mV$ $\Delta V_{IN} = 100mV$ Note 1	-	300	ns

NOTES

1. Sample test Inspection Level II, AQL = 2.5%.

TABLE 3(a) - ELECTRICAL MEASUREMENTS AT HIGH TEMPERATURE, +125(+0-5) °C

	Ohana tariatian	Cumhal	Test Method	Test	Meas'd	Test Conditions	Lin	nits	1 Init
No.	Characteristics	Symbol	MIL-STD 883	Fig.	Value	Test Conditions	Min	Max	Unit
1	Input Offset Voltage	V _{IO1}	4001	4(a)	E ₁	$V_{CC} = \pm 15V, V_{IC} = 0$ $R_S = 50\Omega$	-	3.0	mV
2		V _{IO2}			E ₂	$V_{CC} = \pm 2.5V, V_{IC} = 0$ $R_{S} = 50\Omega$	-	3.0	
3		V _{IO3}			E3	$V_{CC} = \pm 15V, V_{IC} = 0$ R _S = 50Ω V _{BAL} = V _{BAL} /STB = + V _{CC}	-	3.0	
4	Input Offset Current	l _{lO1}	4001	4(b)	E ₄	$V_{CC} = \pm 15V, V_{IC} = 0$ $R_S = 100k\Omega$	-	15	nA
5		I ₁₀₂			E ₅	$V_{CC} = \pm 15V$, $V_{IC} = -14.5V$ $R_S = 100k\Omega$	-	15	
6		I ₁₀₃			E ₆	$V_{CC} = \pm 15V, V_{IC} = 0$ R _S = 100kΩ V _{BAL} = V _{BAL} /STB = + V _{CC}	-	15	
7	Input Bias Current	l _{IB1}	4001	4(c)	E ₇	$V_{CC} = \pm 15V$ $V_{IN} = Open$ $R_1 = 0$ $R_2 = 100k\Omega$	-	125	nA
					E ₈	$V_{CC} = \pm 15V$ $V_{IN} = Open$ $R_1 = 100k\Omega$ $R_2 = 0$			
8		l _{IB2}			E9	$V_{CC} = \pm 15V$ $V_{IN} = -14.5V$ $R_1 = 0$ $R_2 = 100k\Omega$			
					E ₁₀	+ V _{CC} = 29.5V - V _{CC} = -0.5V V _{IN} = -14.5V R ₁ = 100kΩ R ₂ = 0			
9	Collector Output Voltage (Strobed)	V _{O(STB)}	4001	4(d)	E ₁₁	$V_{CC} = \pm 15V$ $V_{IN1} = 15V$ $V_{IN2} = 0V$ $I_{STB} = -3.0mA$	14	-	V
10	Output Leakage Current	lo	4001	4(e)	lo	$V_{CC} = \pm 18V$ $V_{OUT} = 32V$ $V_{ID} = 5.0mV$ $R_L = 5.0k\Omega$	•	500	nA

Rev. 'A'

TABLE 3(a) - ELECTRICAL MEASUREMENTS AT HIGH TEMPERATURE, +125(+0-5) °C (CONT'D)

		0. matrix	Test Method	Test	Meas'd	Test Conditions	Lin	nits	11014
No.	Characteristics	Symbol	MIL-STD 883	Fig.	Value	Test Conditions	Min	Max	Unit
11	Input Leakage Current	lı	-	4(f)	E ₁₂	$V_{CC} = \pm 18V$ $V_{OUT} = 32V$ $V_{IN1} = \pm 17V$ $V_{IN2} = -12V$	-	20	nA
12	Positive Supply Current	ICC1	3005	4(g)	+ lcc	$V_{CC} = \pm 15V$	0	25	mA
13	Negative Supply Current	ICC2	3005	4(g)	-I _{CC}	V _{CC} = ±15V	- 3.0	0	mA
14	Short Circuit Output Current	los	3011	4(h)	E ₁₃	$V_{CC} = \pm 15V$ $V_{OUT} = 5.0V$ $V_{IN1} = 125mV$ $V_{IN2} = 0$ Duration: 10ms	0	150	mA
15	Saturation Voltage	V _{OL1}	3007	4(i)	E ₁₄	+ V_{CC} = 4.5V - V_{CC} = 0 V_{IN1} = 0.506V V_{IN2} = 0.5V I_{OUT} = 8.0mA	-	0.4	V
16		V _{OL2}			E ₁₅	$V_{CC} = \pm 15V$ $V_{IN1} = -14V$ $V_{IN2} = -14.005V$ $I_{OUT} = 50mA$	-	1.5	
17	Differential Mode Voltage Gain (Collector Output)	A _{VD}	4004	4(j)	E ₁₆	$V_{CC} = \pm 15V$ $V_{IN} = -30V$ $R_L = 1.0k\Omega$	35	-	V/mV
					E ₁₇	$V_{CC} = \pm 15V$ $V_{IN} = +10V$ $R_{L} = 1.0k\Omega$			
18	Differential Mode Voltage Gain (Emitter Output)	A _{VD}	4004	4(k)	E ₁₈	$V_{CC} = \pm 15V$ $V_{IN} = -10V$ $R_{L} = 600\Omega$	8.0	-	V/mV
					E ₁₉	$V_{CC} = \pm 15V$ $V_{IN} = \pm 10V$ $R_{L} = 600\Omega$			
19	Common Mode Rejection Ratio	CMRR	-	4(I)	E ₂₀	$+ V_{CC} = 29.5V$ $- V_{CC} = -0.5V$ $V_{IN} = -14.5V$	80	-	dB
					E ₂₁	$+V_{CC} = 2.0V$ $-V_{CC} = -28V$ $V_{IN} = 13V$			

PAGE 25

ISSUE 3

TABLE 3(b) - ELECTRICAL MEASUREMENTS AT LOW TEMPERATURE, -55(+5-0) °C

No.	Characteristics	Symbol	Test Method	Test	Meas'd	Test Conditions	Lim	nits	Unit
110.	Characteristics	Symbol	MIL-STD 883	Fig.	Value	rest conditions	Min	Max	Unit
1	Input Offset Voltage	V _{IO1}	4001	4(a)	E ₁	$V_{CC} = \pm 15V, V_{IC} = 0$ $R_S = 50\Omega$	-	3.0	mV
2		V _{IO2}			E ₂	$V_{CC} = \pm 2.5V, V_{IC} = 0$ $R_{S} = 50\Omega$	-	3.0	
3		V _{IO3}			E ₃	$V_{CC} = \pm 15V, V_{IC} = 0$ R _S = 50Ω V _{BAL} = V _{BAL} /STB = + V _{CC}	-	3.0	
4	Input Offset Current	I _{IO1}	4001	4(b)	E ₄	$V_{CC} = \pm 15V, V_{IC} = 0$ $R_S = 100k\Omega$	-	15	nA
5		I ₁₀₂			E ₅	$V_{CC} = \pm 15V$, $V_{IC} = -14.5V$ $R_S = 100k\Omega$	-	15	
6		I ₁₀₃			E ₆	$V_{CC} = \pm 15V, V_{IC} = 0$ R _S = 100kΩ V _{BAL} = V _{BAL} /STB = + V _{CC}	-	15	
7	Input Bias Current	IB1	4001	4(c)	E ₇	$V_{CC} = \pm 15V$ $V_{IN} = Open$ $R_1 = 0$ $R_2 = 100k\Omega$	-	125	nA
					E ₈	$V_{CC} = \pm 15V$ $V_{IN} = Open$ $R_1 = 100k\Omega$ $R_2 = 0$			
8		l _{IB2}			E9	$V_{CC} = \pm 15V$ $V_{IN} = -14.5V$ $R_1 = 0$ $R_2 = 100k\Omega$			
					E ₁₀	+ $V_{CC} = 29.5V$ - $V_{CC} = -0.5V$ $V_{IN} = -14.5V$ $R_1 = 100k\Omega$ $R_2 = 0$			
9	Collector Output Voltage (Strobed)	V _{O(STB)}	4001	4(d)	E ₁₁	$V_{CC} = \pm 15V$ $V_{IN1} = 15V$ $V_{IN2} = 0V$ $I_{STB} = -2.0mA$	14	-	V

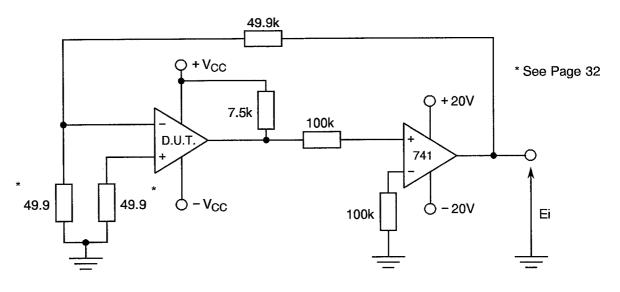
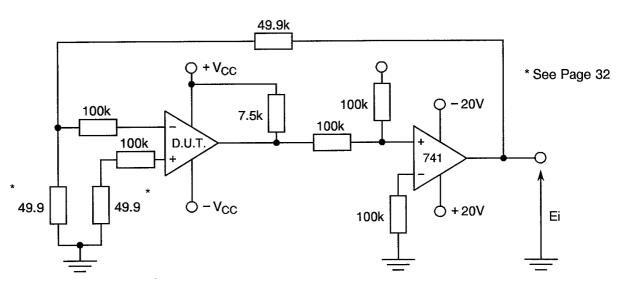

Rev. 'A'

TABLE 3(b) - ELECTRICAL MEASUREMENTS AT LOW TEMPERATURE, - 55(+5-0) °C (CONT'D)

		0 milion	Test Method	Test	Meas'd	Test Conditions	Lin	nits	Linit
No.	Characteristics	Symbol	MIL-STD 883	Fig.	Value	Test Conditions	Min	Max	Unit
11	Input Leakage Current	lį	-	4(f)	E ₁₂	$V_{CC} = \pm 18V$ $V_{OUT} = 32V$ $V_{IN1} = \pm 17V$ $V_{IN2} = -12V$	-	20	nA
12	Positive Supply Current	I _{CC1}	3005	4(g)	+ lcc	V _{CC} = ±15V	0.5	6.0	mA
13	Negative Supply Current	ICC2	3005	4(g)	-Icc	V _{CC} = ± 15V	- 5.0	- 0.5	mA
14	Short Circuit Output Current	I _{OS}	3011	4(h)	E ₁₃	$V_{CC} = \pm 15V$ $V_{OUT} = 5.0V$ $V_{IN1} = 125mV$ $V_{IN2} = 0$ Duration: 10ms	0	250	mA
15	Saturation Voltage	V _{OL1}	3007	4(i)	E ₁₄	+ V_{CC} = 4.5V - V_{CC} = 0 V_{IN1} = 0.506V V_{IN2} = 0.5V I_{OUT} = 8.0mA	-	0.4	V
16		V _{OL2}			E ₁₅	$V_{CC} = \pm 15V$ $V_{IN1} = -14V$ $V_{IN2} = -14.005V$ $I_{OUT} = 50mA$	-	1.5	
17	Differential Mode Voltage Gain (Collector Output)	A _{VD}	4004	4(j)	E ₁₆	$V_{CC} = \pm 15V$ $V_{IN} = -30V$ $R_L = 1.0k\Omega$	35	-	V/mV
					E ₁₇	$V_{CC} = \pm 15V$ $V_{IN} = \pm 10V$ $R_{L} = 1.0k\Omega$			
18	Differential Mode Voltage Gain (Emitter Output)	A _{VD}	4004	4(k)	E ₁₈	$V_{CC} = \pm 15V$ $V_{IN} = -10V$ $R_{L} = 600\Omega$	8.0	-	V/mV
					E ₁₉	$V_{CC} = \pm 15V$ $V_{IN} = \pm 10V$ $R_{L} = 600\Omega$			
19	Common Mode Rejection Ratio	CMRR	-	4(I)	E ₂₀	$+V_{CC} = 29.5V$ $-V_{CC} = -0.5V$ $V_{IN} = -14.5V$	80	-	dB
					E ₂₁	$+ V_{CC} = 2.0V$ $- V_{CC} = -28V$ $V_{IN} = 13V$			


FIGURE 4(a) - INPUT OFFSET VOLTAGE

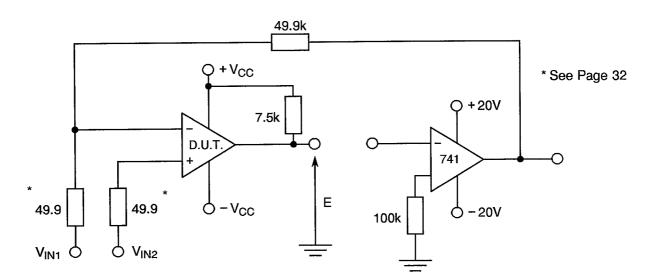
NOTES

- 1. $V_{IO1} = E_1$; $V_{IO2} = E_2$; $V_{IO3} = E_3$. 2. For measurement of V_{IO1} , V_{IO2} , balance and balance strobe inputs open. For V_{IO3} , balance and balance strobe are connected to $+ V_{CC}$.
- 3. For all tests: ground terminal is connected to $-V_{CC}$ through a 300 Ω resistor.

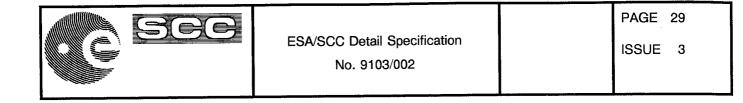
FIGURE 4(b) - INPUT OFFSET CURRENT

- 1. $I_{IO1} = (E_1 E_4)/100$; $I_{IO2} = (E_1 E_5)/100$; $I_{IO3} = (E_3 E_6)/100$. 2. For I_{IO1} and I_{IO2} : balance and balance strobe inputs open. For I_{IO3} , balance and balance strobe are connected to $+V_{CC}$.
- 3. For all tests: ground terminal is connected to $-V_{CC}$ through a 300 Ω resistor.

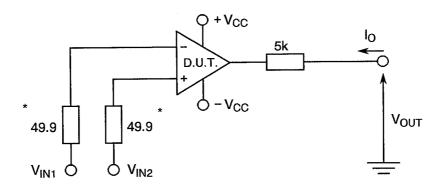
FIGURE 4(c) - INPUT BIAS CURRENT


NOTES

1. $I_{IB1} = (E_7 - E_8)/200; I_{IB2} = (E_9 - E_{10})/200.$

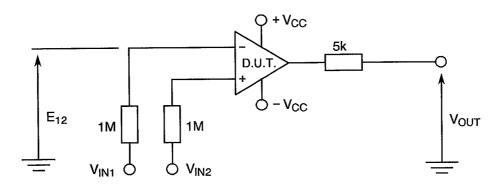

2. For both measurements: balance and balance strobe inputs open.

3. For both tests: ground is connected to $-V_{CC}$ through a 300 Ω resistor.


FIGURE 4(d) - COLLECTOR OUTPUT VOLTAGE (STROBED)

- 1. Balance input is connected to $+V_{CC}$.
- 2. Balance strobe is connected to ground.
- 3. Ground terminal is connected to $-V_{CC}$ through a 600 Ω resistor.

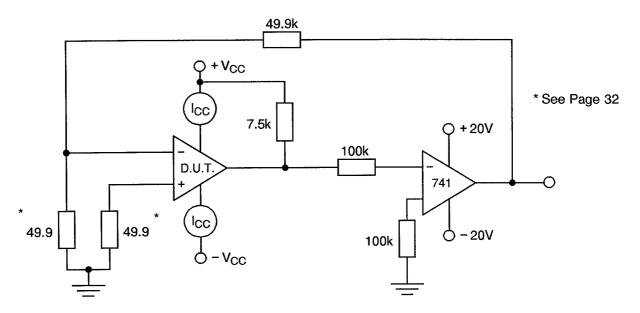
FIGURE 4(e) - OUTPUT LEAKAGE CURRENT



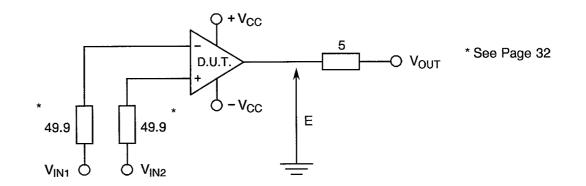
* See Page 32

NOTES

- 1. Balance and balance strobe connected to ground via an ammeter (I = -5.0mA).
- 2. Ground terminal connected to ground.

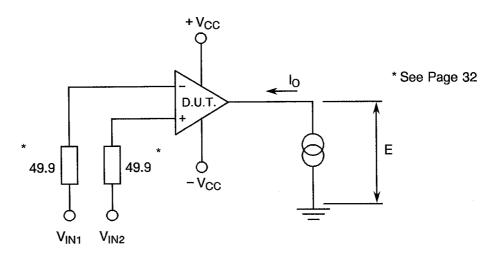

FIGURE 4(f) - INPUT LEAKAGE CURRENT

- 1. $I_1 = E_{12}$.
- 2. Balance and balance strobe connected to ground via an ammeter (I = -5.0mA).
- 3. Ground terminal connected to ground.

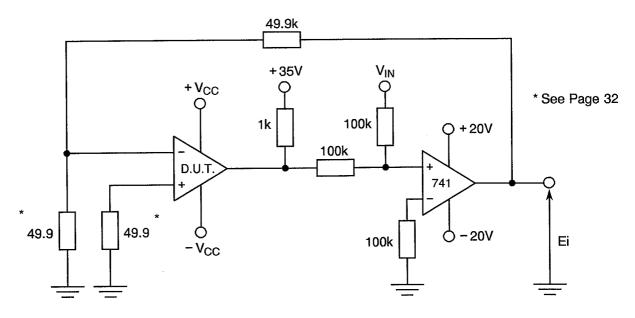

FIGURE 4(g) - SUPPLY CURRENT

NOTES

- 1. Balance and balance strobe inputs open.
- 2. Ground terminal connected to $-V_{CC}$ through a 300 Ω resistor.

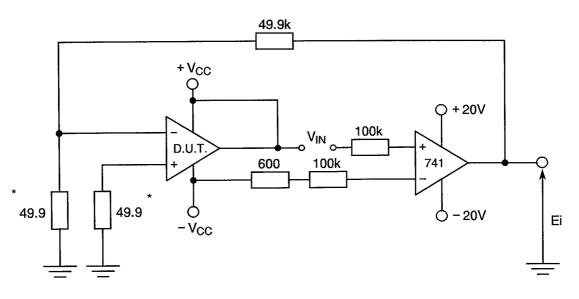

FIGURE 4(h) - SHORT CIRCUIT OUTPUT CURRENT

- 1. $I_{OS} = (5000 E)/5.$
- 2. Duration of test: 10ms maximum.
- 3. Balance and balance strobe inputs open.
- 4. Ground terminal connected to ground.

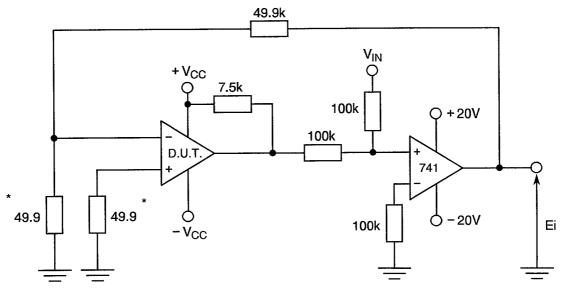

FIGURE 4(i) - SATURATION VOLTAGE

<u>NOTES</u>

- 1. V_{OL} = E.
- 2. Balance and balance strobe open.
- 3. Ground terminal connected to $-V_{CC}$.


FIGURE 4(j) - DIFFERENTIAL MODE VOLTAGE GAIN (COLLECTOR OUTPUT)

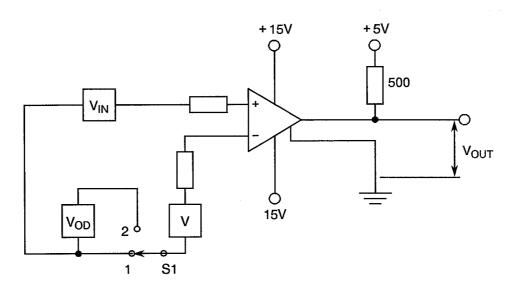
- 1. $A_{VD} = 40000/E_{16} E_{17}$.
- 2. Balance and balance strobe open.
- 3. Ground terminal connected to V_{CC}.

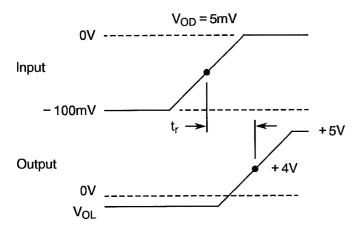

FIGURE 4(k) - DIFFERENTIAL MODE VOLTAGE GAIN (EMITTER OUTPUT)

NOTES

- 1. $A_{VD} = 20000/E_{18} E_{19}$.
- 2. Balance and balance strobe open.
- 3. Ground terminal connected to $-V_{CC}$ through the 600 Ω resistor.

NOTES


1. CMRR = 20 log


 $\begin{array}{c} \underline{27.5\times10^6} \\ \overline{E_{20}-E_{21}} \end{array} \quad (measure \ E_{20} \ and \ E_{21} \ to \ four \ place \ accuracy). \end{array}$

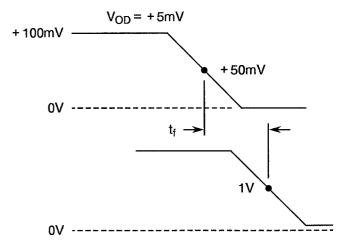

- 2. Balance and balance strobe open.
- 3. Ground terminal connected to $-V_{CC}$ through the 300 Ω resistor.
 - * These are 0.1% resistors matched to 0.01%. The tolerance for all other resistors is 1.0%.

FIGURE 4(m) - RESPONSE TIME

- 1. V_{IN} = 10µs pulse width at 50kHz, t_{LH} and t_{HL} ≤ 10ns.
- 2. Set-up procedure:-
 - A. With S1 in position 1, adjust V for $V_{OUT} = 0$.
 - B. Adjust V_{OD} to -5mV for t_r or +5mV for t_f .
 - C. Switch S1 to position 2.

TABLE 4 - PARAMETER DRIFT VALUES

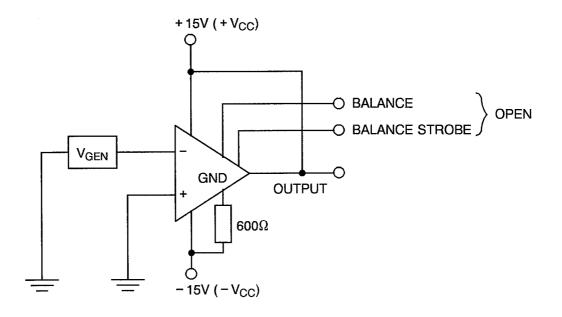

No.	CHARACTERISTICS	SYMBOL	SPEC. AND/OR TEST METHOD	TEST CONDITIONS	CHANGE LIMITS (Δ)	UNIT
1	Input Offset Voltage Change VIO		As per Table 2	As per Table 2	± 0.5	mV
4	4 Input Offset Current Change I _{IO}		As per Table 2	As per Table 2	± 1.5	nA
7	Input Bias Current Change	I _{IB}	As per Table 2	As per Table 2	± 25	nA

TABLE 5 - CONDITIONS FOR BURN-IN

No.	CHARACTERISTICS	SYMBOL	CONDITION	UNIT
1	Ambient Temperature	T _{amb}	+ 125 ± 5	°C
2 Supply Voltage		V _{CC}	± 15	V

FIGURE 5 - ELECTRICAL CIRCUIT FOR BURN-IN AND OPERATING LIFE

NOTES

1. V_{GEN} : square wave V = ± 8V, f = 5kHz.

4.8 ENVIRONMENTAL AND ENDURANCE TESTS

4.8.1 Electrical Measurements on Completion of Environmental Tests

The parameters to be measured on completion of environmental tests are scheduled in Table 6. Unless otherwise stated, the measurements shall be performed at $T_{amb} = +22 \pm 3$ °C.

4.8.2 Electrical Measurements at Intermediate Points during Endurance Tests

The parameters to be measured at intermediate points during endurance tests are as scheduled in Table 6 of this specification.

4.8.3 Electrical Measurements on Completion of Endurance Tests

The parameters to be measured on completion of endurance testing are as scheduled in Table 6 of this specification. Unless otherwise stated, the measurements shall be performed at $T_{amb} = +22 \pm 31$ °C.

4.8.4 Conditions for Operating Life Tests

The requirements for operating life testing are specified in Section 9 of ESA/SCC Generic Specification No. 9000. The conditions for operating life testing shall be as specified in Table 5 of this specification.

4.8.5 Electrical Circuits for Operating Life Tests

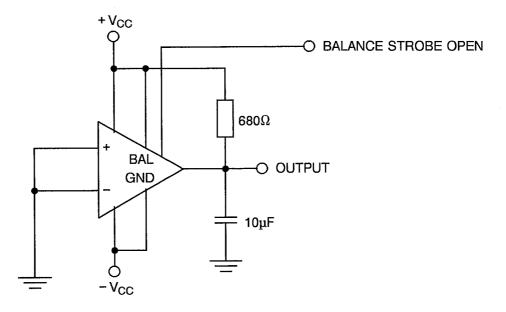
Circuits for use in performing the operating life tests are shown in Figure 5.

4.8.6 Conditions for High Temperature Storage Test

The requirements for the high temperature storage test are specified in ESA/SCC Generic Specification No. 9000. The conditions for high temperature storage shall be T_{amb} = + 150 ± 5 °C.

TABLE 6 - ELECTRICAL MEASUREMENTS ON COMPLETION OF ENVIRONMENTAL TESTS AND AT INTERMEDIATE POINTS AND ON COMPLETION OF ENDURANCE TESTING

	CHARACTERISTICS	SYMBOL	SPEC. AND/OR	TEST	LIM	UNIT	
No.	CHARACTERISTICS	STINBUL	TEST METHOD	CONDITIONS	MIN	MAX	UNIT
1	Input Offset Voltage	V _{IO}	As per Table 2	As per Table 2	-	2.0	mV
4	Input Offset Current	I _{IO}	As per Table 2	As per Table 2	-	10	nA
7	Input Bias Current	Ι _{IB}	As per Table 2	As per Table 2	-	100	nA
12	Positive Supply Current	I _{CC1}	As per Table 2	As per Table 2	0.5	4.0	mA
13	Negative Supply Current	I _{CC2}	As per Table 2	As per Table 2	- 4.0	-0.5	mA
17	Differential Mode Voltage Gain (Collector Output)	A _{VD}	As per Table 2	As per Table 2	80	-	V/mV

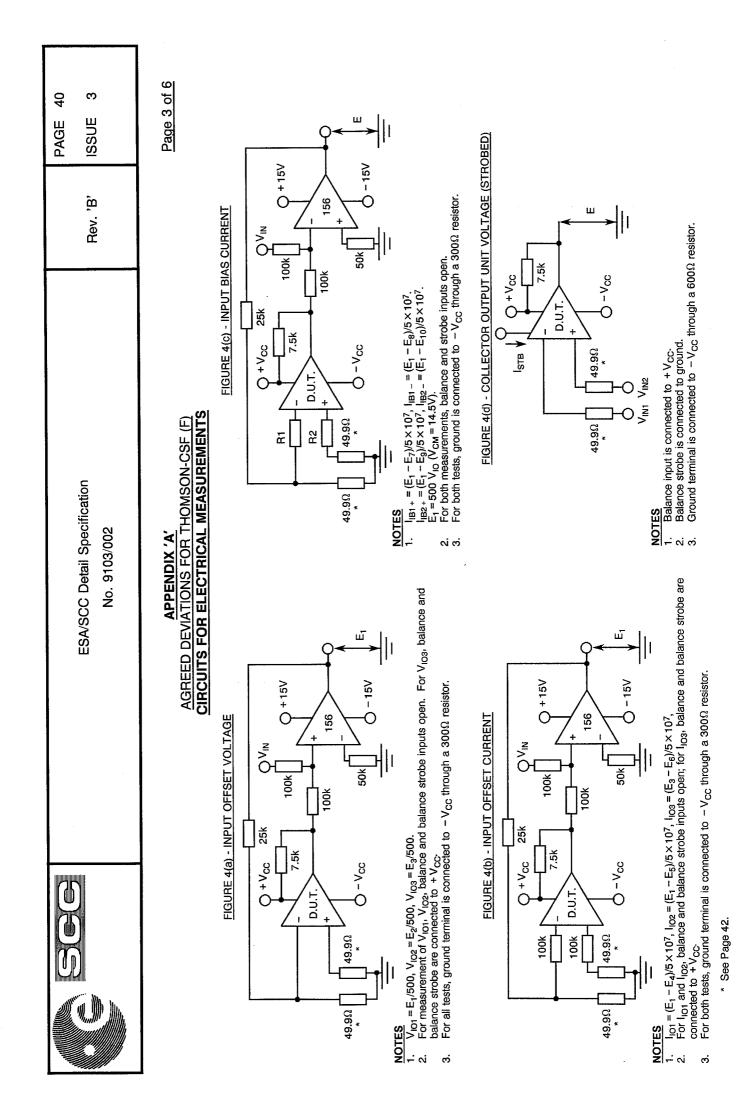

APPENDIX 'A'

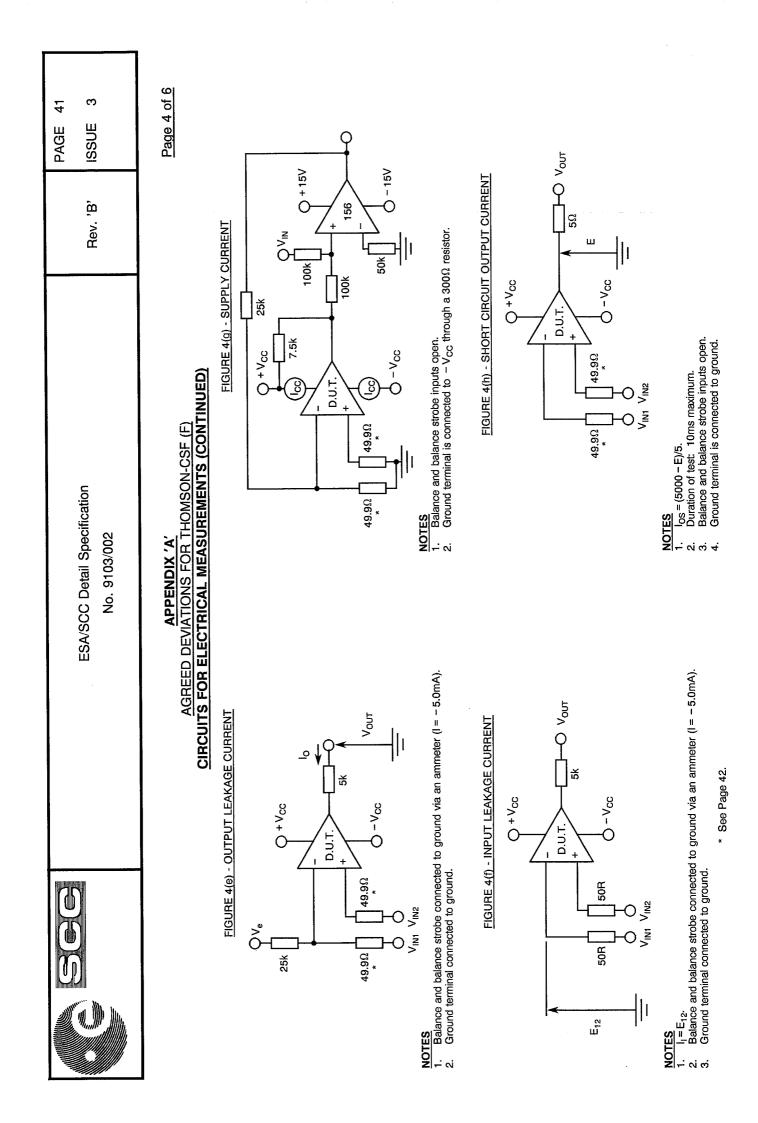
Page 1 of 6

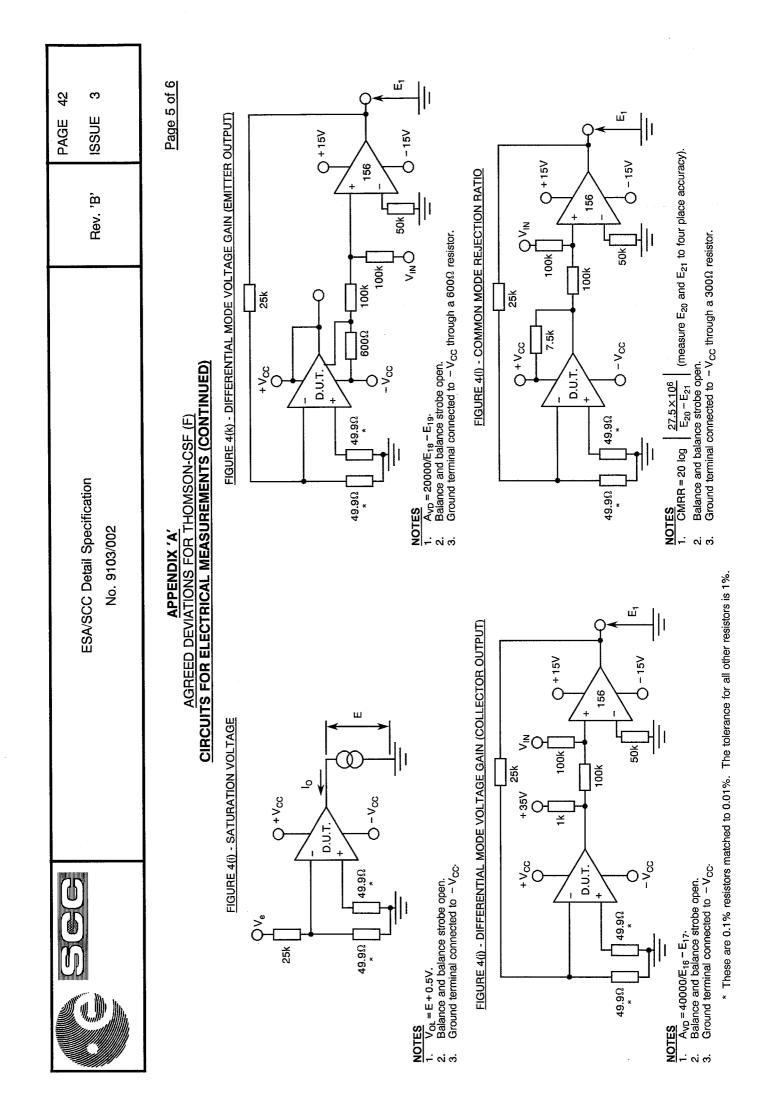
AGREED DEVIATIONS FOR THOMSON-CSF (F)

It has been agreed for this Manufacturer that an alternative electrical circuit for burn-in and operating life (Figure 5) may be applied.

The alternative Figure 5 is as shown below.


Rev. 'B'

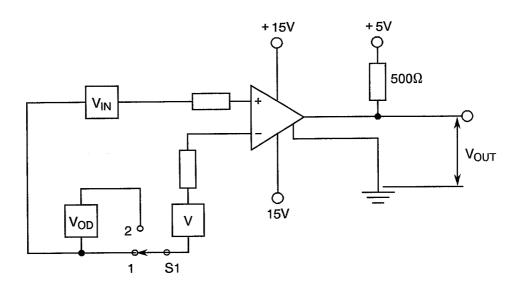

APPENDIX 'A'

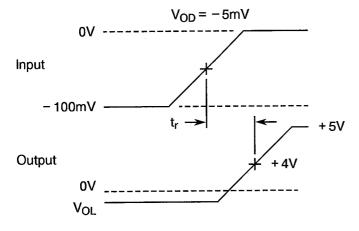

Page 2 of 6

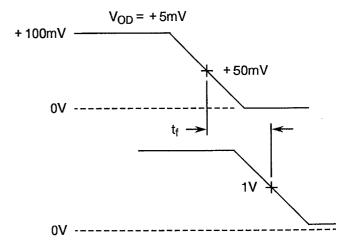
AGREED DEVIATIONS FOR THOMSON-CSF (F)

ITEMS AFFECTED		DESCRIPTION OF DEVIATIONS				
Tables 2, 3(a) and 3(b)	The measurements listed n Test Nos. 1, 2, 3, 4 and 6: Test No. 5: Test No. 7: Test No. 8: Test No. 10: (Not in Table 3(b)): Test No. 11: Test Nos. 12 and 13: Test No. 15 Test No. 16:	hay be performed with test conditions amended as follows:- $V_{IC} = V_{IN} = 0V.$ $+ V_{CC} = 29.5V, -V_{CC} = -0.5V, V_{IC} = V_{IN} = -14.5V.$ $V_{IN} = 0V.$ $+ V_{CC} = 29.5V, -V_{CC} = -0.5V$ for E ₉ measured value. $+ V_{CC} = -14V, -V_{CC} = -50V, V_{OUT} = 0V.$ $V_{IN1} = V_{IN2} = -32V, V_e = -29.5V, R_L = 5.0k\Omega, V_{GND} = -32V.$ $+ V_{CC} = 1.0V, -V_{CC} = -35V, V_{OUT} = Open, V_{IN1} = 0V,$ $+ V_{CC} = 1.0V, -V_{CC} = -35V, V_{OUT} = Open, V_{IN1} = 0V,$ $+ V_{CC} = 4.0V, -V_{CC} = -0.5V, V_{IN1} = V_{IN2} = 0V, V_{GND} = -0.5V,$ $V_e = 3.0V, I_{OUT} = 8.0mA.$ $+ V_{CC} = 29V, -V_{CC} = -1.0V, V_{IN1} = V_{IN2} = 0V, V_{GND} = -1.0V,$ $V_e = 2.5V, I_{OUT} = 50mA.$				
Figure 4	The figures defined on the electrical testing. The figure	The figures defined on the following sheets may be used for the Table 2, 3(a) and 3(b) electrical testing. The figure numbers correspond to those defined in the test tables.				

PAGE 43


APPENDIX 'A'


Page 6 of 6


AGREED DEVIATIONS FOR THOMSON-CSF (F)

CIRCUITS FOR ELECTRICAL MEASUREMENTS (CONTINUED)

FIGURE 4(m) - RESPONSE TIME

- 1. V_{IN} = 10µs pulse width at 50kHz, t_{LH} and t_{HL} ≤ 10ns.
- 2. Set-up procedure:-
 - A. With S1 in position 1, adjust V for $V_{OUT} = 0$.
 - B. Adjust V_{OD} to -5mV for t_r or +5mV for t_f .
 - C. Switch S1 to position 2.