

Page 1 of 21

# INTEGRATED CIRCUITS, SILICON MONOLITHIC, CMOS, 128K X 8-BIT, ASYNCHRONOUS STATIC RANDOM ACCESS MEMORY WITH THREE STATE OUTPUTS

### **BASED ON TYPE 65609E**

## ESCC Detail Specification No. 9301/053

| Issue 2 April 2014 |
|--------------------|
|--------------------|



Document Custodian: European Space Agency - see <a href="https://escies.org">https://escies.org</a>



### **LEGAL DISCLAIMER AND COPYRIGHT**

European Space Agency, Copyright © 2014. All rights reserved.

The European Space Agency disclaims any liability or responsibility, to any person or entity, with respect to any loss or damage caused, or alleged to be caused, directly or indirectly by the use and application of this ESCC publication.

This publication, without the prior permission of the European Space Agency and provided that it is not used for a commercial purpose, may be:

- copied in whole, in any medium, without alteration or modification.
- copied in part, in any medium, provided that the ESCC document identification, comprising the ESCC symbol, document number and document issue, is removed.



## **DOCUMENTATION CHANGE NOTICE**

(Refer to <a href="https://escies.org">https://escies.org</a> for ESCC DCR content)

| DCR No. | CHANGE DESCRIPTION                                               |
|---------|------------------------------------------------------------------|
| 849     | Specification upissued to incorporate editorial changes per DCR. |

### ESCC Detail Specification

No. 9301/053

PAGE 4

ISSUE 2

### **TABLE OF CONTENTS**

| 1       | GENERAL                                                               | 5  |
|---------|-----------------------------------------------------------------------|----|
| 1.1     | SCOPE                                                                 | 5  |
| 1.2     | APPLICABLE DOCUMENTS                                                  | 5  |
| 1.3     | TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS                  | 5  |
| 1.4     | THE ESCC COMPONENT AND COMPONENT TYPE VARIANTS                        | 5  |
| 1.4.1   | The ESCC Component Number                                             | 5  |
| 1.4.2   | Component Type Variants                                               | 5  |
| 1.5     | MAXIMUM RATINGS                                                       | 6  |
| 1.6     | HANDLING PRECAUTIONS                                                  | 6  |
| 1.7     | PHYSICAL DIMENSIONS AND TERMINAL IDENTIFICATION                       | 7  |
| 1.8     | FUNCTIONAL DIAGRAM                                                    | 8  |
| 1.9     | PIN ASSIGNMENT                                                        | 8  |
| 1.10    | TRUTH TABLE AND TIMING DIAGRAMS                                       | 9  |
| 1.11    | PROTECTION NETWORKS                                                   | 13 |
| 2       | REQUIREMENTS                                                          | 13 |
| 2.1     | GENERAL                                                               | 13 |
| 2.1.1   | Deviations from the Generic Specification                             | 13 |
| 2.1.1.1 | Deviations from Screening Tests - Chart F3                            | 13 |
| 2.2     | MARKING                                                               | 14 |
| 2.3     | ELECTRICAL MEASUREMENTS AT ROOM, HIGH AND LOW TEMPERATURES            | 14 |
| 2.3.1   | Room Temperature Electrical Measurements                              | 14 |
| 2.3.2   | High and Low Temperatures Electrical Measurements                     | 19 |
| 2.4     | PARAMETER DRIFT VALUES                                                | 19 |
| 2.5     | INTERMEDIATE AND END-POINT ELECTRICAL MEASUREMENTS                    | 20 |
| 2.6     | POWER BURN-IN CONDITIONS                                              | 20 |
| 2.7     | OPERATING LIFE CONDITIONS                                             | 21 |
| 2.8     | TOTAL DOSE RADIATION TESTING                                          | 21 |
| 2.8.1   | Bias Conditions and Total Dose Level for Total Dose Radiation Testing | 21 |
| 2.8.2   | Electrical Measurements for Total Dose Radiation Testing              | 21 |



### 1 **GENERAL**

### 1.1 SCOPE

This specification details the ratings, physical and electrical characteristics and test and inspection data for the component type variants and/or the range of components specified below. It supplements the requirements of, and shall be read in conjunction with, the ESCC Generic Specification listed under Applicable Documents.

### 1.2 APPLICABLE DOCUMENTS

The following documents form part of this specification and shall be read in conjunction with it:

- (a) ESCC Generic Specification No. 9000
- (b) MIL-STD-883, Test Methods and Procedures for Microelectronics

### 1.3 TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS

For the purpose of this specification, the terms, definitions, abbreviations, symbols and units specified in ESCC Basic Specification No. 21300 shall apply.

### 1.4 THE ESCC COMPONENT AND COMPONENT TYPE VARIANTS

### 1.4.1 The ESCC Component Number

The ESCC Component Number shall be constituted as follows:

Example: 930105301R

Detail Specification Reference: 9301053Component Type Variant Number: 01

Total Dose Radiation Level Letter: R (as required)

### 1.4.2 <u>Component Type Variants</u>

The component type variants applicable to this specification are as follows:

| Variant<br>Number | Based on Type | Case    | Terminal<br>Material and<br>Finish | Weight<br>max g | Total Dose<br>Radiation Level<br>Letter |
|-------------------|---------------|---------|------------------------------------|-----------------|-----------------------------------------|
| 01                | 65609E        | MFP-F32 | G2                                 | 3               | R [100kRAD(Si)]                         |

The terminal material and finish shall be in accordance with the requirements of ESCC Basic Specification No. 23500.

The total dose radiation level letter shall be as defined in ESCC Basic Specification No 22900. If an alternative radiation test level is specified in the Purchase Order the letter shall be changed accordingly.



### 1.5 MAXIMUM RATINGS

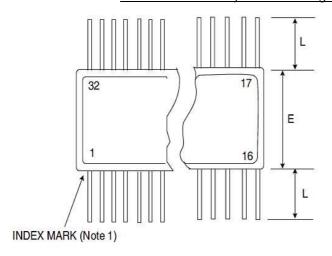
The maximum ratings shall not be exceeded at any time during use or storage.

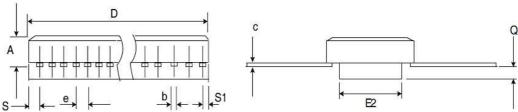
Maximum ratings shall only be exceeded during testing to the extent specified in this specification and when stipulated in Test Methods and Procedures of the ESCC Generic Specification.

| Characteristics                         | Symbols              | Maximum Ratings              | Units | Remarks          |
|-----------------------------------------|----------------------|------------------------------|-------|------------------|
| Supply Voltage                          | $V_{DD}$             | -0.5 to 5                    | V     | Note 1           |
| Input Voltage Range                     | V <sub>IN</sub>      | -0.3 to V <sub>DD</sub> +0.3 | V     | Notes 1, 2       |
| Output Voltage Range                    | V <sub>OUT</sub>     | -0.3 to V <sub>DD</sub> +0.3 | V     | Notes 1, 2       |
| Input Current                           | I <sub>IN</sub>      | ±10                          | mAdc  |                  |
| Output Current into Input/Outputs (Low) | I <sub>I/O</sub>     | 20                           | mAdc  | Note 3           |
| Device Power Dissipation (Continuous)   | P <sub>D</sub>       | 200                          | mW    |                  |
| Operating Temperature Range             | T <sub>op</sub>      | -55 to +125                  | °C    | T <sub>amb</sub> |
| Storage Temperature Range               | T <sub>stg</sub>     | -65 to +150                  | °C    |                  |
| Soldering Temperature                   | T <sub>sol</sub>     | +300                         | °C    | Note 4           |
| Junction Temperature                    | T <sub>j</sub>       | +175                         | °C    |                  |
| Thermal Resistance,<br>Junction to Case | R <sub>th(j-c)</sub> | 14                           | °C/W  |                  |

### NOTES:

- All voltages are with respect to  $V_{SS}$ . Device is functional from  $3 \le V_{DD} \le 3.6V$
- V<sub>DD</sub> +0.3V shall not exceed 5V.
- 3. The maximum output current of any single I/O.
- 4. Duration 10 seconds maximum at a distance of not less than 1.6mm from the device body and the same terminal shall not be resoldered until 3 minutes have elapsed.


### 1.6 <u>HANDLING PRECAUTIONS</u>


These devices are susceptible to damage by electrostatic discharge. Therefore, suitable precautions shall be employed for protection during all phases of manufacturing, testing, packaging, shipment and any handling.

These components are categorised as Class 1 per ESCC Basic Specification No. 23800 with a Minimum Critical Path Failure Voltage of 500 Volts.



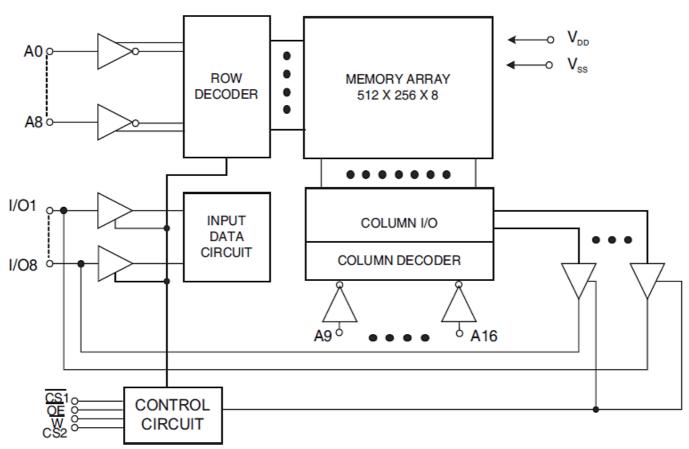
# 1.7 PHYSICAL DIMENSIONS AND TERMINAL IDENTIFICATION Flat Leaded Multilayer Flat Package (MFP-F32) - 32 lead





| 0 1 1   | Dimensi |       |       |
|---------|---------|-------|-------|
| Symbols | Min     | Max   | Notes |
| Α       | 1.78    | 2.72  |       |
| b       | 0.38    | 0.48  | 2     |
| С       | 0.076   | 0.15  | 2     |
| D       | 20.62   | 21.03 | 3     |
| E       | 10.26   | 10.57 | 3     |
| E2      | 6.96    | 7.26  |       |
| е       | 1.27    | BSC   | 2, 4  |
| L       | 7       | 8.5   | 4     |
| Q       | 0.51    | 0.76  | 2, 5  |
| S       | -       | 1.14  | 6     |
| S1      | 0       | -     | 6     |

### NOTES:


- 1. Index mark: a notch or terminal 1 identification mark shall be located adjacent to terminal 1.
- 2. All terminals.



- ISSUE 2
- 3. This dimension allows for package edge anomalies caused by material protrusions such as rough ceramic, misaligned ceramic layers and lids, meniscus, and glass overrun.

  The corner shape (square, notch, radius etc.) may vary at the manufacturer option from that shown on the drawing.
- 4. 30 places. The true position pin spacing is 1.27mm between centrelines. Each pin centreline shall be located within ±0.13mm of its true longitudinal position relative to Pin 1 and the highest pin number.
- 5. Dimension Q shall be measured at the point of exit of the lead from the body.
- 6. Two places.

### 1.8 <u>FUNCTIONAL DIAGRAM</u>

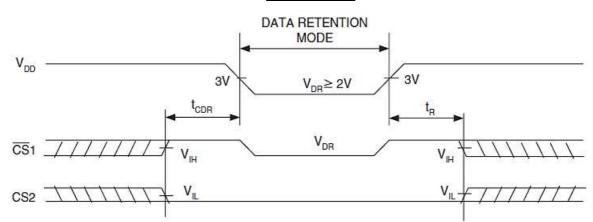


### 1.9 PIN ASSIGNMENT

| Pin | Function                 |
|-----|--------------------------|
| 1   | $V_{DD}$                 |
| 2   | A4 Input (Address)       |
| 3   | I/O2 Input/Output (Data) |
| 4   | A7 Input (Address)       |
| 5   | I/O1 Input/Output (Data) |
| 6   | A3 Input (Address)       |
| 7   | A6 Input (Address)       |



| Pin | Function                 |
|-----|--------------------------|
| 8   | A8 Input (Address)       |
| 9   | A0 Input (Address)       |
| 10  | A1 Input (Address)       |
| 11  | CS2 Input (Chip Select)  |
| 12  | I/O5 Input/Output (Data) |
| 13  | A2 Input (Address)       |
| 14  | W Input (Write Enable)   |
| 15  | I/O6 Input/Output (Data) |
| 16  | Not Connected            |
| 17  | CS1 Input (Chip Select)  |
| 18  | V <sub>SS</sub>          |
| 19  | I/O7 Input/Output (Data) |
| 20  | OE Input (Output Enable) |
| 21  | A11 Input (Address)      |
| 22  | I/O8 Input/Output (Data) |
| 23  | A10 Input (Address)      |
| 24  | A9 Input (Address)       |
| 25  | A14 Input (Address)      |
| 26  | A13 Input (Address)      |
| 27  | I/O4 Input/Output (Data) |
| 28  | A12 Input (Address)      |
| 29  | A15 Input (Address)      |
| 30  | I/O3 Input/Output (Data) |
| 31  | A16 Input (Address)      |
| 32  | A5 Input (Address)       |

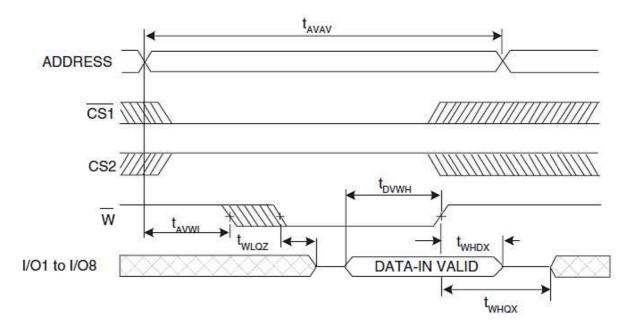

### 1.10 TRUTH TABLE AND TIMING DIAGRAMS

1. Logic Level Definitions: L = Low Level, H = High Level, X = Irrelevant, Z = High Impedance

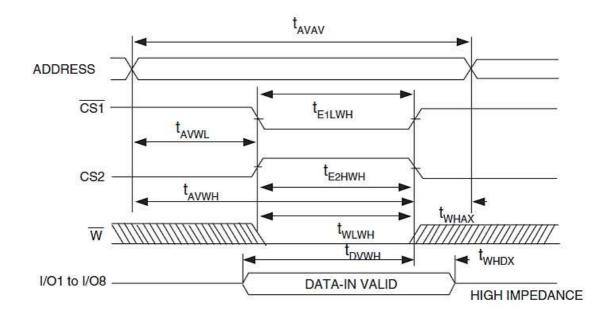
| Inputs |     |   |    | Input/Outputs | Mode                |
|--------|-----|---|----|---------------|---------------------|
| CS1    | CS2 | W | ŌĒ | I/On          |                     |
| Н      | Х   | Х | Х  | Z             | Deselect/Power down |
| Х      | L   | Х | Х  | Z             | Deselect/Power down |
| L      | Н   | Н | L  | Data out      | Read                |
| L      | Н   | L | Х  | Data in       | Write               |
| L      | Н   | Н | Н  | Z             | Output disable      |



### **Data Retention**

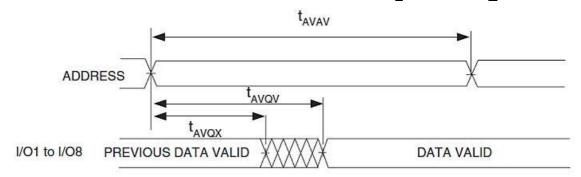



Write Cycle 1: W Controlled OE High during Write

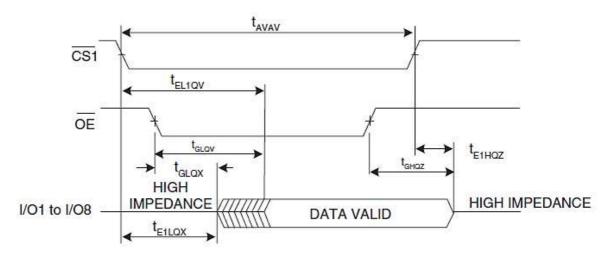




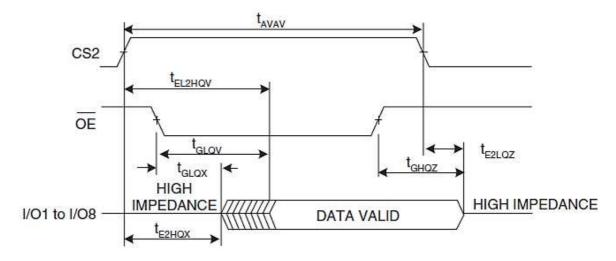

### Write Cycle 2: W Controlled OE Low




Write Cycle 3: TS1 or CS2 Controlled

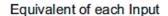


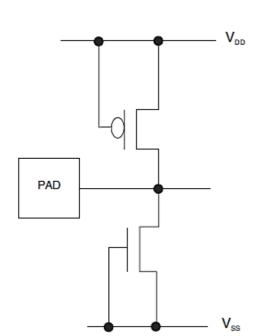




Read Cycle 1: Address Controlled  $\overline{CS1} = \overline{OE} = V_{IL}$ ,  $CS2 = \overline{W} = V_{IH}$ 

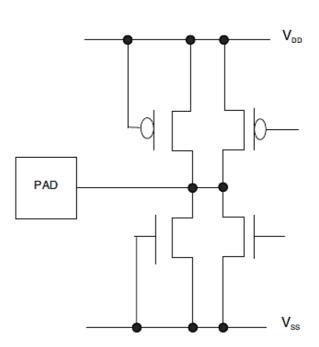


Read Cycle 2:  $\overline{CS1}$  Controlled  $\overline{W}$  = CS2 =  $V_{IH}$ 





Read Cycle 3: CS2 Controlled  $\overline{CS1} = V_{IL}$ ,  $\overline{W} = V_{IH}$ 






### 1.11 PROTECTION NETWORKS





### Equivalent of each Output



### 2 **REQUIREMENTS**

### 2.1 GENERAL

The complete requirements for procurement of the components specified herein are as stated in this specification and the ESCC Generic Specification. Permitted deviations from the Generic Specification, applicable to this specification only, are listed below.

Permitted deviations from the Generic Specification and this Detail Specification, formally agreed with specific Manufacturers on the basis that the alternative requirements are equivalent to the ESCC requirement and do not affect the component's reliability, are listed in the appendices attached to this specification.

### 2.1.1 <u>Deviations from the Generic Specification</u>

### 2.1.1.1 Deviations from Screening Tests - Chart F3

(a) High Temperature Reverse Bias Burn-in shall not be performed.



### 2.2 MARKING

The marking shall be in accordance with the requirements of ESCC Basic Specification No. 21700 and as follows.

The information to be marked on the component shall be:

- (a) Terminal identification.
- (b) The ESCC qualified components symbol (for ESCC qualified components only).
- (c) The ESCC Component Number.
- (d) Traceability information.

### 2.3 ELECTRICAL MEASUREMENTS AT ROOM, HIGH AND LOW TEMPERATURES

Electrical measurements shall be performed at room, high and low temperatures.

### 2.3.1 Room Temperature Electrical Measurements

The measurements shall be performed at  $T_{amb}$  = +22 ±3  $^{\circ}$ C.

| Characteristics                                                   | Symbols           | MIL-STD-883<br>Test Method | Test Conditions<br>Note 1                                                                                                                                                                                      | Lin | nits | Units |
|-------------------------------------------------------------------|-------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|-------|
|                                                                   |                   | 1 Cot Wicthou              | Note 1                                                                                                                                                                                                         | Min | Max  |       |
| Functional Test 1                                                 | -                 | 3014                       | Verify Truth Table<br>Note 2                                                                                                                                                                                   | -   | -    | -     |
| Functional Test 2                                                 | -                 | 3014                       | Verify Truth Table<br>Note 2                                                                                                                                                                                   | -   | -    | -     |
| Functional Test 3                                                 | -                 | 3014                       | Verify Truth Table<br>Note 2                                                                                                                                                                                   | -   | -    | -     |
| Functional Test 4                                                 | -                 | 3014                       | Verify Truth Table<br>Note 2                                                                                                                                                                                   | ı   | 1    | -     |
| Input Clamp<br>Voltage, to V <sub>SS</sub>                        | V <sub>IC</sub>   | 3008                       | $I_{IN}$ (Under Test) =<br>-100 $\mu$ A<br>All Other Pins Open<br>$V_{DD}$ = Open, $V_{SS}$ = 0V                                                                                                               | -2  | 0.2  | V     |
| Low Level Input<br>Current                                        | I <sub>IL</sub>   | 3009                       | $V_{IN}(Under Test) = 0V$<br>$V_{IN}(Remaining Inputs) =$<br>3.6V<br>$V_{DD} = 3.6V$ , $V_{SS} = 0V$                                                                                                           | -   | -1   | μА    |
| High Level Input<br>Current                                       | I <sub>IH</sub>   | 3010                       | $\begin{aligned} &V_{\text{IN}}(\text{Under Test}) = 3.6\text{V}, \\ &V_{\text{IN}}(\text{Remaining Inputs}) = \\ &0\text{V} \\ &V_{\text{DD}} = 3.6\text{V}, \text{ V}_{\text{SS}} = 0\text{V} \end{aligned}$ | 1   | 1    | μA    |
| Output Leakage<br>Current, Third<br>State, Low Level<br>Applied 1 | I <sub>OZL1</sub> | 3020                       | $V_{IN}(\overline{CS1}) = 3.3V$<br>$V_{IN}(CS2) = 0V$<br>$V_{OUT} = 0V$<br>$V_{DD} = 3.6V, V_{SS} = 0V$                                                                                                        | -   | -1   | μА    |



| Characteristics                                                    | Symbols            | MIL-STD-883<br>Test Method | Test Conditions<br>Note 1                                                                                                                                                                                                                                                 | Lin | nits | Units |
|--------------------------------------------------------------------|--------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|-------|
|                                                                    |                    | Test Method                | Note 1                                                                                                                                                                                                                                                                    | Min | Max  |       |
| Output Leakage<br>Current, Third<br>State, Low Level<br>Applied 2  | I <sub>OZL2</sub>  | 3020                       | $V_{IN}(\overline{CS1}) = 0V$<br>$V_{IN}(CS2) = 3.3V$<br>$V_{OUT} = 0V$<br>$V_{DD} = 3.6V, V_{SS} = 0V$                                                                                                                                                                   | -   | -1   | μА    |
| Output Leakage<br>Current, Third<br>State, High Level<br>Applied 1 | I <sub>OZH1</sub>  | 3020                       | $V_{IN}(\overline{CS1}) = 3.3V$<br>$V_{IN}(CS2) = 0V$<br>$V_{OUT} = 0V$<br>$V_{DD} = 3.6V, V_{SS} = 0V$                                                                                                                                                                   | -   | 1    | μΑ    |
| Output Leakage<br>Current Third<br>State, High Level<br>Applied 2  | I <sub>OZH2</sub>  | 3020                       | $V_{IN}(\overline{CS1}) = 0V$<br>$V_{IN}(CS2) = 3.3V$<br>$V_{OUT} = 0V$<br>$V_{DD} = 3.6V, V_{SS} = 0V$                                                                                                                                                                   | -   | 1    | μΑ    |
| Low Level Output<br>Voltage                                        | V <sub>OL</sub>    | 3007                       | $V_{IL} = 0.8V, V_{IH} = 2.2V$ $I_{OL} = 1mA$ $V_{DD} = 3V, V_{SS} = 0V$ Note 3                                                                                                                                                                                           | -   | 0.4  | V     |
| High Level Output<br>Voltage                                       | V <sub>OH</sub>    | 3006                       | $V_{IL} = 0.8V, V_{IH} = 2.2V$<br>$I_{OH} = -0.5mA,$<br>$V_{DD} = 3V, V_{SS} = 0V$<br>Note 4                                                                                                                                                                              | 2.4 | -    | V     |
| Stand-by Supply<br>Current 1                                       | I <sub>DDSB1</sub> | 3005                       | $V_{IN}(\overline{CS1}) = 2.2V$<br>$V_{IN}(CS2) = 0.8V$<br>f = 0 Hz<br>$V_{DD} = 3.6V, V_{SS} = 0V$<br>Note 5                                                                                                                                                             | -   | 2.5  | mA    |
| Stand-by Supply<br>Current 2                                       | I <sub>DDSB2</sub> | 3005                       | $V_{IN}(\overline{CS1}) = 3.3V$<br>$V_{IN}(CS2) = 0.3 V$<br>f = 0 Hz<br>$V_{DD} = 3.6V, V_{SS} = 0V$<br>Note 5                                                                                                                                                            | -   | 1.5  | mA    |
| Operating Supply<br>Current                                        | I <sub>DDOP</sub>  | 3005                       | $\begin{aligned} &V_{\text{IN}}(\text{CS2},\overline{\text{W}},\overline{\text{OE}}) = 3\text{V} \\ &V_{\text{IN}}(\text{CS1}) = 0\text{V} \\ &I_{\text{OUT}} = 0\text{mA} \\ &f = 25\text{ MHz} \\ &V_{\text{DD}} = 3.6\text{V},V_{\text{SS}} = 0\text{V} \end{aligned}$ | -   | 50   | mA    |
| Data Retention<br>Current                                          | I <sub>DDDR</sub>  | 3005                       | $V_{IN}(\overline{CS1}) = 1.8V$<br>$V_{IN}(CS2) = 0.2V$<br>$V_{DD} = 2V, V_{SS} = 0V$<br>Notes 5, 6                                                                                                                                                                       | -   | 1    | mA    |
| Data Retention<br>Test                                             | -                  | -                          | Note 6                                                                                                                                                                                                                                                                    | -   | -    | -     |



| Characteristics                    | Symbols            | MIL-STD-883<br>Test Method | Test Conditions<br>Note 1                                    | Lin | nits | Units |
|------------------------------------|--------------------|----------------------------|--------------------------------------------------------------|-----|------|-------|
|                                    |                    | Test Welliou               | Note 1                                                       | Min | Max  |       |
| Input Capacitance                  | C <sub>IN</sub>    | 3012                       | $V_{IN} = V_{SS} = V_{DD} = 0V$<br>f = 1 MHz<br>Note 10      | -   | 8    | pF    |
| Output<br>Capacitance              | Соит               | 3012                       | $V_{IN} = V_{SS} = V_{DD} = 0V$<br>f = 1 MHz<br>Note 10      | -   | 8    | pF    |
| Read Cycle Time                    | t <sub>AVAV</sub>  | 3003                       | $V_{DD} = 3 \& 3.6V$<br>$V_{SS} = 0V$<br>Note 7              | 40  | -    | ns    |
| Address Access<br>Time             | t <sub>AVQV</sub>  | 3003                       | $V_{DD} = 3 \& 3.6V$<br>$V_{SS} = 0V$<br>Note 8              | -   | 40   | ns    |
| Address Valid to Low Z             | t <sub>AVQX</sub>  | 3003                       | $V_{DD} = 3 \& 3.6V$<br>$V_{SS} = 0V$<br>Note 7              | 3   | -    | ns    |
| Write Cycle Time                   | t <sub>AVAW</sub>  | 3003                       | $V_{DD} = 3 \& 3.6V$<br>$V_{SS} = 0V$<br>Note 7              | 35  | -    | ns    |
| Address Set-up<br>Time             | t <sub>AVWL</sub>  | 3003                       | $V_{DD} = 3 \& 3.6V$<br>$V_{SS} = 0V$<br>Note 7              | 0   | -    | ns    |
| Address Valid to<br>End of Write   | t <sub>AVWH</sub>  | 3003                       | $V_{DD} = 3 \& 3.6V$<br>$V_{SS} = 0V$<br>Note 7              | 28  | -    | ns    |
| Data Set-up Time                   | t <sub>DVWH</sub>  | 3003                       | V <sub>DD</sub> = 3 & 3.6V<br>V <sub>SS</sub> = 0V<br>Note 8 | 28  | -    | ns    |
| Chip Select 1 Low<br>to Write End  | t <sub>E1LWH</sub> | 3003                       | $V_{DD} = 3 \& 3.6V$<br>$V_{SS} = 0V$<br>Note 7              | 28  | -    | ns    |
| Chip Select 2 High<br>to Write End | t <sub>E2HWH</sub> | 3003                       | $V_{DD} = 3 \& 3.6V$<br>$V_{SS} = 0V$<br>Note 7              | 28  | -    | ns    |
| Write Low to High Z                | t <sub>WLQZ</sub>  | 3003                       | $V_{DD} = 3 \& 3.6V$<br>$V_{SS} = 0V$<br>Note 9              | -   | 15   | ns    |
| Write Pulse Width                  | t <sub>WLWH</sub>  | 3003                       | $V_{DD} = 3 \& 3.6V$<br>$V_{SS} = 0V$<br>Note 8              | 28  | -    | ns    |



| Characteristics                   | Symbols            | MIL-STD-883<br>Test Method | Test Conditions<br>Note 1                                    | Lin | nits | Units |
|-----------------------------------|--------------------|----------------------------|--------------------------------------------------------------|-----|------|-------|
|                                   |                    | 1 Cot Wictiou              | 11010 1                                                      | Min | Max  |       |
| Address Hold from to End of Write | t <sub>WHAX</sub>  | 3003                       | $V_{DD} = 3 \& 3.6V$<br>$V_{SS} = 0V$<br>Note 7              | 3   | -    | ns    |
| Data Hold Time                    | t <sub>WHDX</sub>  | 3003                       | $V_{DD} = 3 \& 3.6V$<br>$V_{SS} = 0V$<br>Note 8              | 0   | -    | ns    |
| Write High to Low<br>Z            | t <sub>WHQX</sub>  | 3003                       | $V_{DD} = 3 \& 3.6V$<br>$V_{SS} = 0V$<br>Note 9              | 0   | -    | ns    |
| Chip Select 1<br>Access Time      | t <sub>E1LQV</sub> | 3003                       | V <sub>DD</sub> = 3 & 3.6V<br>V <sub>SS</sub> = 0V<br>Note 8 | -   | 40   | ns    |
| Chip Select 1 Low to Low Z        | t <sub>E1LQX</sub> | 3003                       | $V_{DD} = 3 \& 3.6V$<br>$V_{SS} = 0V$<br>Note 9              | 3   | -    | ns    |
| Chip Select 1 High<br>to High Z   | t <sub>E1HQZ</sub> | 3003                       | $V_{DD} = 3 \& 3.6V$<br>$V_{SS} = 0V$<br>Note 9              | -   | 15   | ns    |
| Chip Select 2<br>Access Time      | t <sub>E2HQV</sub> | 3003                       | V <sub>DD</sub> = 3 & 3.6V<br>V <sub>SS</sub> = 0V<br>Note 8 | -   | 40   | ns    |
| Chip Select 2 High<br>to Low Z    | t <sub>E2HQX</sub> | 3003                       | V <sub>DD</sub> =3 & 3.6V<br>V <sub>SS</sub> =0V<br>Note 9   | 3   | -    | ns    |
| Chip Select 2 Low to High Z       | t <sub>E2LQZ</sub> | 3003                       | $V_{DD} = 3 \& 3.6V$<br>$V_{SS} = 0V$<br>Note 9              | -   | 15   | ns    |
| Output Enable<br>Access Time      | t <sub>GLQV</sub>  | 3003                       | $V_{DD} = 3 \& 3.6V$<br>$V_{SS} = 0V$<br>Note 7              | -   | 12   | ns    |
| Output Enable Low to Low Z        | t <sub>GLQX</sub>  | 3003                       | $V_{DD} = 3 \& 3.6V$<br>$V_{SS} = 0V$<br>Note 9              | 0   | -    | ns    |
| Output Enable<br>High to High Z   | t <sub>GHQZ</sub>  | 3003                       | V <sub>DD</sub> = 3 & 3.6V<br>V <sub>SS</sub> = 0V<br>Note 9 | -   | 10   | ns    |

- Unless otherwise specified all inputs and outputs shall be tested for each characteristic, inputs not under test shall be  $V_{IN} = V_{SS}$  or  $V_{DD}$  and outputs not under test shall be open. Functional go-no-go test with the following test sequences:
- 2.



### **FUNCTIONAL TEST 1**

| Pattern      | Timing<br>(ns)<br>Note (a) | V <sub>DD</sub> (V) | V <sub>SS</sub><br>(V) | V <sub>IL</sub><br>(V) | V <sub>IH</sub> (V) | I <sub>OL</sub><br>(mA) | I <sub>OH</sub><br>(mA) | V <sub>out comp</sub> (V) Note (c) |
|--------------|----------------------------|---------------------|------------------------|------------------------|---------------------|-------------------------|-------------------------|------------------------------------|
| March        | 100                        | 3 & 3.6             | 0                      | 0                      | 3                   | 0.5                     | -0.5                    | 1.5                                |
| Checkerboard | 100                        | 3 & 3.6             | 0                      | 0                      | 3                   | 0.5                     | -0.5                    | 1.5                                |
| Imag         | 100                        | 3 & 3.6             | 0                      | 0                      | 3                   | 0.5                     | -0.5                    | 1.5                                |
| Genbl        | 100                        | 3                   | 0                      | 0                      | 3                   | 0.5                     | -0.5                    | 1.5                                |

### **FUNCTIONAL TEST 2**

| Pattern | Timing<br>(ns)<br>Note (a) | V <sub>DD</sub><br>(V) | V <sub>SS</sub> (V) | V <sub>IL</sub><br>(mV) | V <sub>IH</sub> (V) | I <sub>OL</sub><br>(mA) | I <sub>OH</sub><br>(mA) | V <sub>out comp</sub> (V) Note (c) |
|---------|----------------------------|------------------------|---------------------|-------------------------|---------------------|-------------------------|-------------------------|------------------------------------|
| March   | 100                        | 3.6                    | 0                   | -300                    | 3.9                 | 0.5                     | -0.5                    | 1.5                                |
| March   | 100                        | 3                      | 0                   | -300                    | 3.3                 | 0.5                     | -0.5                    | 1.5                                |
| March   | 100                        | 3.6                    | 0                   | 0                       | 2.2                 | 0.5                     | -0.5                    | 1.5                                |
| March   | 100                        | 3                      | 0                   | 800                     | 0                   | 0.5                     | -0.5                    | 1.5                                |

### **FUNCTIONAL TEST 3**

| Pattern | Timing (ns) Note (a) | V <sub>DD</sub> (V) | V <sub>SS</sub> (V) | V <sub>IL</sub> (V) | V <sub>IH</sub> (V) | I <sub>OL</sub><br>(mA) | I <sub>OH</sub><br>(mA) | V <sub>out comp</sub> (V) Note (c) |
|---------|----------------------|---------------------|---------------------|---------------------|---------------------|-------------------------|-------------------------|------------------------------------|
| March   | 100                  | 3                   | 0                   | 0                   | 3                   | 1                       | -0.5                    | Note (b)                           |

### **FUNCTIONAL TEST 4**

| Pattern      | Timing<br>(ns)<br>Note (a) | V <sub>DD</sub> (V) | V <sub>SS</sub><br>(V) | V <sub>IL</sub> (V) | V <sub>IH</sub> (V) | I <sub>OL</sub><br>(mA) | I <sub>OH</sub> (mA) | V <sub>out comp</sub> (V) Note (c) |
|--------------|----------------------------|---------------------|------------------------|---------------------|---------------------|-------------------------|----------------------|------------------------------------|
| March        | 80                         | 3 & 3.6             | 0                      | 0                   | 3                   | 0.5                     | -0.5                 | 1.5                                |
| Comarch      | 80                         | 3 & 3.6             | 0                      | 0                   | 3                   | 0.5                     | -0.5                 | 1.5                                |
| Imag         | 80                         | 3 & 3.6             | 0                      | 0                   | 3                   | 0.5                     | -0.5                 | 1.5                                |
| Checkerboard | 80                         | 3 & 3.6             | 0                      | 0                   | 3                   | 0.5                     | -0.5                 | 1.5                                |

- (a) A write cycle is followed by a read cycle. The time between start of write and start of read per the truth table is the specified timing parameter.  $t_r = t_f \le 5$ ns.
- (b) 0.4V for low output level, 2.4V for high output level.
- (c) Output load 1 TTL gate equivalent  $+C_L < 30pF$ .
- 3. Address inputs shall be selected to produce a low level at the pin under test.



- ISSUE 2
- 4. Address inputs shall be selected to produce a high level at the pin under test.
- 5. Measurements are performed with the memory loaded with a background of zeros, then with a background of ones, for all inputs High, then Low. Only the worst case is recorded.
- 6. Data retention procedure:
  - (a) Write memory at  $V_{DD} = 3V$  with CHECKERBOARD pattern with  $V_{IL} = 0V$  and  $V_{IH} = 3V$ .
    - (b) Power down to  $V_{DD} = 2V$  for 250ms,  $V_{IN}(\overline{CS1}) = 1.8V$ .
    - (c) Restore V<sub>DD</sub> to 3V, wait t<sub>R</sub>(operation recovery time), read memory and compare with original pattern.
    - (d) Repeat the procedure with CHECKERBOARD pattern.
    - (e)  $t_R = 40 \text{ns}$ .
    - (f) During power up and power down transitions,  $V_{IN}(\overline{CS1}) \ge V_{DD}$ -0.2V,  $V_{IN}(Remaining Inputs) \le 0.2V$  or  $\ge V_{DD}$ -0.2V.
- 7. Parameter tested go-no-go during Functional Test 4.
- 8. Parameter measured during Functional Test 4 using pattern March at 3V and 3.6V.
- 9. Guaranteed with output loading 5pF but not tested.
- 10. Guaranteed but not tested.

### 2.3.2 <u>High and Low Temperatures Electrical Measurements</u>

The measurements shall be performed at  $T_{amb}$  = +125 (+0 -5)  $^{\circ}$ C and  $T_{amb}$  = -55 (+5 -0)  $^{\circ}$ C. The characteristics, test methods, conditions and limits shall be the same as specified for Room Temperature Electrical Measurements.

### 2.4 PARAMETER DRIFT VALUES

Unless otherwise specified, the measurements shall be performed at  $T_{amb}$  = +22 ±3  $^{\circ}$ C.

The test methods and test conditions shall be as per the corresponding test defined in Room Temperature Electrical Measurements.

The drift values ( $\Delta$ ) shall not be exceeded for each characteristic specified. The corresponding absolute limit values for each characteristic shall not be exceeded.

| Characteristics                                              | Symbols           | Limits     |     | Units |    |
|--------------------------------------------------------------|-------------------|------------|-----|-------|----|
|                                                              |                   |            |     | olute |    |
|                                                              |                   | Value<br>Δ | Min | Max   |    |
| Low Level Input Current                                      | I <sub>IL</sub>   | ±0.1       | -   | -1    | μA |
| High Level Input Current                                     | I <sub>IH</sub>   | ±0.1       | ı   | 1     | μA |
| Output Leakage Current, Third<br>State, Low Level Applied 1  | I <sub>OZL1</sub> | ±0.1       | -   | -1    | μΑ |
| Output Leakage Current, Third<br>State, Low Level Applied 2  | I <sub>OZL2</sub> | ±0.1       | -   | -1    | μΑ |
| Output Leakage Current, Third<br>State, High Level Applied 1 | I <sub>OZH1</sub> | ±0.1       | -   | 1     | μΑ |
| Output Leakage Current, Third<br>State, High Level Applied 2 | I <sub>OZH2</sub> | ±0.1       | -   | 1     | μA |
| Low Level Output Voltage                                     | V <sub>OL</sub>   | ±100       | -   | 400   | mV |



| Characteristics           | Symbols            | Limits         |      | Units |    |
|---------------------------|--------------------|----------------|------|-------|----|
|                           |                    | Drift          | Abso | olute |    |
|                           |                    | Value $\Delta$ | Min  | Max   |    |
| High Level Output Voltage | V <sub>OH</sub>    | ±0.1           | 2.4  | -     | V  |
| Stand-by Supply Current 1 | I <sub>DDSB1</sub> | ±0.25          | 1    | 2.5   | mA |
| Stand-by Supply Current 2 | I <sub>DDSB2</sub> | ±0.15          | ı    | 1.5   | mA |
| Data Retention Current    | I <sub>DDDR</sub>  | ±0.1           | -    | 1     | mA |

### **NOTES:**

1. Unless otherwise specified all inputs and outputs shall be tested for each characteristic.

### 2.5 <u>INTERMEDIATE AND END-POINT ELECTRICAL MEASUREMENTS</u>

Unless otherwise specified, the measurements shall be performed at  $T_{amb}$  = +22 ±3 °C.

The characteristics, test methods, conditions and limits shall be as specified for Room Temperature Electrical Measurements.

### 2.6 POWER BURN-IN CONDITIONS

| Characteristics                       | Symbols            | Test Conditions                 | Units |
|---------------------------------------|--------------------|---------------------------------|-------|
| Ambient Temperature                   | T <sub>amb</sub>   | +125 (+0 -5)                    | °C    |
| Inputs A0 to A16                      | V <sub>IN</sub>    | S3 to S19 (Note 1)              | V     |
| Input CS1                             | V <sub>IN</sub>    | V <sub>SS</sub>                 | V     |
| Input CS2                             | V <sub>IN</sub>    | $V_{DD}$                        | V     |
| Inputs W                              | V <sub>IN</sub>    | V <sub>GEN</sub> (S1) (Note 2)  | V     |
| Input OE                              | V <sub>IN</sub>    | V <sub>GEN</sub> (S2) (Note 2)  | V     |
| Inputs/Outputs I/O2, I/O4, I/O6, I/O8 | V <sub>IN</sub>    | V <sub>GEN</sub> (S20) (Note 1) | V     |
| Inputs/Outputs I/O1, I/O3, I/O5, I/O7 | V <sub>IN</sub>    | V <sub>GEN</sub> (S21) (Note 1) | V     |
| Pulse Voltage                         | $V_{\sf GEN}$      | 0V to V <sub>DD</sub>           | V     |
| Pulse Frequency                       | f <sub>GENS3</sub> | 330 ±20% (Note 1)               | kHz   |
| Positive Supply Voltage               | $V_{DD}$           | 3.7 (±0.1)                      | V     |
| Negative Supply Voltage               | V <sub>SS</sub>    | 0                               | V     |


### NOTES:

1.

$$f_{GEN(Sn)} = \frac{1}{2} . f_{GEN(Sn-1)}, \text{for } n > 3$$



2. Input waveforms to indicate required timing and phase relationship:



Input Protection Resistor = Output Load = 1 kΩ.

### 2.7 OPERATING LIFE CONDITIONS

The conditions shall be as specified for Power Burn-in.

### 2.8 TOTAL DOSE RADIATION TESTING

### 2.8.1 Bias Conditions and Total Dose Level for Total Dose Radiation Testing

Continuous bias shall be applied during radiation testing as specified below.

The total dose level applied shall be as specified in the component type variant information herein or in the Purchase Order.

| Characteristics         | Symbols         | Test Conditions | Units |
|-------------------------|-----------------|-----------------|-------|
| Inputs An, CS2, W, OE   | V <sub>IN</sub> | $V_{DD}$        | V     |
| Input/Outputs I/On      | $V_{IN}$        | Open            | V     |
| Input CS1               | $V_{IN}$        | $V_{SS}$        | V     |
| Positive Supply Voltage | $V_{DD}$        | 3.6 ±0.1        | V     |
| Negative Supply Voltage | $V_{SS}$        | 0               | V     |

### NOTES:

1. Input protection resistor =  $1k\Omega$ .

### 2.8.2 <u>Electrical Measurements for Total Dose Radiation Testing</u>

Prior to, during and on completion of radiation testing the devices shall successfully meet Room Temperature Electrical Measurements specified herein.

Unless otherwise specified the measurements shall be performed at  $T_{amb}$  = 22 ±3 °C.

The characteristics, test methods, conditions and limits shall be the same as specified for Room Temperature Electrical Measurements.