

Page 1 of 28

INTEGRATED CIRCUITS, SILICON MONOLITHIC, 10-BIT, 2.2GSPS, ANALOGUE TO DIGITAL CONVERTER

BASED ON TYPE AT84AS008

ESCC Detail Specification No. 9407/004

Issue 2	August 2015

Document Custodian: European Space Agency – see https://escies.org

PAGE 2

LEGAL DISCLAIMER AND COPYRIGHT

European Space Agency, Copyright © 2015. All rights reserved.

The European Space Agency disclaims any liability or responsibility, to any person or entity, with respect to any loss or damage caused, or alleged to be caused, directly or indirectly by the use and application of this ESCC publication.

This publication, without the prior permission of the European Space Agency and provided that it is not used for a commercial purpose, may be:

- copied in whole, in any medium, without alteration or modification.
- copied in part, in any medium, provided that the ESCC document identification, comprising the ESCC symbol, document number and document issue, is removed.

PAGE 3

DOCUMENTATION CHANGE NOTICE

(Refer to https://escies.org for ESCC DCR content)

DCR No.	CHANGE DESCRIPTION
936	Specification upissued to incorporate editorial changes per DCR.

ISSUE 2

TABLE OF CONTENTS

1	GENERAL	5
1.1	SCOPE	5
1.2	APPLICABLE DOCUMENTS	5
1.3	TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS	5
1.4	THE ESCC COMPONENT NUMBER AND COMPONENT TYPE VARIANTS	5
1.4.1	The ESCC Component Number	5
1.4.2	Component Type Variants	5
1.5	MAXIMUM RATINGS	6
1.6	HANDLING PRECAUTIONS	7
1.7	PHYSICAL DIMENSIONS AND TERMINAL IDENTIFICATION	7
1.7.1	Column Grid Array Package (CI-CGA152) - 152 columns	7
1.8	FUNCTIONAL DIAGRAMS	9
1.9	PIN ASSIGNMENT AND DESCRIPTION	10
1.10	TRUTH TABLE AND TIMING DIAGRAMS	12
1.11	PROTECTION NETWORKS	14
2	REQUIREMENTS	15
2.1	GENERAL	15
2.1.1	Deviations from the Generic Specification	15
2.1.1.1	Deviations from Screening Tests - Chart F3	15
2.2	MARKING	15
2.3	ELECTRICAL MEASUREMENTS AT ROOM, HIGH AND LOW TEMPERATURES	15
2.3.1	Room Temperature Electrical Measurements	15
2.3.2	High and Low Temperatures Electrical Measurements	23
2.4	PARAMETER DRIFT VALUES	23
2.5	INTERMEDIATE AND END-POINT ELECTRICAL MEASUREMENTS	25
2.6	POWER BURN-IN CONDITIONS	25
2.7	OPERATING LIFE CONDITIONS	25
2.8	TOTAL DOSE RADIATION TESTING	26
2.8.1	Bias Conditions and Total Dose Level for Total Dose Radiation Testing	26
2.8.2	Electrical Measurements for Total Dose Radiation Testing	26

ISSUE 2

1 <u>GENERAL</u>

1.1 <u>SCOPE</u>

This specification details the ratings, physical and electrical characteristics and test and inspection data for the component type variants and/or the range of components specified below. It supplements the requirements of, and shall be read in conjunction with, the ESCC Generic Specification listed under Applicable Documents.

1.2 APPLICABLE DOCUMENTS

The following documents form part of this specification and shall be read in conjunction with it:

- (a) ESCC Generic Specification No. 9000
- (b) MIL-STD-883, Test Methods and Procedures for Microelectronics

1.3 TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS

For the purpose of this specification, the terms, definitions, abbreviations, symbols and units specified in ESCC Basic Specification No. 21300 shall apply.

1.4 THE ESCC COMPONENT NUMBER AND COMPONENT TYPE VARIANTS

1.4.1 <u>The ESCC Component Number</u> The ESCC Component Number shall be constituted as follows:

940700401R

- Detail Specification Reference: 9407004
- Component Type Variant Number: 01
- Total Dose Radiation Level Letter: R

1.4.2 <u>Component Type Variants</u>

The component type variants applicable to this specification are as follows:

Variant	Based on	Case	Lead/Terminal	Weight	Total Dose Radiation
Number	Type		Material and Finish	max g	Level Letter
01	AT84AS008	CI-CGA152	R1	9.1	R [100kRAD(Si)]

The lead/terminal material and finish shall be in accordance with the requirements of ESCC Basic Specification No. 23500.

The total dose radiation level letter shall be as defined in ESCC Basic Specification no. 22900. If an alternative radiation test level is specified in the Purchase Order the letter shall be changed accordingly.

PAGE 6

1.5 MAXIMUM RATINGS

The maximum ratings shall not be exceeded at any time during use or storage.

Maximum ratings shall only be exceeded during testing to the extent specified in this specification and when stipulated in Test Methods and Procedures of the ESCC Generic Specification.

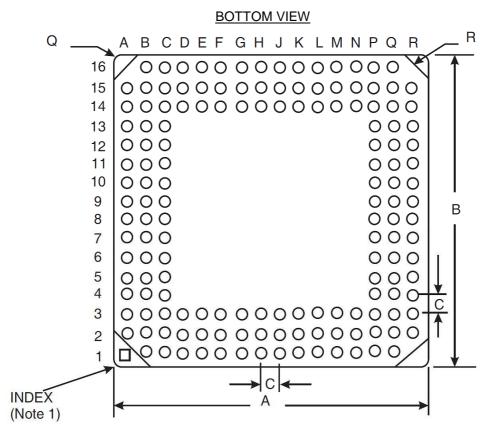
Characteristics	Symbols	Maximum Ratings	Units	Remarks
Analogue Positive Supply Voltage Range	V _{DD}	GND to 6	V	Note 1
Analogue Negative Supply Voltage Range	V _{SS}	GND to -5.5	V	Note 1
Digital Positive Supply Voltage Range	DV _{DD}	GND -1.1 to 2	V	Note 1
Digital Negative Supply Voltage Range	DV _{SS}	GND to -5.5	V	Note 1
Difference between Digital Supplies	DV _{DD} - DV _{SS}	7	V	
Difference between Negative Supplies	V _{SS} - DV _{SS}	0.3	V	
Analogue Input Voltage Range	V _A , V _B	-1.5 to 1.5	V	
Differential Analogue Input Voltage Range	V _A - V _B	-1.5 to 1.5	V	
Clock Input Common Mode Voltage Range	(V _{CLK} +V _{CLKB})/2	-1.5 to 0.6	V	
Differential Clock Input Voltage Range	V _{CLK} - V _{CLKB}	-1 to 1	V _{p-p}	
Static Input Voltage Range	V _{SI}	-1 to 0.8	V	Note 2
Digital Input Voltage Range	V _{DI}	-5 to +0.8	V	Note 3
Digital Output Voltage Range	V _{OD}	DV_{DD} min. operating -2.2 to DV_{DD} max. operating +0.8	V	
Device Power Dissipation (Continuous)	P _D	Note 4	W	Note 5
Operating Temperature Range	T _{op}	-55 to +125	°C	T _{amb}
Storage Temperature Range	T _{stg}	-65 to +150	°C	
Soldering Temperature	T _{sol}	+300	°C	
Junction Temperature	Tj	+130	°C	Note 5
Thermal Resistance Junction to Ambient	R _{th(j-a)}	30	°C/W	Note 5

NOTES:

- 1. The maximum ratings are limiting values referenced to GND = 0V.
- 2. Applies to the GA and SDA inputs.
- 3. Applies to the SDAEN, DRRB, B/GB, PGEB and DECB inputs.

ISSUE 2

- 4. The maximum device dissipation shall be determined by the formula: $P_{D} = |I_{DD}| \times |V_{DD}| + |I_{SS}| \times |V_{SS}| + |DI_{DD}| \times |DV_{DD}| + |DI_{SS}| \times |DV_{SS}|$
- 5. An external heatsink shall be used.

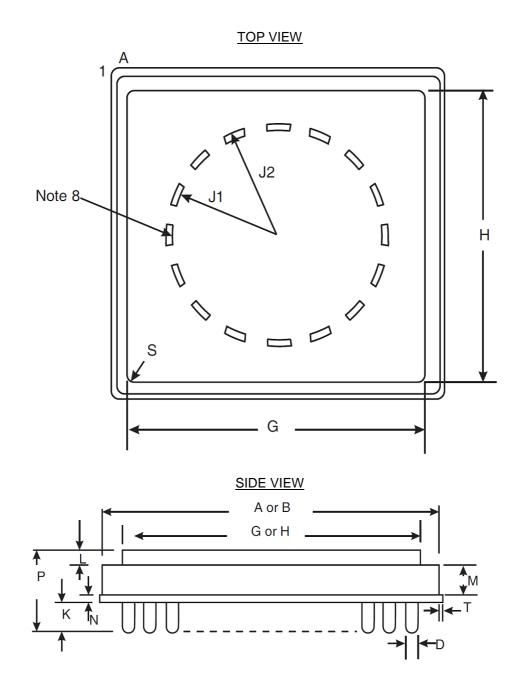

1.6 HANDLING PRECAUTIONS

These devices are susceptible to damage by electrostatic discharge. Therefore, suitable precautions shall be employed for protection during all phases of manufacture, testing, packaging, shipment and any handling.

These components are categorised as Class 1 per ESCC Basic Specification No. 23800 with a Minimum Critical Path Failure Voltage of 750 Volts.

1.7 PHYSICAL DIMENSIONS AND TERMINAL IDENTIFICATION

1.7.1 Column Grid Array Package (CI-CGA152) - 152 columns



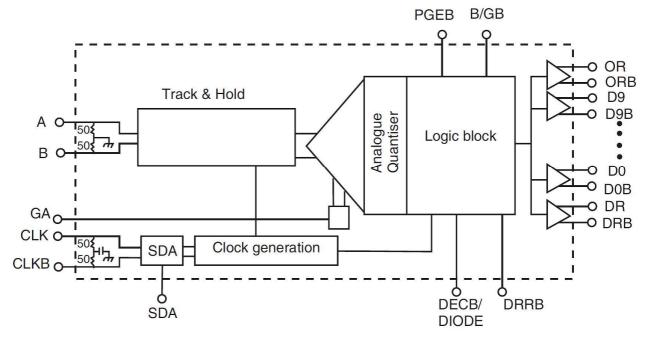
ESCC Detail Specification

No. 9407/004

PAGE 8

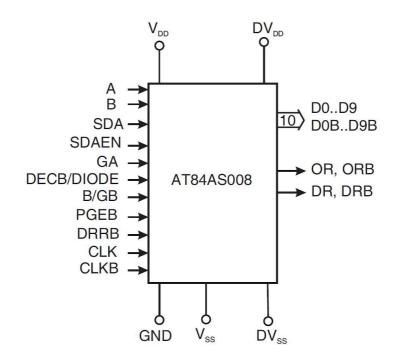
Symbols	Dimensi	Notes	
	Min	Max	noles
A, B	20.8	21.2	
С	1.27 BSC		2
D	0.79	0.99	3, 4
G, H	18.32	18.68	
J1	6.5	6.9	5
J2	6.8	7.2	5
К	1.545	1.695	4, 9

ESCC Detail Specification


ISSUE 2

Questo a la	Dimensi	Notoo	
Symbols	Min	Max	Notes
L	0.71	0.89	
М	1.5	1.82	
Ν	0.25	0.35	
Р	4.02	4.82	
Q	-	0.4	6
R	-	1.8	6
S	-	0.5	6
Т	-	0.2	7

NOTES:


- 1. Index Mark: a terminal identification mark shall be located in the A1 position and shall have no column attached.
- 152 columns. The true position column spacing is 1.27mm between centrelines. Each column shall be located within ±0.15mm of its true longitudinal position relative to A1 and the highest column or row number in each axis.
- 3. Diameter.
- 4. All columns.
- 5. Radius. J2 shall always be greater than J1.
- 6. Chamfer, applies to all four corners.
- 7. Nominal 0mm, applied all around the periphery.
- 8. Nickel Gold metallised marking that shall define the footprint for the external heatsink.
- 9. The column coplanarity shall not exceed 150µm.

1.8 <u>FUNCTIONAL DIAGRAMS</u>

ISSUE 2

1.9 PIN ASSIGNMENT AND DESCRIPTION

Name	Pin number	Description
POWER SUPPLIES		
V _{DD}	K1, K2, J3, K3, B6, C6, A7, B7, C7, P8, Q8, R8	5V analogue supply (connected to same power supply plane)
GND	B1, C1, D1, G1, M1, Q1, B2, C2, D2, E2, F2, G2, N2, P2, Q2, A3, B3, D3, E3, F3, G3, N3, P4, Q4, R4, A5, P5, Q5, P6, Q6, P7, Q7, R7, B9, B10, B11, R11, P12, A14, B14, C14, G14, K14, P14, Q14, R14, B15, Q15, B16, Q16	Analogue ground
V _{SS}	H1, J1, L1, H2, J2, L2, M2, C3, H3, L3, M3, P3, Q3, R3, A4, B4, C4, B5, C5, A8, B8, C8, C9, P9, Q9, C10, Q10, R10	-5V analogue supply (connected to same power supply plane)
DV _{DD}	P10, C11, P11, Q11, A12, B12, C12, Q12, R12, D14, E14, F14, L14, M14, N14	Digital positive supply
DV _{SS}	A13, B13, C13, P13, Q13, R13, H14, J14	-5V or -2.2V Digital negative supply

PAGE 11

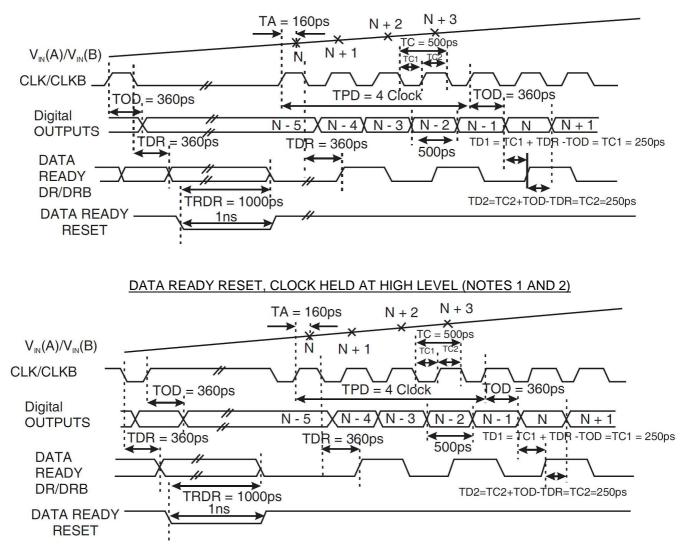
Name	Pin number	Description	
ANALOGUE INPUTS			
A	R5	In-phase (+) analogue input signal of the differential Sample & Hold preamplifier	
В	R6	Inverted phase (-) analogue input signal of the differential Sample & Hold preamplifier	
CLOCK INPUTS			
CLK	E1	In-phase (+) clock input	
CLKB	F1	Inverted phase (-) clock input	
DIGITAL OUTPUTS		•	
D0, D1, D2, D3, D4, D5, D6, D7, D8, D9	D16, E16, F16, G16, J16, K16, L16, M16, N16, P16	In-phase (+) digital outputs D0 is the LSB, D9 is the MSB	
D0B, D1B, D2B, D3B, D4B, D5B, D6B, D7B, D8B, D9B	D15, E15, F15, G15, J15, K15, L15, M15, N15, P15	Inverted phase (-) digital outputs	
OR	C16	In-phase (+) Out-of-Range output	
ORB	C15	Inverted phase (-) Out-of-Range output	
DR	H16	In-phase (+) Data Ready signal output	
DRB	H15	Inverted phase (-) Data Ready signal output	
ADDITIONAL FUNCTIO	NS		
B/GB	A11	 Binary or Gray select output format control Binary output format if B/GB is floating or connected to GND Gray output format if B/GB is connected to V_{SS} 	
DECB / DIODE	A10	 Decimation Function Enable or Die junction temperature measurement: Decimation active when LOW (Die junction temperature monitoring is then NOT POSSIBLE); Normal mode when HIGH or left floating Die Junction temperature monitoring when current is applied 	

ISSUE 2

Name	Pin number	Description			
PGEB	A9	 Active low Pattern Generator Enable Digitised input delivered at outputs according to B/GB if PGEB is floating or connected to GND Checker Board pattern delivered at outputs if PGEB is connected to V_{SS} 			
DRRB	N1	Asynchronous Data Ready Reset function (active at ECL low level)			
GA	R9	Gain Adjust.			
SDA	A6	Sampling delay adjust			
SDAEN	P1	Sampling delay adjust enable inactive if floating or connected to GND active if connected to V _{SS}			
UNUSED COLUMNS	UNUSED COLUMNS				
NC	A2, A15, R2, R15	Not connected but may be connected to GND			

1.10 TRUTH TABLE AND TIMING DIAGRAMS

 Logic Level Definitions: 1 = Digital High Level, 0 = Digital Low Level, MSB = Most Significant Bit, LSB = Least Significant Bit.


Differential	Voltage Level	Digital Output				
Analogue Input		Binary (B/GB = GND or floating)		Gray (B/GB =	= V _{SS})	
		MSBLSB	Out-of- Range	MSBLSB	Out-of- Range	
> +250.25 mV	> Top end of full-scale + 1/2 LSB	1111111111	1	100000000	1	
+250.25 mV	Top end of full-scale + 1/2 LSB	1111111111	0	100000000	0	
+249.75 mV	Top end of full scale - 1/2 LSB	1111111110	0	100000001	0	
+125.25 mV	3/4 full-scale + 1/2 LSB	1100000000	0	101000000	0	
+124.75 mV	3/4 full-scale - 1/2 LSB	1011111111	0	1110000000	0	
+0.25 mV	Midscale + 1/2 LSB	1000000000	0	1100000000	0	
-0.25 mV	Midscale -1/2 LSB	0111111111	0	010000000	0	
-124.75 mV	1/4 full-scale +1/2 LSB	0100000000	0	0110000000	0	
-124.25 mV	1/4 full-scale - 1/2 LSB	0011111111	0	001000000	0	
-249.75 mV	Bottom end of full-scale + 1/2 LSB	000000001	0	000000001	0	
-250.25 mV	Bottom end of full-scale - 1/2 LSB	0000000000	0	0000000000	0	
< -250.25 mV	< Bottom end of full-scale - 1/2 LSB	0000000000	1	0000000000	1	

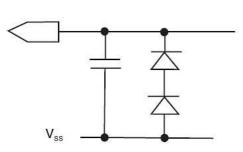
PAGE 13

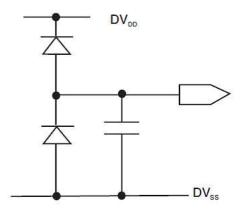
ISSUE 2

DATA READY RESET, CLOCK HELD AT LOW LEVEL (NOTES 1 AND 2)

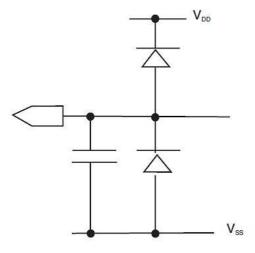
NOTES:

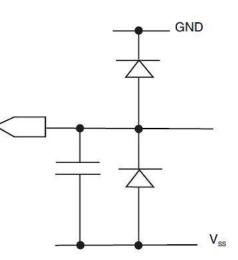
- 1. 2 Gsps Clock Rate
- 2. Definition of terms:
 - TA: Aperture Delay, TA is the delay between the rising edge of the differential clock inputs (CLK, CLKB) (zero crossing point) and the time at which (A or B input) is sampled.
 - TC: Encoding clock period. TC = TC1 + TC2.
 - TC1: Minimum clock pulse width (high)
 - TC2: Minimum clock pulse width (low).
 - TPD: Pipeline Delay. The number of clock cycles between the sampling edge of an input data and the associated output data being made available (not taking into account the TOD).
 - TOD: Digital data Output Delay. TOD is the delay from the falling edge of the differential clock inputs (CLK, CLKB) (zero crossing point) to the next point of change in the differential output data (zero crossing) with specified load.
 - TDR: Time delay from Clock to Data Ready. TDR is the time from the falling edge of the differential clock inputs (CLK, CLKB) to the next point of change in the differential output Data Ready outputs.


ESCC Detail Specification


PAGE 14

No. 9407/004


- TD1: Time delay from Data to Data Ready. TD1 is the time difference between Data and Data Ready. General expression is TD1 = TC1 + TDR TDO with TC = TC1 + TC2 = 1 encoding clock period.
- TD2: Time delay from Data Ready to Data. General expression is TD2 = TC2 + TDR TOD with TC = TC1 + TC2 =1 encoding clock period.
- TRDR: Time delay from Reset to Data Ready. When the pin DRRB is used as a reset pin, TRDR is the delay between the falling edge of the DRRB input and the corresponding falling edge of the Data Ready output.
- 1.11 PROTECTION NETWORKS


Analogue and Clock Inputs

ADC Gain Adjust Input

DRRB, B/GB and PGEB Inputs

2 <u>REQUIREMENTS</u>

2.1 <u>GENERAL</u>

The complete requirements for procurement of the components specified herein are as stated in this specification and the ESCC Generic Specification. Permitted deviations from the Generic Specification, applicable to this specification only, are listed below.

Permitted deviations from the Generic Specification and this Detail Specification, formally agreed with specific Manufacturers on the basis that the alternative requirements are equivalent to the ESCC requirement and do not affect the component's reliability, are listed in the appendices attached to this specification.

2.1.1 <u>Deviations from the Generic Specification</u>

2.1.1.1 Deviations from Screening Tests - Chart F3

- (a) High Temperature Reverse Bias Burn-in shall not be performed.
- (b) High and Low Temperature Electrical Measurement failures shall not be counted for Lot Failure.

2.2 MARKING

The marking shall be in accordance with the requirements of ESCC Basic Specification No. 21700 and as follows.

The information to be marked on the component shall be:

- (a) Terminal identification.
- (b) The ESCC qualified components symbol (for ESCC qualified components only).
- (c) The ESCC Component Number.
- (d) Traceability information.

2.3 <u>ELECTRICAL MEASUREMENTS AT ROOM, HIGH AND LOW TEMPERATURES</u> Electrical measurements shall be performed at room, high and low temperatures.

2.3.1 <u>Room Temperature Electrical Measurements</u>

The measurements shall be performed at $T_{amb} = +22 \pm 3^{\circ}C$.

Characteristics	Symbols	MIL-STD-883	Test Conditions Note 1			nits	Units
		Test Method		Min	Max		
Functional Test	-	3014	Verify Truth Table $f_{IN} = 695MHz$ $f_{CLK} = 1.4Gsps$ $V_{DD} = 5V, V_{SS} = -5V$ $V_{DD} = 1.45V$ $DV_{SS} = -5V$	-	-	-	
Low Level Input Current, B/GB Input	I _{IL1}	3009	$V_{IN} (B/GB) = -5V$ $V_{IN} (CLK) = Open$ $V_{DD} = 5V, V_{SS} = -5V$ $DV_{DD} = 1.45V$ $DV_{SS} = -5V$	500	800	μA	

Characteristics	Symbols	MIL-STD-883	Test Conditions	Lin	nits	Units
		Test Method	Note 1	Min	Max	
Low Level Input Current, DECB/DIODE Input	I _{IL2}	3009	$V_{IN} (DIODE) = -5V$ $V_{IN} (CLK) = Open$ $V_{DD} = 5V, V_{SS} = -5V$ $DV_{DD} = 1.45V$ $DV_{SS} = -5V$	1	2.5	mA
Low Level Input Current, PGEB Input	I _{IL3}	3009	$V_{IN} (PGEB) = -5V$ $V_{IN} (CLK) = Open$ $V_{DD} = 5V, V_{SS} = -5V$ $DV_{DD} = 1.45V$ $DV_{SS} = -5V$	500	800	μA
Low Level Input Current, DRRB Input	I _{IL4}	3009	$V_{IN} (DRRB) = -1.8V$ $V_{IN} (CLK) = Open$ $V_{DD} = 5V, V_{SS} = -5V$ $DV_{DD} = 1.45V$ $DV_{SS} = -5V$	100	600	μA
Low Level Input Current, SDAEN Input	I _{IL5}	3009	$V_{IN} (SDAEN) = -5V$ $V_{IN} (CLK) = Open$ $V_{DD} = 5V, V_{SS} = -5V$ $DV_{DD} = 1.45V$ $DV_{SS} = -5V$	500	800	μA
Low Level Input Current, GA Input	I _{IL6}	3009	$V_{IN} (GA) = -0.5V$ $V_{IN} (CLK) = Open$ $V_{DD} = 5V, V_{SS} = -5V$ $DV_{DD} = 1.45V$ $DV_{SS} = -5V$	0	4	μA
Low Level Input Current, SDA Input	I _{IL7}	3009	$V_{IN} (SDA) = -0.5V$ $V_{IN} (CLK) = Open$ $V_{DD} = 5V, V_{SS} = -5V$ $DV_{DD} = 1.45V$ $DV_{SS} = -5V$	0	4	μA
High Level Input Current, B/GB Input	I _{IH1}	3010	$V_{IN} (B/GB) = 0V$ $V_{IN} (CLK) = Open$ $V_{DD} = 5V, V_{SS} = -5V$ $DV_{DD} = 1.45V$ $DV_{SS} = -5V$	100	500	μA
High Level Input Current, DECB/DIODE Input	I _{IH2}	3010	$V_{IN} (DIODE) = 0V$ $V_{IN} (CLK) = Open$ $V_{DD} = 5V, V_{SS} = -5V$ $DV_{DD} = 1.45V$ $DV_{SS} = -5V$	-2	500	μA
High Level Input Current, PGEB Input	I _{IH3}	3010	$V_{IN} (PGEB) = 0V$ $V_{IN} (CLK) = Open$ $V_{DD} = 5V, V_{SS} = -5V$ $DV_{DD} = 1.45V$ $DV_{SS} = -5V$	100	500	μA

Characteristics	Symbols	MIL-STD-883	Test Conditions	Lin	nits	Units
		Test Method	Note 1	Min	Max	
High Level Input Current, DRRB Input	I _{IH4}	3010	$V_{IN} (DRRB) = 0V$ $V_{IN} (CLK) = Open$ $V_{DD} = 5V, V_{SS} = -5V$ $DV_{DD} = 1.45V$ $DV_{SS} = -5V$	-50	200	μA
High Level Input Current, SDAEN Input	I _{IH5}	3010	$V_{IN} (SDAEN) = 0V$ $V_{IN} (CLK) = Open$ $V_{DD} = 5V, V_{SS} = -5V$ $DV_{DD} = 1.45V$ $DV_{SS} = -5V$	100	500	μA
High Level Input Current, GA Input	I _{IH6}	3010	$V_{IN} (GA) = 0.5V$ $V_{IN} (CLK) = Open$ $V_{DD} = 5V, V_{SS} = -5V$ $DV_{DD} = 1.45V$ $DV_{SS} = -5V$	0	4	μA
High Level Input Current, SDA Input	I _{IH7}	3010	$V_{IN} (SDA) = 0.5V$ $V_{IN} (CLK) = Open$ $V_{DD} = 5V, V_{SS} = -5V$ $DV_{DD} = 1.45V$ $DV_{SS} = -5V$	0	10	μΑ
V _{IN} Input Resistance	R _{IN}	-	$V_{IN} (A) = 250 \text{mV}$ $V_{IN} (B) = 0 \text{V via } 50 \Omega$ Resistor $V_{DD} = 5 \text{V}, V_{SS} = -5 \text{V}$ $D V_{DD} = 1.45 \text{V}$ $D V_{SS} = -5 \text{V}$	45	55	Ω
ECL Mode Low Level Output Voltage, D0 to D9 and OR Outputs	V _{OL1}	3007	$V_{IN} (A) = -0.3V (DC)$ $f_{CLK} = 390Msps$ $V_{DD} = 5V, V_{SS} = -5V$ $DV_{DD} = -0.8V$ $DV_{SS} = -5V$ Note 2	-	-1.1	V
ECL Mode Low Level Output Voltage, D0B to D9B and ORB Outputs	V _{OL2}	3007	$V_{IN}(A) = -0.3V (DC)$ $f_{CLK} = 390Msps$ $V_{DD} = 5V, V_{SS} = -5V$ $DV_{DD} = -0.8V$ $DV_{SS} = -5V$ Note 2	-	-1.1	V
LVDS Mode Low Level Output Voltage, D0 to D9 and OR Outputs	V _{OL3}	3007	$V_{IN} (A) = -0.3V (DC)$ $f_{CLK} = 390Msps$ $V_{DD} = 5V, V_{SS} = -5V$ $DV_{DD} = 1.45V$ $DV_{SS} = -5V$ Note 2	0.75	1.18	V

Characteristics	Symbols	MIL-STD-883	Test Conditions	Lin	nits	Units
		Test Method	Note 1	Min	Max	
LVDS Mode Low Level Output Voltage, D0B to D9B and ORB Outputs	V _{OL4}	3007	$V_{IN} (A) = -0.3V (DC)$ $f_{CLK} = 390Msps$ $V_{DD} = 5V, V_{SS} = -5V$ $DV_{DD} = 1.45V$ $DV_{SS} = -5V$ Note 2	0.75	1.18	V
ECL Mode High Level Output Voltage D0 to D9 and OR Outputs	V _{OH1}	3006	$V_{IN} (A) = -0.3V (DC)$ $f_{CLK} = 390Msps$ $V_{DD} = 5V, V_{SS} = -5V$ $DV_{DD} = -0.8V$ $DV_{SS} = -5V$ Note 2	-0.99	-	V
ECL Mode High Level Output Voltage, D0B to D9B and ORB Outputs	V _{OH2}	3006	$V_{IN}(A) = -0.3V (DC)$ $f_{CLK} = 390Msps$ $V_{DD} = 5V, V_{SS} = -5V$ $DV_{DD} = -0.8V$ $DV_{SS} = -5V$ Note 2	-0.99	-	V
LVDS Mode High Level Output Voltage, D0 to D9 and OR Outputs	V _{OH3}	3006	$V_{IN} (A) = -0.3V (DC)$ $f_{CLK} = 390Msps$ $V_{DD} = 5V, V_{SS} = -5V$ $DV_{DD} = 1.45V$ $DV_{SS} = -5V$ Note 2	1.18	1.425	V
LVDS Mode High Level Output Voltage, D0B to D9B and ORB Outputs	V _{OH4}	3006	$V_{IN}(A) = -0.3V (DC)$ $f_{CLK} = 390Msps$ $V_{DD} = 5V, V_{SS} = -5V$ $DV_{DD} = 1.45V$ $DV_{SS} = -5V$ Note 2	1.18	1.425	V
ECL Mode Differential Output Voltage Swing (Signed Value)	V _{OD1}	-	Note 3	200	300	mV
LVDS Mode Differential Output Voltage Swing (Signed Value)	V _{OD2}	-	Note 3	200	450	mV
ECL Mode Common Mode Output Voltage	V _{CM1}	-	Note 3	-1.15	-0.95	V
LVDS Mode Common Mode Output Voltage	V _{CM2}	-	Note 3	0.95	1.275	V

Characteristics	Symbols	MIL-STD-883	Test Conditions	Lin	nits	Units
		Test Method	Note 1	Min	Max	
ECL Mode Analogue Positive Supply Current 1	I _{DD1}	3005	$f_{IN} = 20MHz$ $f_{CLK} = 43.75MHz$ $V_{DD} = 5.25V$ $V_{SS} = -5.25V$ $DV_{DD} = -0.8V$ $DV_{SS} = -5.25V$ Note 2	40	150	mA
ECL Mode Analogue Negative Supply Current 1	I _{SS1}	3005	$f_{IN} = 20MHz$ $f_{CLK} = 43.75MHz$ $V_{DD} = 5.25V$ $V_{SS} = -5.25V$ $DV_{DD} = -0.8V$ $DV_{SS} = -5.25V$ Note 2	450	750	mA
ECL Mode Digital Positive Supply Current 1	I _{DVDD1}	3005	$f_{IN} = 20MHz$ $f_{CLK} = 43.75MHz$ $V_{DD} = 5.25V$ $V_{SS} = -5.25V$ $DV_{DD} = -0.8V$ $DV_{SS} = -5.25V$ Note 2	50	200	mA
ECL Mode Digital Negative Supply Current 1	I _{DVSS1}	3005	$f_{IN} = 20MHz$ $f_{CLK} = 43.75MHz$ $V_{DD} = 5.25V$ $V_{SS} = -5.25V$ $DV_{DD} = -0.8V$ $DV_{SS} = -5.25V$ Note 2	50	200	mA
LVDS Mode Analogue Positive Supply Current 2	I _{DD2}	3005	$f_{IN} = 20MHz$ $f_{CLK} = 43.75MHz$ $V_{DD} = 5.25V$ $V_{SS} = -5.25V$ $DV_{DD} = 1.45V$ $DV_{SS} = -5.25V$ Note 2	40	150	mA
LVDS Mode Analogue Negative Supply Current 2	I _{SS2}	3005	$f_{IN} = 20MHz$ $f_{CLK} = 43.75MHz$ $V_{DD} = 5.25V$ $V_{SS} = -5.25V$ $DV_{DD} = 1.45V$ $DV_{SS} = -5.25V$ Note 2	450	750	mA
LVDS Mode Digital Positive Supply Current 2	I _{DVDD2}	3005	$f_{IN} = 20MHz$ $f_{CLK} = 43.75MHz$ $V_{DD} = 5.25V$ $V_{SS} = -5.25V$ $DV_{DD} = 1.45V$ $DV_{SS} = -5.25V$ Note 2	50	300	mA

No. 9407/004

Characteristics	Symbols	MIL-STD-883	Test Conditions	Lin	nits	Units
		Test Method	Note 1	Min	Max	
LVDS Mode Digital Negative Supply Current 2	I _{DVSS2}	3005	$f_{IN} = 20MHz$ $f_{CLK} = 43.75MHz$ $V_{DD} = 5.25V$ $V_{SS} = -5.25V$ $DV_{DD} = 1.45V$ $DV_{SS} = -5.25V$ Note 2	50	300	mA
ECL Mode Power Consumption	P _{ECL}	-	Note 4	3	4.9	W
LVDS Mode Power Consumption	P _{LVDS}	-	Note 4	3	6	W
Data Ready Frequency with Decimation by 32	f _{DRD}	-	$f_{CLK} = 1.4GHz$ $V_{IN} (DIODE) = -4V$ $V_{DD} = 5V, V_{SS} = -5V$ $DV_{DD} = 1.45V$ $DV_{SS} = -5V$	21.87	21.88	MHz
Decimation Factor 32	DF ₃₂	-		31.96	32.04	-
Data Ready Frequency Without Decimation	f _{DR}	-	$f_{CLK} = 43.75MHz$ $V_{IN} (DIODE) = 0V$ $V_{DD} = 5V, V_{SS} = -5V$ $DV_{DD} = 1.45V$ $DV_{SS} = -5V$	21.87	21.88	MHz
Decimation Factor 1	DF ₁	-	$f_{CLK} = 43.75MHz$ $V_{IN} (DIODE) = 0V$ $V_{DD} = 5V, V_{SS} = -5V$ $DV_{DD} = 1.45V$ $DV_{SS} = -5V$	0.96	1.04	-
Functional Test- Pattern Generator	-	3014		-	-	-
Gain at Nominal Amplification	G _{typ}	-		0.9	1.1	-

Characteristics	Symbols	MIL-STD-883	Test Conditions	Lin	Units	
		Test Method	Note 1	Min	Max	
Minimum Gain	G _{MIN}	-		-	0.995	-
Maximum Gain	G _{MAX}	-		1.0015	-	-
ECL Mode Effective Number of Bits, Gray Output 1	ENOB ₁	-		7.3	-	Bit
LVDS Mode Effective Number of Bits, Gray Output 2	ENOB ₂	-		7	-	Bit
ECL Mode Signal to Noise Ratio, Gray Output	SNR	-		49	-	dBc
ECL Mode Total Harmonic Distortion, Gray Output 1	THD₁	-		46	-	dBc
LVDS Mode Total Harmonic Distortion, Gray Output 2	THD₂	-		46	-	dBc

Characteristics	Symbols	MIL-STD-883	Test Conditions	Lin	nits	Units
		Test Method	Note 1	Min	Max	
ECL Mode Spurious Free Dynamic Range, Gray Output 1	SFDR ₁	-		48	-	dBc
LVDS Mode Spurious Free Dynamic Range, Gray Output 2	SFDR ₂	-	$f_{CLK} = 1.4Gsps f_{IN} = 695MHz P_{IN} = -1dBFS V_{DD} = 5V, V_{SS} = -5V DV_{DD} = 1.45V DV_{SS} = -5V Note 2$	50	-	dBc
Minimum Differential Non- Linearity	DNL _{MIN}	-		-1	-	LSB
Maximum Differential Non- Linearity	DNL _{MAX}	-		-	1.5	LSB
RMS Differential Non-Linearity	DNL _{rms}	-	$f_{CLK} = 390Msps f_{IN} = 100MHz V_{DD} = 5V, V_{SS} = -5V DV_{DD} = 1.45V DV_{SS} = -5V Note 2$	-	0.3	LSB
Minimum Integral Non-Linearity	INL _{MIN}	-	$f_{CLK} = 390Msps f_{IN} = 100MHz V_{DD} = 5V, V_{SS} = -5V DV_{DD} = 1.45V DV_{SS} = -5V Note 2$	-4	-	LSB
Maximum Integral Non-Linearity	INL _{MAX}	-	$f_{CLK} = 390Msps f_{IN} = 100MHz V_{DD} = 5V, V_{SS} = -5V DV_{DD} = 1.45V DV_{SS} = -5V Note 2$	-	4	LSB

No. 9407/004

ISSUE 2

Characteristics	Symbols			Lin	nits	Units
		Test Method Note 1	Note 1	Min	Max	
Input Offset Voltage	V _{IO}		$ f_{CLK} = 1.4Gsps f_{IN} = 695MHz V_{DD} = 5V, V_{SS} = -5V DV_{DD} = 1.45V DV_{SS} = -5V Note 2 $	-9	9	mV

NOTES:

- 1. Unless otherwise specified all inputs and outputs shall be tested for each characteristic, inputs not under test shall be $V_{IN} = V_{SS}$ or V_{DD} and outputs not under test shall be open.
- 2. All outputs are 50Ω Transmission Lines differentially terminated into 100Ω (2 × 50Ω) via 47pF capacitors to 0V.
- 3. Calculated from the V_{OH} and V_{OL} measurements.
- 4. Calculated from the Supply Current measurements.
- 5. This limit is defined by correlation and not tested, due to test equipment limitation.

2.3.2 <u>High and Low Temperatures Electrical Measurements</u> The measurements shall be performed at $T_{amb} = +125 (+0.5)^{\circ}C$ and $T_{amb} = -55 (+5.0)^{\circ}C$.

The characteristics, test methods, conditions and limits shall be the same as specified for Room Temperature Electrical Measurements, except that the Low Level Input Current DECB/DIODE Input (I_{IL2}) shall only be tested at Room Temperature.

2.4 PARAMETER DRIFT VALUES

Unless otherwise specified, the measurements shall be performed at T_{amb} = +22 ±3°C.

The test methods and test conditions shall be as per the corresponding test defined in Room Temperature Electrical Measurements.

The drift values (Δ) shall not be exceeded for each characteristic specified. The corresponding absolute limit values for each characteristic shall not be exceeded.

Characteristics	Symbols		Units		
Note 1		Drift	Absolute		
		Value Δ	Min	Max	
ECL Mode Low Level Output Voltage, D0 Output	V _{OL1}	+0.02, -0	-	-1.1	V
ECL Mode Low Level Output Voltage, D0B Output	V _{OL2}	+0.02, -0	-	-1.1	V
ECL Mode High Level Output Voltage, D0 Output	V _{OH1}	-0.02, +0	-0.99	-	V
ECL Mode High Level Output Voltage, D0B Output	V _{OH2}	-0.02, +0	-0.99	-	V
ECL Mode Differential Output Voltage Swing (Signed Value)	V _{OD1}	±20	200	300	mV

ISSUE 2

Characteristics	Symbols		Limits		Units
Note 1		Drift	Abs	olute	
		Value Δ	Min	Max	
ECL Mode Common Mode Output Voltage, D0 and D0B Outputs	V _{CM1}	±0.02	-1.15	-0.95	V
ECL Mode Analogue Positive Supply Current 1	I _{DD1}	±5%	40	150	mA
ECL Mode Analogue Negative Supply Current 1	I _{SS1}	±5%	450	750	mA
ECL Mode Digital Positive Supply Current 1	I _{DVDD1}	±5%	50	200	mA
ECL Mode Digital Negative Supply Current 1	I _{DVSS1}	±5%	50	200	mA
ECL Mode Power Consumption	P _{ECL}	±5%	3	4.9	W
Gain at Nominal Amplification	G_{TYP}	±5%	0.9	1.1	-
ECL Mode Effective Number of Bits, Gray Output	ENOB ₁	+0.4, +0	7.3	-	Bit
LVDS Mode Effective Number of Bits, Gray Output	ENOB ₂	+0.4, +0	7	-	Bit
ECL Mode Signal to Noise Ratio	SNR	-4, +0	49	-	dBc
ECL Mode Total Harmonic Distortion, Gray Output	THD₁	-4, +0	46	-	dBc
LVDS Mode Total harmonic Distortion, Gray Output	THD ₂	-4, +0	46	-	dBc
ECL Mode Spurious Free Dynamic Range, Gray Output	SFDR ₁	-4, +0	48	-	dBc
LVDS Mode Spurious Free Dynamic Range, Gray Output	SFDR ₁	-4, +0	50	-	dBc
Minimum Differential Non- Linearity		-0.5, +0	-1	-	LSB
Maximum Differential Non- Linearity	DNL _{MAX}	+0.5, +0	-	1.5	LSB
RMS Differential Non-Linearity	DNL _{rms}	+0.5, +0	-	0.3	LSB
Minimum Integral Non-Linearity	INL _{MIN}	-0.5, +0	-4	-	LSB
Maximum Integral Non-Linearity	INL _{MAX}	+0.5, +0	-	4	LSB
Input Offset Voltage	V _{IO}	±5	-9	9	mV

NOTES: 1. Unless otherwise specified all inputs and outputs shall be tested for each characteristic.

ISSUE 2

2.5 INTERMEDIATE AND END-POINT ELECTRICAL MEASUREMENTS

Unless otherwise specified, the measurements shall be performed at T_{amb} = +22 ±3°C.

The characteristics, test methods, conditions and limits shall be as specified for Room Temperature Electrical Measurements.

2.6 POWER BURN-IN CONDITIONS

Characteristics	Symbols	Test Conditions	Units
Junction Temperature	TJ	+125 (-5 +10)	°C
Clock Frequency	$f_{CLK,}f_{CLKB}$	625	kHz
Input Voltage, A Input	V _A	±250	mV
Input Frequency, A Input	f _{IN}	312	kHz
Input Voltage, B Input	V _B	0	V
Analogue Positive Supply Voltage	V_{DD}	5.3	V
Analogue Negative Supply Voltage	V_{SS}	-5.3	V
Digital Positive Supply Voltage	DV_{DD}	1.5	V
Digital Negative Supply Voltage	DV_{SS}	-5.3	V

NOTES:

- 1. The SDA, DRRB, SDAEN and GA inputs shall be connected to ground via 50Ω resistors.
- 2. All outputs shall be connected to ground via 50Ω Loads.
- 3. Decoupling capacitors of 100pF in parallel with 10nF shall be connected to all supplies at each burn-in position.
- 4. Decoupling capacitors of 1µF in parallel with 10nF shall be connected to all supplies on each burn-in board.
- 5. The PGEB input shall be connected to ground.
- 6. The B/GB and DECB/DIODE inputs shall be open circuit.
- 7. The CLK, CLKB and B inputs shall have 50Ω input protection resistors.
- 8. The A input shall have a series 100nF capacitor and a 50Ω input resistor.

2.7 OPERATING LIFE CONDITIONS

The conditions shall be as specified for Power Burn-in, performed without the Solder Column Interposer (SCI).

2.8 TOTAL DOSE RADIATION TESTING

2.8.1 <u>Bias Conditions and Total Dose Level for Total Dose Radiation Testing</u> Continuous bias shall be applied during radiation testing as specified below.

The total dose level applied shall be as specified in the component type variant information herein or in the Purchase Order.

Characteristics	Symbols	Test Conditions	Units
Ambient Temperature	T_{amb}	+22 ±3	°C
Clock Frequency	f _{CLK}	625	kHz
Input Voltage, A Input	V _A	±250	mV
Input Frequency, B Input	f _{IN}	312	kHz
Analogue Positive Supply Voltage	V _{DD}	5.25	V
Analogue Negative Supply Voltage	V_{SS}	-5.25	V
Digital Positive Supply Voltage	DV_{DD}	2.4	V
Digital Negative Supply Voltage	DV_{SS}	-5.25	V

NOTES:

1. The same bias configuration as the Power Burn-in shall apply.

2.8.2 <u>Electrical Measurements for Total Dose Radiation Testing</u>

Prior to radiation testing the devices shall successfully meet Room Temperature Electrical Measurements specified herein.

Unless otherwise stated the measurements shall be performed at $T_{amb} = 22 \pm 3^{\circ}C$.

The test methods and test conditions shall be as per the corresponding test defined in electrical measurements at Room Temperature.

The parameters to be measured during and on completion of radiation testing are shown below. Unless otherwise specified all inputs and outputs shall be tested for each characteristic.

Characteristics	Symbol	Limits		Units
		Min.	Max.	
Input Resistance, A Input	R _{INA}	45	55	Ω
ECL Mode Low Level Output Voltage, D7 to D9 Outputs	V _{OL1}	-	-1.1	V
ECL Mode Low Level Output Voltage, D7B to D9B Outputs	V _{OL2}	-	-1.1	V
LVDS Mode Low Level Output Voltage, D7 to D9 Outputs	V _{OL3}	0.75	1.18	V
LVDS Mode Low Level Output Voltage, D7B to D9B Outputs	V _{OL4}	0.75	1.18	V

Characteristics	Symbol	Limits		Units
		Min.	Max.	
ECL Mode High Level Output Voltage, D7 to D9 Outputs	V _{OH1}	-0.99	-	V
ECL Mode High Level Output Voltage, D7B to D9B Outputs	V _{OH2}	-0.99	-	V
LVDS Mode High Level Output Voltage, D7 to D9 Outputs	V _{OH3}	1.18	1.425	V
LVDS Mode High Level Output Voltage, D7B to D9B Outputs	V _{OH4}	1.18	1.425	V
ECL Mode Analogue Positive Supply Current 1	I _{DD1}	40	150	mA
ECL Mode Analogue Negative Supply Current 1	I _{SS1}	450	750	mA
ECL Mode Digital Positive Supply Current 1	I _{DVDD1}	50	200	mA
ECL Mode Digital Negative Supply Current 1	I _{DVSS1}	50	200	mA
LVDS Mode Analogue Positive Supply Current 2	I _{DD2}	40	150	mA
LVDS Mode Analogue Negative Supply Current 2	I _{SS2}	450	750	mA
LVDS Mode Digital Positive Supply Current 2	I _{DVDD2}	50	300	mA
LVDS Mode Digital Negative Supply Current 2	I _{DVSS2}	50	300	mA
ECL Mode Power Consumption	P_{ECL}	3	4.9	W
LVDS Mode Power Consumption	P_{LDVS}	3	6	W
ECL Mode Effective Number of Bits, Gray Output 1	ENOB ₁	7.3	-	Bit
LVDS Mode Effective Number of Bits, Gray Output 2	ENOB ₂	7	-	Bit
ECL Mode Signal to Noise Ratio, Gray Output	SNR	49	-	dBc
ECL Mode Total Harmonic Distortion, Gray Output 1	THD₁	46	-	dBc
LVDS Mode Total Harmonic Distortion, Gray Output 2	THD ₂	46	-	dBc
ECL Mode Spurious Free Dynamic Range, Gray Output 1	SFDR ₁	48	-	dBc
LVDS Mode Spurious Free Dynamic Range, Gray Output 2	SFDR ₂	50	-	dBc
Minimum Differential Non- Linearity	DNL _{MIN}	-1	-	LSB

ESCC Detail Specification

ISSUE 2

PAGE 28

Characteristics	Symbol	Limits		Units
		Min.	Max.	
Maximum Differential Non- Linearity	DNL _{MAX}	-	1.5	LSB
RMS Differential Non-Linearity	DNL _{rms}	-	0.3	LSB
Minimum Integral Non-Linearity	INL _{MIN}	-4	-	LSB
Maximum Integral Non-Linearity	INL _{MAX}	-	4	LSB