

Page i

INTEGRATED CIRCUITS, SILICON MONOLITHIC, BIPOLAR OPERATIONAL AMPLIFIERS BASED ON TYPE LM 110

ESCC Detail Specification No. 9108/001

ISSUE 1 October 2002

ESCC Detail Specification

PAGE	ii
ISSUE	1

LEGAL DISCLAIMER AND COPYRIGHT

European Space Agency, Copyright © 2002. All rights reserved.

The European Space Agency disclaims any liability or responsibility, to any person or entity, with respect to any loss or damage caused, or allleged to be caused, directly or indirectly by the use and application of this ESCC publication.

This publication, without the prior permission of the European Space Ageny and provided that it is not used for a commercial purpose, may be:

- copied in whole in any medium without alteration or modification.
- copied in part, in any medium, provided that the ESCC document identification, comprising the ESCC symbol, document number and document issue, is removed.

european space agency agence spatiale européenne

Pages 1 to 37

BIPOLAR OPERATIONAL AMPLIFIERS, BASED ON TYPE LM 110

ESA/SCC Detail Specification No. 9108/001

space components coordination group

		Approved by			
Issue/Rev.	Date	SCCG Chairman	ESA Director General or his Deputy		
Issue 1	March 1982	-	-		
Revision 'A'	November 1987	-	17/		
Revision 'B'	December 1991	Tomomens	1. lat		

Rev. 'B'

PAGE 2

ISSUE 1

DOCUMENTATION CHANGE NOTICE

DOCOMENTATION CHANGE NOTICE							
Rev. Letter	Rev. Date	CHANGE Reference Item	Approved DCR No.				
'A'	Nov. '87	P1. Cover Page P2. DCN P7. Table 1(a) : Lead material and finish to SCC 23500 added P15. Para. 2 : MIL-STD-1276 deleted Para. 4.2.2 : PIND test added P17. Para. 4.4.2 : Paragraph rewritten to SCC 23500	None None 21025 21025 22603 21025				
'B'	Dec. '91	P1. Cover Page P2. DCN P3. T of C : Para. 4.3.3 deleted P15. Para. 4.2.2 : Deviation deleted, "None" added P16. Para. 4.2.4 : Deviation deleted, "None" added Para. 4.2.5 : Deviation deleted, "None" added Para. 4.3.3 : Paragraph deleted	None None None 21048 22919 22919 22921				
		This specification has been transferred from hardcopy to electronic format. content is unchanged but minor differences in presentation exist.	The				

Rev. 'B'

PAGE 3

ISSUE 1

TABLE OF CONTENTS

		<u>Page</u>
1.	<u>GENERAL</u>	6
1.1	Scope	6
1.2	Component Type Variants	6
1.3	Maximum Ratings	6
1.4	Parameter Derating Information	6
1.5	Physical Dimensions	6
1.6	Pin Assignment	6
1.7	Truth Table	- 6
1.8	Circuit Schematic	6
1.9	Functional Diagram	6
2.	APPLICABLE DOCUMENTS	15
3.	TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS	15
4.	REQUIREMENTS	15
4.1	General	15
4.2	Deviations from Generic Specification	15
4.2.1	Deviations from Special In-process Controls	15
4.2.2	Deviations from Final Production Tests (Chart II)	15
4.2.3	Deviations from Burn-in Tests (Chart III)	16
4.2.4	Deviations from Qualification, Environmental and Endurance Tests (Chart IV)	16
4.2.5	Deviations from Lot Acceptance Tests (Chart V)	16
4.3	Mechanical Requirements	16
4.3.1	Dimension Check	16
4.3.2	Weight	16
4.4	Materials and Finishes	16
4.4.1	Case	17
4.4.2	Lead Material and Finish	17
4.5	Marking	17
4.5.1	General	17
152	Load Identification	17

PAGE 4

ISSUE 1

		<u>Page</u>
4.5.3	The SCC Component Number	17
4.5.4	Traceability Information	17
4.5.5	Marking of Small Components	18
4.6	Electrical Characteristics	18
4.6.1	Electrical Measurements at Room Temperature	18
4.6.2	Electrical Measurements at High and Low Temperatures	18
4.6.3	Circuits for Electrical Measurements	18
4.7	Burn-in Tests	18
4.7.1	Parameter Drift Values	18
4.7.2	Conditions for H.T.R.B. and Burn-in	19
4.7.3	Electrical Circuits for H.T.R.B. and Burn-in	19
4.8	Environmental and Endurance Tests	36
4.8.1	Electrical Measurements on Completion of Environmental Tests	36
4.8.2	Electrical Measurements at Intermediate Points During Endurance Tests	36
4.8.3	Electrical Measurements on Completion of Endurance Tests	36
4.8.4	Conditions for Operating Life Tests	36
4.8.5	Electrical Circuits for Operating Life Tests	36
4.8.6	Conditions for High Temperature Storage Test	36
TABLE	<u>:S</u>	
1(a)	Type Variants	7
1(b)	Maximum Ratings	8
2	Electrical Measurements at Room Temperature, d.c. Parameters	20
	Electrical Measurements at Room Temperature, a.c. Parameters	22
3(a)	Electrical Measurements at High Temperature	23
3(b)	Electrical Measurements at Low Temperature	25
4	Parameter Drift Values	34
5	Conditions for Burn-in	34
6	Electrical Measurements on Completion of Environmental Tests and at Intermediate	37

Points and on Completion of Environmental Testing

PAGE 5

ISSUE 1

		<u>Page</u>
FIGUE	RES	
1	Device Dissipation Derating with Temperature	9
2	Physical Dimensions	10
3(a)	Pin Assignment	13
3(b)	Truth Table	N/A
3(c)	Circuit Schematic	13
3(d)	Functional Diagram	14
4(a)	Input Offset Voltage, Power Supply Rejection Ratio	27
4(b)	Input (Plus) Offset Voltage Adjustment	28
4(c)	Input (Minus) Offset Voltage Adjustment	28
4(d)	Input (Plus) Bias Current	29
4(e)	Output Resistance	29
4(f)	Power Supply Current	30
4(g)	Output Voltage Swing (V _{OUT1})	30
4(h)	Output Voltage Swing (V _{OUT2})	31
4(i)	Short Circuit Output Current	31
4(j)	Open Loop Voltage Gain	32
4(k)	Transient Response Test Circuit	33
5	Floatrical Circuit for Ruro in and Operating Life Test	35

APPENDICES (Applicable to specific Manufacturers only) None.

PAGE 6

ISSUE 1

1. **GENERAL**

1.1 SCOPE

This specification details the ratings, physical and electrical characteristics, test and inspection data for a silicon monolithic, bipolar operational amplifier, based on Type LM 110. It shall be read in conjunction with ESA/SCC Generic Specification No. 9000, the requirements of which are supplemented herein.

1.2 COMPONENT TYPE VARIANTS

Variants of the basic type integrated circuits specified herein, which are also covered by this specification, are given in Table 1(a).

1.3 MAXIMUM RATINGS

The maximum ratings, which shall not be exceeded at any time during use or storage, applicable to the integrated circuits specified herein, are as scheduled in Table 1(b).

1.4 PARAMETER DERATING INFORMATION

As per Figure 1.

1.5 PHYSICAL DIMENSIONS

As per Figure 2.

1.6 PIN ASSIGNMENT

As per Figure 3(a).

1.7 TRUTH TABLE (FIGURE 3(b))

Not applicable.

1.8 CIRCUIT SCHEMATIC

As per Figure 3(c).

1.9 FUNCTIONAL DIAGRAM

As per Figure 3(d).

PAGE 7

ISSUE 1

TABLE 1(a) - TYPE VARIANTS

VARIANT	CASE	FIGURE	LEAD MATERIAL AND FINISH
-01	FLAT	2(a)	D2
-02	FLAT	2(a)	D3 or D4
-03	TO99	2(b)	D2
-04	TO99	2(b)	D3 or D4
-05	DIL	2(c)	D2
-06	DIL	2(c)	D3 or D4

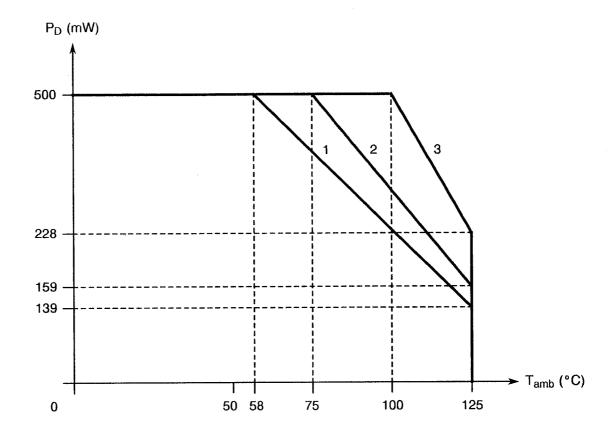
PAGE 8

ISSUE 1

TABLE 1(b) - MAXIMUM RATINGS

No.	CHARACTERISTICS	SYMBOL	MAXIMUM RATINGS	UNITS	REMARKS
1	Supply Voltage	V _{CC}	± 18	٧	
2	Input Voltage	Vi	± 15	٧	Note 1
3	Output Short Circuit Duration	los(t)	Indefinite	-	Note 2
4	Power Dissipation - Type Variants 01-02 - Type Variants 03-04 - Type Variants 05-06	P _{DISS}	500	mW	Note 3 Note 4 Note 5
5	Operating Temperature Range	T _{op}	-55 to +125	°C	
6	Storage Temperature Range	T _{stg}	-65 to +150	°C	
7	Soldering Temperature	T _{sol}	+300	°C	Note 6
8	Junction Temperature	Тј	+ 150	°C	

NOTES


- 1. For supply voltages less than \pm 15V, the absolute maximum input voltage is equal to supply voltage.
- 2. Short circuit may be to either ground or supply. Rating applies to T_{case} = +125°C or T_{amb} = +70°C. If device is driven from a low impedance source a resistor ($\geq 2.0 k\Omega$) must be connected in series with the input to prevent damage to device when the output is shorted.
- 3. Derate above T_{amb} = +58°C at 185°C/W. See Figure 1 Derating Curve.
- 4. Derate above T_{amb} = +75°C at 150°C/W. See Figure 1 Derating Curve.
- 5. Derate above T_{amb} = +100°C at 100°C/W. See Figure 1 Derating Curve.
- Duration 10 seconds maximum at a distance of not less than 1.5mm from the can and the same lead shall not be resoldered until 3 minutes have elapsed.

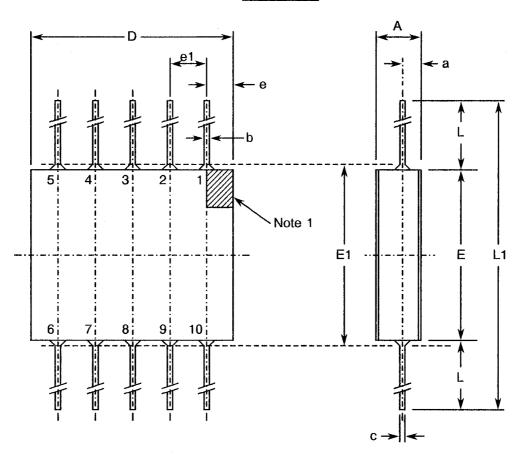
PAGE 9

ISSUE 1

FIGURE 1 - DEVICE DISSIPATION DERATING WITH TEMPERATURE

NOTES

- 1. Derating for type variants 01 and 02.
- 2. Derating for type variants 03 and 04.
- 3. Derating for type variants 05 and 06.



PAGE 10

ISSUE 1

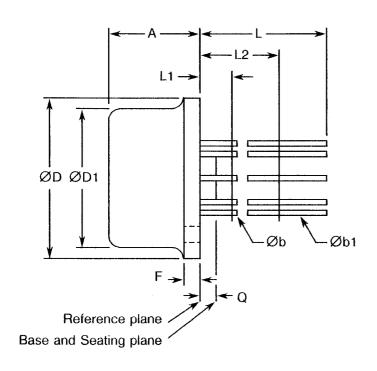
FIGURE 2 - PHYSICAL DIMENSIONS

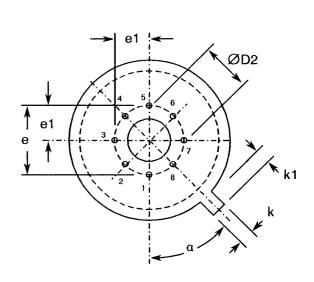
FIGURE 2(a)

SYMBOL	INC	HES	MILLIM	ETRES	NOTES
STIVIBUL	MIN.	MAX.	MIN.	MAX.	NOTES
Α	-	0.080	-	2.03	
a	0.020	0.040	0.508	1.016	
b	0.015	0.019	0.381	0.483	
С	0.004	0.006	0.102	0.152	
D	-	0.260	-	6.60	
E	-	0.260	-	6.60	
E1	-	0.275	-	6.99	
е	0.065	0.085	1.65	2.159	
e1	0.045	0.055	1.14	1.40	
L	0.245	0.255	6.22	6.48	
L1	0.750	0.770	19.05	19.56	

NOTES

1. Index shall be identified by a notch or dot which shall be located adjacent to Pin 1 and shall be within the shaded area shown.




PAGE 11

ISSUE 1

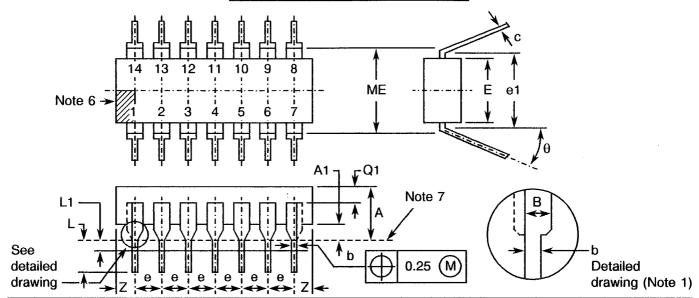
FIGURE 2 - PHYSICAL DIMENSIONS (CONTINUED)

FIGURE 2(b)

SYMBOL	INCI	HES	MILLIM	ETRES	NOTES	
STIVIDUL	MIN.	MAX.	MIN.	MAX.	NOTES	
Α	0.165	0.185	4.19	4.70		
Øb	0.016	0.019	0.41	0.48	1	
Øb1	0.016	0.021	0.41	0.53	1	
ØD	0.335	0.370	8.51	9.40		
ØD1	0.305	0.335	7.75	8.51		
ØD2	0.120 0.160 3.05		4.06			
е	0.200	BSC	5.08	3		
e1	0.100	BSC	2.54	3		
F	-	0.040	-	1.02		
k	0.027	0.034	0.69	0.86		
k1	0.027	0.045	0.69	1.14	2	
L	0.500	0.750	12.70	19.05	1	
L1	-	0.050	-	1.27	1	
L2	0.250		6.35	-	1	
Q	0.010	0.045	0.25	1.14		
α	45°	BSC	45°	BSC	3	

NOTES

- 1. (All leads). Øb applies between L1 and L2. Øb1 applies between L2 and 0.500 (12.70mm) from the reference plane. Diameter is uncontrolled in L1 and beyond 0.500 (12.70mm) from the reference plane.
- 2. Measured from the maximum diameter of the product.
- 3. Leads having a maximum diameter 0.019 (0.48mm) measured in gauging plane 0.054 (1.37mm) +0.001 (0.03mm) -0.000 (0.00mm) below the base plane of the product shall be within 0.007 (0.18mm) of their true position relative to a maximum width tab.



PAGE 12

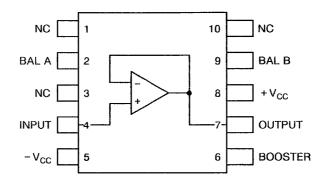
ISSUE 1

FIGURE 2 - PHYSICAL DIMENSIONS (CONTINUED)

SYMBOL	N	IILLIMETRE	S		INCHES		DEGI	REES	NOTES
STIVIBUL	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	MAX.	NOTES
Α	-	-	5.08	•	•	0.200			
A1	0.51	-	-	0.020	-	-			
В	-	-	1.77	-	-	0.070			1
b	0.381	-	0.508	0.015	-	0.020			1
С	0.204	-	0.304	0.008	-	0.012			
E	-	6.3	-	-	0.25	-			
е	-	2.54 *	-	+	0.100 *	-			2
e1	-	7.62 *	-	+	0.300 *	-			3
L	2.5	-	3.9	0.098	_	0.154			(a)
L1	-	-	0.76	-	-	0.030			
ME	7.62	-	8.25	0.300	-	0.325			3
Q1	-	-	2.03	-	-	0.080			
Z									4
θ							0	15	
n =	7×2								5

NOTES

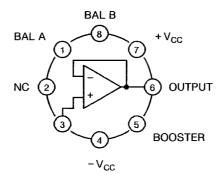
- 1. The lead profile is not required for transition from B to b. The outline of the extreme outputs in the case of F.105A may differ from that of the others, as shown in the Figure.
- 2. The space between leads is measured on the area L1.
- 3. Measured when the value of the angle θ is zero.
- 4. Case F.105: Z between e/2 and e (1.27mm < Z < 2.54mm). Case F.105A: Z less than e/2 (Z < 1.27mm).
- 5. n = quantity of leads.
- 6. Area for visible reference mark on top face.
- 7. Base plane.
 - * = accurate geometrical location.
- (a) Recommended dimensions for the future: minimum 3.0mm (0.122 inch). maximum 3.9mm (0.154 inch).



PAGE 13

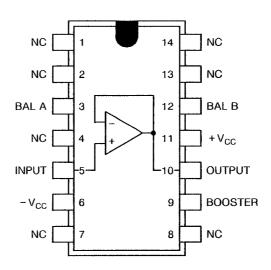
ISSUE 1

FIGURE 3(a) - PIN ASSIGNMENT


(i) - FLAT PACKAGE

NOTES

1. Pin 5 is electrically connected to package base.

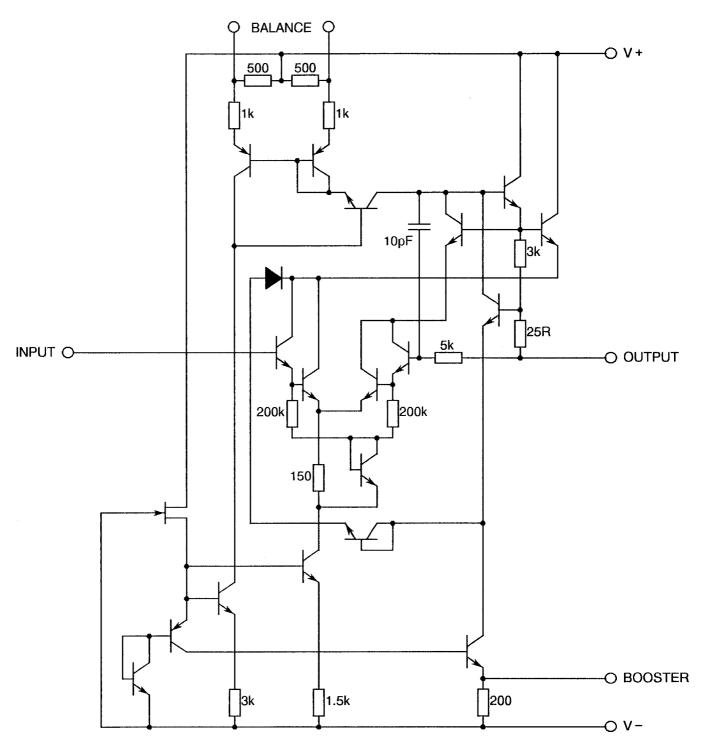

(ii) - TO99 PACKAGE

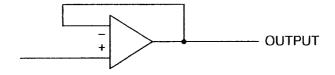
NOTES

1. Pin 4 is electrically connected to package base.

(iii) - DUAL-IN-LINE PACKAGE

NOTES


1. Pin 6 is electrically connected to package base.


PAGE 14

ISSUE 1

FIGURE 3(b) - CIRCUIT SCHEMATIC

FIGURE 3(c) - FUNCTIONAL DIAGRAM

Rev. 'B'

PAGE 15

ISSUE 1

2. APPLICABLE DOCUMENTS

The following documents form part of this specification and shall be read in conjunction with it:-

- (a) ESA/SCC Generic Specification No. 9000 for Integrated Circuits.
- (b) MIL-STD-883, Test Methods and Procedures for Micro-electronics.

3. TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS

For the purpose of this specification, the terms, definitions, abbreviations, symbols and units specified in ESA/SCC Basic Specification No. 21300 shall apply. In addition, the following abbreviations are used:-

PSRR = Power Supply Rejection Ratio.

OS = Overshoot. RT = Rise Time.

4. REQUIREMENTS

4.1 GENERAL

The complete requirements for procurement of the integrated circuits specified herein are stated in this specification and ESA/SCC Generic Specification No. 9000 for Integrated Circuits. Deviations from the Generic Specification applicable to this specification only, are listed in Para. 4.2.

Deviations from the applicable Generic Specification and this Detail Specification, formally agreed with specific Manufacturers on the basis that the alternative requirements are equivalent to the ESA/SCC requirements and do not affect the components' reliability, are listed in the appendices attached to this specification.

4.2 <u>DEVIATIONS FROM GENERIC SPECIFICATION</u>

The following deviations from ESA/SCC Generic Specification No. 9000 shall apply:-

4.2.1 <u>Deviations from Special In-process Controls</u>

None.

4.2.2 Deviations from Final Production Tests (Chart II)

None.

Rev. 'B'

PAGE 16

ISSUE 1

4.2.3 <u>Deviations from Burn-in Tests (Chart III)</u>

Subpara. 7.1.1(a), "High Temperature Reverse Bias" test and subsequent electrical measurements related to this test shall be omitted.

4.2.4 Deviations from Qualification, Environmental and Endurance Tests (Chart IV)

None.

4.2.5 Deviations from Lot Acceptance Tests (Chart V)

None.

4.3 MECHANICAL REQUIREMENTS

4.3.1 Dimension Check

The dimensions of the integrated circuits specified herein shall be checked. They shall conform to those shown in Figure 2.

4.3.2 Weight

The maximum weight of the integrated circuits specified herein shall be for:-

Variants 01, 02: 0.35 grammes. Variants 03, 04: 1.50 grammes. Variants 05, 06: 2.00 grammes.

4.4 MATERIALS

The materials shall be as specified herein. Where a definite material is not specified, a material which will enable the integrated circuits specified herein to meet the performance requirements of this specification shall be used. Acceptance or approval of any constituent material does not guarantee acceptance of the finished product.

Rev. 'A'

PAGE 17

ISSUE 1

4.4.1 Case

The case shall be hermetically sealed and have a metal body with hard glass seals or a ceramic body and the lids shall be welded, brazed, preform-soldered or glass frit-sealed.

4.4.2 Lead Material and Finish

The lead material shall be Type 'D' with either Type '2' or Type '3 or 4' finish in accordance with ESA/SCC Basic Specification No. 23500 (See Table 1(a) for Type Variants).

4.5 MARKING

4.5.1 General

The marking of components delivered to this specification shall be in accordance with ESA/SCC Basic Specification No. 21700. Each component shall be marked in respect of:-

- (a) Lead Identification.
- (b) The SCC Component Number.
- (c) Traceability Information.

4.5.2 <u>Lead Identification</u>

An index shall be located at the top of the package in the position defined in Figure 2 (Variants 01, 02), Note 1 of Figure 2 (Variants 03, 04) or Note 6 of Figure 2 (Variants 05, 06). Alternatively, a tab may be used to identify Pin No. 1 (Variants 01 and 02 only). The pin numbering shall be read with the index or tab on the left-hand side.

4.5.3 The SCC Component Number

Each component shall bear the SCC Component Number which shall be constituted and marked as follows:

	910800102B
Detail Specification Number	
Type Variant, as applicable ————————————————————————————————————	
Testing Level (B or C, as applicable)	

4.5.4 Traceability Information

Each component shall be marked in respect of traceability information in accordance with ESA/SCC Basic Specification No. 21700.

PAGE 18

ISSUE

4.5.5 Marking of Small Components

When it is considered that the component is too small to accommodate the marking as specified above, as much as space permits shall be marked. The order of precedence shall be as follows:-

- (a) Lead Identification.
- (b) The SCC Component Number.
- (c) Traceability Information.

The marking information in full shall accompany each component in its primary package.

4.6 ELECTRICAL CHARACTERISTICS

4.6.1 <u>Electrical Measurements at Room Temperature</u>

The parameters to be measured in respect of electrical characteristics are scheduled in Table 2. Unless otherwise specified, the measurements shall be performed at T_{amb} = +22 ±3 °C.

4.6.2 Electrical Measurements at High and Low Temperatures

The parameters to be measured at high and low temperatures are scheduled in Tables 3(a) and 3(b). The measurements shall be performed at $T_{amb} = +125(+0-5)^{\circ}C$ and $-55(+5-0)^{\circ}C$ respectively.

4.6.3 <u>Circuits for Electrical Measurements</u>

Circuits for use in performing the electrical measurements listed in Tables 2 and 3 of this specification are shown in Figure 4.

4.7 BURN-IN TESTS

4.7.1 Parameter Drift Values

The parameter drift values applicable to burn-in are specified in Table 4 of this specification. Unless otherwise stated, measurements shall be performed at T_{amb} = +22 ± 3 °C. The parameter drift values (Δ) applicable to the parameters scheduled, shall not be exceeded. In addition to these drift value requirements, the appropriate limit value specified for a given parameter in Table 2 shall not be exceeded.

PAGE 19

ISSUE 1

4.7.2 Conditions for Burn-in

The requirements for burn-in are specified in Section 7 of ESA/SCC Generic Specification No. 9000. The conditions for burn-in shall be as specified in Table 5 of this specification.

4.7.3 <u>Electrical Circuits for Burn-in</u>

Circuits for use in performing the burn-in tests are shown in Figure 5 of this specification.

PAGE 20

ISSUE 1

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - d.c. PARAMETERS

No.	Characteristics	Symbol	Test Method	Test	Meas'd	Test Conditions	Lim	nits	Unit
INO.	Ondracteristics	Symbol	MIL-STD 883	Fig.	Value	(Note 1)	Min	Max	Onit
1	Input Offset Voltage	V _{IO1}	4001	4(a)	E ₁	$+V_{CC} = +18V, -V_{CC} = -18V$ R _S = 3.0k Note 2	-2.5	2.5	mV
2	Input Offset Voltage	V _{IO2}	4001	4(a)	E ₂	$+V_{CC} = +5.0V, -V_{CC} = -5.0V$ R _S = 3.0k	- 2.5	2.5	mV
3	Input (Plus) Offset Voltage Adjustment	V _{+lO(ADJ)}		4(b)	E ₃	$+V_{CC} = +18V, -V_{CC} = -18V$ R _S = 3.0k	5.0	-	mV
4	Input (Minus) Offset Voltage Adjustment	V _{-IO(ADJ)}	-	4(c)	E ₄	$+V_{CC} = +18V, -V_{CC} = -18V$ R _S = 3.0k		-5.0	mV
5	Input (Plus) Bias Current	I +IB	4001	4(d)	E ₅	+V _{CC} = +18V, -V _{CC} = -18V	-	3.0	nΑ
6	Output Resistance	R _O	-	4(e)	E ₆	$+V_{CC} = +18V, -V_{CC} = -18V$	-	2.5	Ω
7	Power Supply Rejection Ratio (Plus)	+PSRR	4003	4(a)	E ₇	+ V _{CC} = + 10V, - V _{CC} = - 18V Note 2	-	- 70	dB
8	Power Supply Rejection Ratio (Minus)	- PSRR	4003	4(a)	E ₈	+ V _{CC} = + 18V, - V _{CC} = - 10V Note 2	. -	- 70	dB
9	Power Supply Current	lcc(+)	3005	4(f)	lcc	$+V_{CC} = +18V, -V_{CC} = -18V$	-	5.5	mA
10	Output Voltage Swing (Plus)	V _{OUT1(+)}	4004	4(g)	E ₉	$+V_{CC} = +18V, -V_{CC} = -18V$ $V_{IN} = 10V, R_{L} = 10k$ Booster = Open Note 3	20	-	V

PAGE 21

ISSUE 1

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - d.c. PARAMETERS (CONT'D)

No.	Characteristics	Symbol	Test Method	Test	Meas'd	Test Conditions	Lim	nits	Unit
INO.	Characteristics	Symbol	MIL-STD 883	Fig.	Value	(Note 1)	Min	Max	Ulik
11	Output Voltage Swing (Minus)	V _{OUT1(-)}	4004	4(g)	E ₁₀	$+V_{CC} = +18V, -V_{CC} = -18V$ $V_{IN} = -10V, R_{L} = 10k$ Booster = Open Note 3	20	-	V
12	Output Voltage Swing (Plus)	V _{OUT2(+)}	4004	4(h)	E ₁₁	$+V_{CC} = +18V, -V_{CC} = -18V$ $V_{IN} = +10V, R_{L} = 3k3$ Booster = 100R to $-V_{CC}$ Note 3	20	-	V
13	Output Voltage Swing (Plus)	V _{OUT2(+)}	4004	4(h)	E ₁₂	$+V_{CC} = +18V, -V_{CC} = -18V$ $V_{IN} = -10V, R_{L} = 3k3$ Booster = 100R to $-V_{CC}$ Note 3	20	•	V
14	Short Circuit Output Current (Plus)	los(+)	3011	4(i)	l _{OS1}	$+V_{CC} = +18V, -V_{CC} = -18V$ $V_{IN} = +15V$ Duration = 5s	10	35	mA
15	Short Circuit Output Current (Minus)	l _{OS(-)}	3011	4(i)	l _{OS2}	+ V _{CC} = + 18V, - V _{CC} = - 18V V _{IN} = - 15V Duration = 5s	1.5	10	mA
16	Open Loop Voltage Gain (Plus)	+ A _{VS}	4004	4(j)	E ₁₃	$+V_{CC} = +18V, -V_{CC} = -18V$	0.999	1.000	<u>-</u>
17	Open Loop Voltage Gain (Minus)	-A _{VS}	4004	4(j)	E ₁₄	+ V _{CC} = + 18V, - V _{CC} = - 18V	0.999	1.000	-

PAGE 22

ISSUE 1

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - a.c. PARAMETERS

No.	Characteristics	Symbol	Test Method	Test	Test Conditions	Lin	nits	Unit
NO.	Ondracteristics	Symbol	MIL-STD 883	Fig.	(Note 1)	Min	Max	Offic
18	Slew Rate (Plus)	SR(+)	4002	4(k)	$+ V_{CC} = + 18V, -V_{CC} = - 18V$ $V_{IN} = -5.0V$ to $+ 5.0V$ Rise Time < 10ns Note 4	25	-	V/µs
19	Slew Rate (Minus)	SR(-)	4002	4(k)	$+V_{CC} = +18V, -V_{CC} = -18V$ $V_{IN} = -5.0V$ to $+5.0V$ Rise Time <100ns Note 4	25	-	V/µs
20	RiseTime	RT	-	4(k)	$+V_{CC} = +18V, -V_{CC} = -18V$ $V_{IN} = +50$ mV Rise Time < 10ns Note 4	-	44	ns
21	Overshoot	os	-	4(k)	$+V_{CC} = +18V, -V_{CC} = -18V$ $V_{IN} = +50$ mV Rise Time < 10ns Note 4	-	30	%
22	Bandwidth Small Signal	BW	-	4(k)	+V _{CC} = +18V, -V _{CC} = -18V Notes 4 and 5	8.0	-	MHz

NOTES

- 1. (a) All supply voltages shall be held to within $\pm 0.1 \text{V}$ of the specific value.
 - (b) All resistors are 0.1% tolerance.
 - (c) All capacitors are 10% tolerance.
- 2. E_1 , E_7 and E_8 etc. shall be measured to 4 places of accuracy.
- 3. V_{IN} shall be increased in steps of 0.1V starting at $\pm 9.0V$ (as applicable) until the increase in output voltage (V_O) < 0.08V per 0.1V increase in V_{IN} . The last value of V_O shall be used to calculate V_{OUT} .
- 4. Sample Test Inspection Level = II, AQL = 2.5%.
- 5. Bandwidth = 0.32 / Rise Time (RT) μ s = MHz.

PAGE 24

ISSUE 1

TABLE 3(a) - ELECTRICAL MEASUREMENTS AT HIGH TEMPERATURE, + 125(+0-5) °C (CONT'D)

No.	Characteristics	Symbol	Test Method	Test	Meas'd	Test Conditions	Lin	nits	Unit
140.	Onaracteristics	Зуныон	MIL-STD 883	Fig.	Value	(Note 1)	Min	Max	Offic
11	Output Voltage Swing (Minus)	V _{OUT1(-)}	4004	4(g)	E ₂₄	$+ V_{CC} = + 18V, - V_{CC} = - 18V$ $V_{IN} = - 10V, R_{L} = 10k$ Booster = Open Note 3	20	-	V
12	Output Voltage Swing (Plus)	V _{OUT2(+)}	4004	4(h)	E ₂₅	$+ V_{CC} = + 18V, -V_{CC} = - 18V$ $V_{IN} = + 10V, R_{L} = 3k3$ Booster = 100R to $-V_{CC}$ Note 3	20	-	V
13	Output Voltage Swing (Plus)	V _{OUT2(+)}	4004	4(h)	E ₂₆	$+V_{CC} = +18V, -V_{CC} = -18V$ $V_{IN} = -10V, R_{L} = 3k3$ Booster = 100R to $-V_{CC}$ Note 3	20	-	V
14	Short Circuit Output Current (Plus)	l _{OS(+)}	3011	4(i)	l _{OS1}	$+ V_{CC} = + 18V, -V_{CC} = - 18V$ $V_{IN} = + 15V$ Duration = 5s	10	35	mA
15	Short Circuit Output Current (Minus)	l _{OS(-)}	3011	4(i)	l _{OS2}	$+V_{CC} = +18V, -V_{CC} = -18V$ $V_{IN} = -15V$ Duration = 5s	1.5	10	mA
16	Open Loop Voltage Gain (Plus)	+A _{VS}	4004	4(j)	E ₂₇	$+V_{CC} = +18V, -V_{CC} = -18V$	0.999	1.000	
17	Open Loop Voltage Gain (Minus)	-A _{VS}	4004	4(j)	E ₂₈	$+V_{CC} = +18V, -V_{CC} = -18V$	0.999	1.000	-

PAGE 25

ISSUE 1

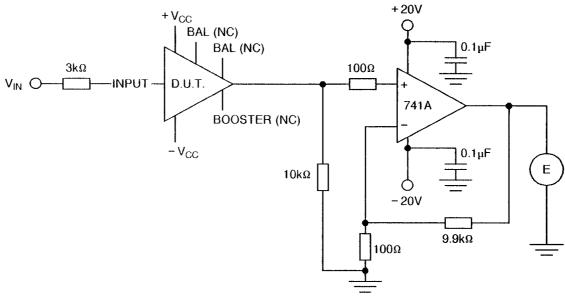
TABLE 3(b) - ELECTRICAL MEASUREMENTS AT LOW TEMPERATURE, -55(+5-0) °C

No.	Characteristics	Symbol	Test Method	Test	Meas'd	Test Conditions	Lin	nits	Unit
NO.	Ondracteristics	Symbol	MIL-STD 883	Fig.	Value	(Note 1)	Min	Max	Offic
1	Input Offset Voltage	V _{IO1}	4001	4(a)	E ₂₉	$+V_{CC} = +18V, -V_{CC} = -18V$ R _S = 3.0k Note 2	-3.0	3.0	mV
2	Input Offset Voltage	V _{IO2}	4001	4(a)	E ₃₀	$+V_{CC} = +5.0V, -V_{CC} = -5.0V$ R _S = 3.0k	-3.0	3.0	mV
3	Input (Plus) Offset Voltage Adjustment	V _{+IO(ADJ)}	-	4(b)	E ₃₁	$+V_{CC} = +18V, -V_{CC} = -18V$ $R_S = 3.0k$	5.0	-	mV
4	Input (Minus) Offset Voltage Adjustment	V-IO(ADJ)	-	4(c)	E ₃₂	$+V_{CC} = +18V, -V_{CC} = -18V$ R _S = 3.0k	-	-5.0	mV
5	Input (Plus) Bias Current	l _{+IB}	4001	4(d)	E ₃₃	$+V_{CC} = +18V, -V_{CC} = -18V$	-	10	nA
6	Output Resistance	R _O		4(e)	E ₃₄	$+V_{CC} = +18V, -V_{CC} = -18V$	-	5.0	Ω
7	Power Supply Rejection Ratio (Plus)	+ PSRR	4003	4(a)	E ₃₅	+ V _{CC} = + 10V, - V _{CC} = - 18V Note 2	-	- 70	dB
8	Power Supply Rejection Ratio (Minus)	- PSRR	4003	4(a)	E ₃₆	+ V _{CC} = + 18V, - V _{CC} = - 10V Note 2	-	- 70	dB
9	Power Supply Current	lcc(+)	3005	4(f)	lcc	$+V_{CC} = +18V, -V_{CC} = -18V$	-	6.5	mA

PAGE 26

ISSUE 1

TABLE 3(b) - ELECTRICAL MEASUREMENTS AT LOW TEMPERATURE, -55(+5-0) °C (CONT'D)


No. Characteristi	Charactoristics	Symbol	Test Method MIL-STD 883	Test	Meas'd	Test Conditions (Note 1)	Lim	nits	Unit
	Orial actoristics			Fig.	Value		Min	Max	Offic
14	Short Circuit Output Current (Plus)	l _{OS(+)}	3011	4(i)	los ₁	$+V_{CC} = +18V, -V_{CC} = -18V$ $V_{IN} = +15V$ Duration = 5s	10	40	mA
15	Short Circuit Output Current (Minus)	l _{OS(-)}	3011	4(i)	l _{OS2}	$+ V_{CC} = + 18V, -V_{CC} = -18V$ $V_{IN} = -15V$ Duration = 5s	1.3	10	mA

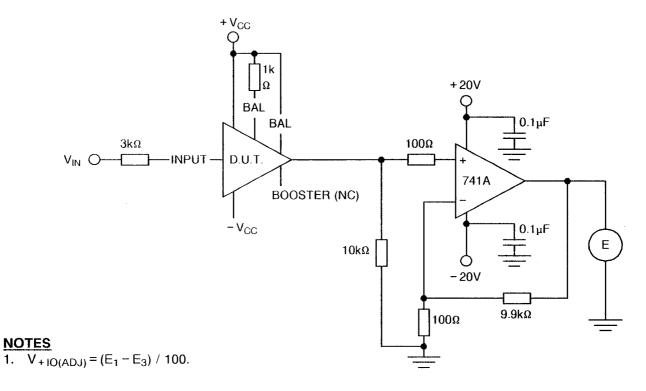
PAGE 27

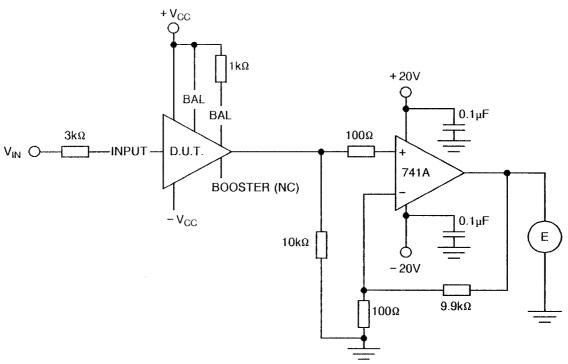
ISSUE 1

FIGURE 4(a) - INPUT OFFSET VOLTAGE, POWER SUPPLY REJECTION RATIO

NOTES

1.
$$V_{IO1} = \frac{E_1}{100}$$
; $V_{IO2} = \frac{E_2}{100}$


- 2. + PSRR = 20 \log_{10} (E₁ E₇) / 8×10⁵. 3. PSRR = 20 \log_{10} (E₁ E₈) / 8×10⁵.

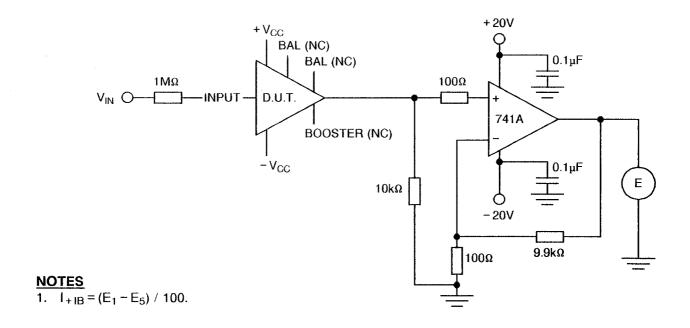

PAGE 28

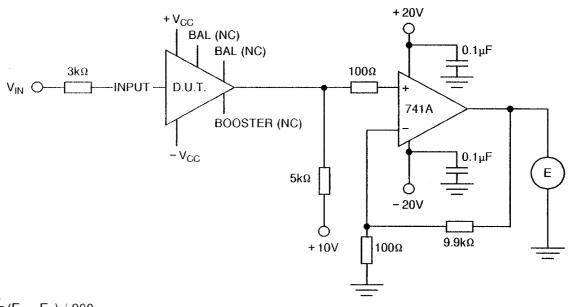
ISSUE 1

FIGURE 4(b) - INPUT (PLUS) OFFSET VOLTAGE ADJUSTMENT

FIGURE 4(c) - INPUT (MINUS) OFFSET VOLTAGE ADJUSTMENT

NOTES

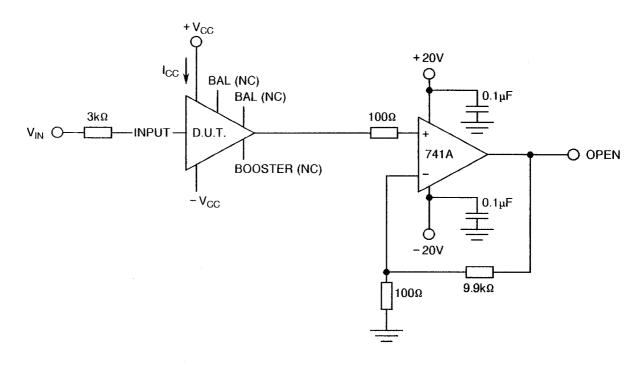

1. $V_{-IO(ADJ)} = (E_1 - E_4) / 100$.

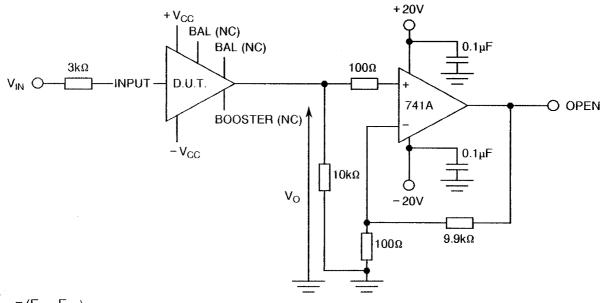

PAGE 29

ISSUE 1

FIGURE 4(d) - INPUT (PLUS) BIAS CURRENT

FIGURE 4(e) - OUTPUT RESISTANCE


NOTES 1. $R_0 = (E_6 - E_1) / 200$.

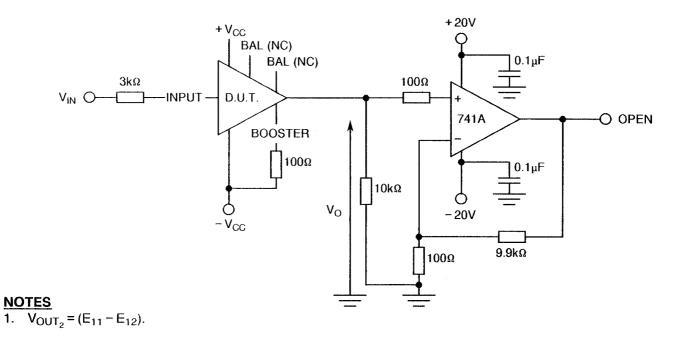

PAGE 30

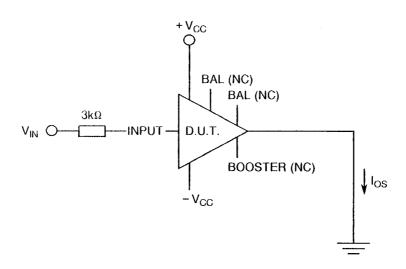
ISSUE 1

FIGURE 4(f) - POWER SUPPLY CURRENT

FIGURE 4(g) - OUTPUT VOLTAGE SWING (VOLT1)

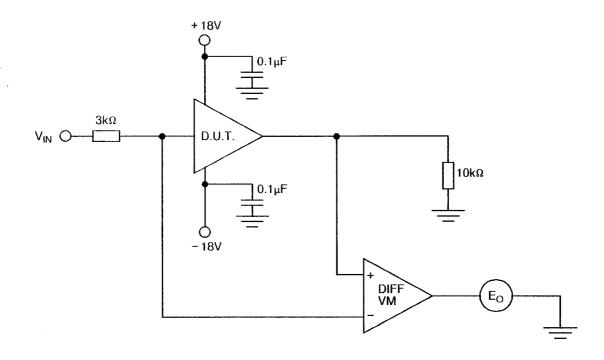
<u>NOTES</u>


 $\overline{1. V_{OUT_1}} = (E_9 - E_{10}).$


PAGE 31

ISSUE 1

FIGURE 4(h) - OUTPUT VOLTAGE SWING (VOLT2)


FIGURE 4(i) - SHORT CIRCUIT OUTPUT CURRENT

PAGE 32

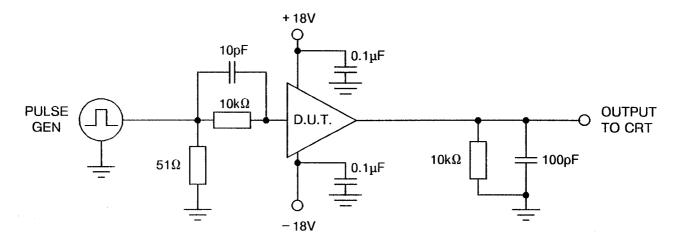
ISSUE 1

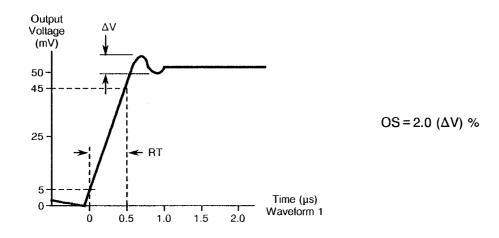
FIGURE 4(i) - OPEN LOOP VOLTAGE GAIN

NOTES

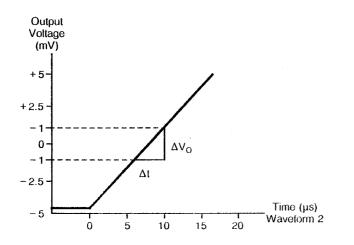
- 1. The differential voltmeter shall have a common mode rejection equal to or greater than 100dB and a maximum common mode input range equal to or greater than ±15V.
- 2. To calculate voltage gain, use the following procedure:

Step	V _{IN}	Measure	Equation
1	0V	E ₀₁	
2	+ 10V	E ₀₂	$A_{V+} = 1 - (E_{01} - E_{02})$
3	- 10V	E ₀₃	$A_{V-} = 1 - (E_{03} - E_{02})$


3. Test duration is 10ms.


PAGE 33

ISSUE 1


FIGURE 4(k) - TRANSIENT RESPONSE TEST CIRCUIT FOR MEASUREMENT OF SLEW RATE, RISE-TIME, OVERSHOOT AND BANDWIDTH SMALL SIGNAL

(i) OUTPUT WAVE - RISE TIME (RT) AND OVERSHOOT (OS)

(ii) OUTPUT WAVE - SLEW RATE

 $SR = \Delta V_O / \Delta t$

PAGE 23

ISSUE 1

TABLE 3(a) - ELECTRICAL MEASUREMENTS AT HIGH TEMPERATURE, + 125(+0-5) °C

No.	Characteristics	Symbol	Test Method		Meas'd		Lin	nits	Unit
140.	Onaracteristics	Symbol	MIL-STD 883	Fig.	Value	(Note 1)	Min	Max	Onit
1	Input Offset Voltage	V _{IO1}	4001	4(a)	E ₁₅	$+V_{CC} = +18V, -V_{CC} = -18V$ R _S = 3.0k Note 2	-3.0	3.0	mV
2	Input Offset Voltage	$V_{\rm IO2}$	4001	4(a)	E ₁₆	$+V_{CC} = +5.0V, -V_{CC} = -5.0V$ R _S = 3.0k	-3.0	3.0	mV
3	Input (Plus) Offset Voltage Adjustment	V _{+IO(ADJ)}	-	4(b)	E ₁₇	$+V_{CC} = +18V, -V_{CC} = -18V$ $H_S = 3.0k$	5.0	-	mV
4	Input (Minus) Offset Voltage Adjustment	V _{-lO(ADJ)}	-	4(c)	E ₁₈	$+V_{CC} = +18V, -V_{CC} = -18V$ R _S = 3.0k		-5.0	mV
5	Input (Plus) Bias Current	l +1B	4001	4(d)	E ₁₉	$+V_{CC} = +18V, -V_{CC} = -18V$	-	10	nA
6	Output Resistance	R _O	-	4(e)	E ₂₀	$+V_{CC} = +18V, -V_{CC} = -18V$	-	2.5	Ω
7	Power Supply Rejection Ratio (Plus)	+PSRR	4003	4(a)	E ₂₁	+ V _{CC} = + 10V, - V _{CC} = -18V Note 2	-	-70	dΒ
8	Power Supply Rejection Ratio (Minus)	-PSRR	4003	4(a)	E ₂₂	+ V _{CC} = + 18V, - V _{CC} = - 10V Note 2	-	-70	dB
9	Power Supply Current	I _{CC(+)}	3005	4(f)	lcc	+ V _{CC} = + 18V, - V _{CC} = -18V	-	4.0	mA
10	Output Voltage Swing (Plus)	V _{OUT1(+)}	4004	4(g)	E ₂₃	$+ V_{CC} = + 18V, -V_{CC} = - 18V$ $V_{IN} = 10V, R_{L} = 10k$ Booster = Open Note 3	20	-	V

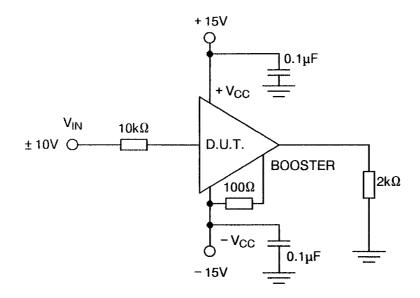
PAGE 34

ISSUE 1

TABLE 4 - PARAMETER DRIFT VALUES

No.	CHARACTERISTICS	SYMBOL	SPEC. AND/OR TEST METHOD	TEST CONDITIONS	CHANGE LIMITS (Δ)	UNIT
1	Input Offset Voltage Change	V _{IO1}	As per Table 2	As per Table 2	± 0.5	mV
5	Input (Plus) Bias Current Change	I _{+IB}	As per Table 2	As per Table 2	± 1.0	nA
9	Power Supply Current Change	I _{CC(+)}	As per Table 2	As per Table 2	± 10	%

TABLE 5 - CONDITIONS FOR BURN-IN


No.	CHARACTERISTICS	SYMBOL	CONDITION	UNIT
1	Ambient Temperature	T _{amb}	+ 125(+ 0 - 5)	°C
2	Supply Voltage	V _{CC}	± 15	V
3	Input Voltage	V _{IN}	± 10	V

PAGE 35

ISSUE 1

FIGURE 5 - ELECTRICAL CIRCUIT FOR BURN-IN AND OPERATING LIFE

PAGE 36

ISSUE 1

4.8 ENVIRONMENTAL AND ENDURANCE TESTS

4.8.1 Electrical Measurements on Completion of Environmental Tests

The parameters to be measured on completion of environmental tests are scheduled in Table 6. Unless otherwise stated, the measurements shall be performed at T_{amb} = +22 ±3 °C.

4.8.2 Electrical Measurements at Intermediate Points during Endurance Tests

The parameters to be measured at intermediate points during endurance tests are as scheduled in Table 6 of this specification.

4.8.3 <u>Electrical Measurements on Completion of Endurance Tests</u>

The parameters to be measured on completion of endurance testing are as scheduled in Table 6 of this specification. Unless otherwise stated, the measurements shall be performed at T_{amb} = +22 ±3 °C.

4.8.4 Conditions for Operating Life Tests

The requirements for operating life testing are specified in Section 9 of ESA/SCC Generic Specification No. 9000. The conditions for operating life testing shall be as specified in Table 5 of this specification.

4.8.5 Electrical Circuits for Operating Life Tests

Circuits for use in performing the operating life tests are shown in Figure 5.

4.8.6 Conditions for High Temperature Storage Test

The requirements for the high temperature storage test are specified in ESA/SCC Generic Specification No. 9000. The conditions for high temperature storage shall be $T_{amb} = +150(+0-5)$ °C.

PAGE 37

ISSUE 1

TABLE 6 - ELECTRICAL MEASUREMENTS ON COMPLETION OF ENVIRONMENTAL TESTS AND AT INTERMEDIATE POINTS AND ON COMPLETION OF ENDURANCE TESTING

No.	CHARACTERISTICS	SYMBOL	SPEC. AND/OR	TEST	LIM	ITS	UNIT
140.	CHARACTERISTICS	STWIDOL	TEST METHOD	CONDITIONS	MIN	MAX	UNIT
1	Input Offset Voltage	V _{IO1}	As per Table 2	As per Table 2	- 2.5	2.5	mV
5	Input (Plus) Bias Current	I _{+IB}	As per Table 2	As per Table 2	ı	3.0	nĄ
9	Power Supply Current	I _{CC(+)}	As per Table 2	As per Table 2	-	5.5	mA
16	Open Loop Voltage Gain	+ A _{VS}	As per Table 2	As per Table 2	0.999	1.000	-