

Page 1 of 14

TRANSISTORS, LOW POWER, NPN BASED ON TYPE 2N3501

ESCC Detail Specification No. 5201/013

Issue 4 October 2015

Document Custodian: European Space Agency - see https://escies.org

No. 5201/013

LEGAL DISCLAIMER AND COPYRIGHT

European Space Agency, Copyright © 2015. All rights reserved.

The European Space Agency disclaims any liability or responsibility, to any person or entity, with respect to any loss or damage caused, or alleged to be caused, directly or indirectly by the use and application of this ESCC publication.

This publication, without the prior permission of the European Space Agency and provided that it is not used for a commercial purpose, may be:

- copied in whole, in any medium, without alteration or modification.
- copied in part, in any medium, provided that the ESCC document identification, comprising the ESCC symbol, document number and document issue, is removed.

DOCUMENTATION CHANGE NOTICE

(Refer to https://escies.org for ESCC DCR content)

DCR No.	CHANGE DESCRIPTION
946	Specification upissued to incorporate editorial changes per DCR.

ESCC Detail Specification

PAGE 4

No. 5201/013

ISSUE 4

TABLE OF CONTENTS

1	GENERAL	5
1.1	SCOPE	5
1.2	APPLICABLE DOCUMENTS	5
1.3	TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS	5
1.4	THE ESCC COMPONENT NUMBER AND COMPONENT TYPE VARIANTS	5
1.4.1	The ESCC Component Number	5
1.4.2	Component Type Variants	5
1.5	MAXIMUM RATINGS	5
1.6	PHYSICAL DIMENSIONS AND TERMINAL IDENTIFICATION	6
1.6.1	Metal Can Package (TO-5) - 3 lead	6
1.6.2	Metal Can Package (TO-39) -3 lead	8
1.7	FUNCTIONAL DIAGRAM	9
1.8	MATERIALS AND FINISHES	9
2	REQUIREMENTS	9
2.1	GENERAL	9
2.1.1	Deviations from the Generic Specification	9
2.2	MARKING	10
2.3	TERMINAL STRENGTH	10
2.4	ELECTRICAL MEASUREMENTS AT ROOM, HIGH AND LOW TEMPERATURES	10
2.4.1	Room Temperature Electrical Measurements	10
2.4.2	High and Low Temperatures Electrical Measurements	12
2.5	PARAMETER DRIFT VALUES	13
2.6	INTERMEDIATE AND END-POINT ELECTRICAL MEASUREMENTS	13
2.7	POWER BURN-IN CONDITIONS	13
2.8	OPERATING LIFE CONDITIONS	14

1 **GENERAL**

1.1 SCOPE

This specification details the ratings, physical and electrical characteristics and test and inspection data for the component type variants and/or the range of components specified below. It supplements the requirements of, and shall be read in conjunction with, the ESCC Generic Specification listed under Applicable Documents.

1.2 APPLICABLE DOCUMENTS

The following documents form part of this specification and shall be read in conjunction with it:

- (a) ESCC Generic Specification No. 5000
- (b) MIL-STD-750, Test Methods and Procedures for Semiconductor Devices

1.3 TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS

For the purpose of this specification, the terms, definitions, abbreviations, symbols and units specified in ESCC Basic Specification No. 21300 shall apply.

1.4 THE ESCC COMPONENT NUMBER AND COMPONENT TYPE VARIANTS

1.4.1 The ESCC Component Number

The ESCC Component Number shall be constituted as follows:

Example: 520101301

Detail Specification Reference: 5201013

• Component Type Variant Number: 01 (as required)

1.4.2 Component Type Variants

The component type variants applicable to this specification are as follows:

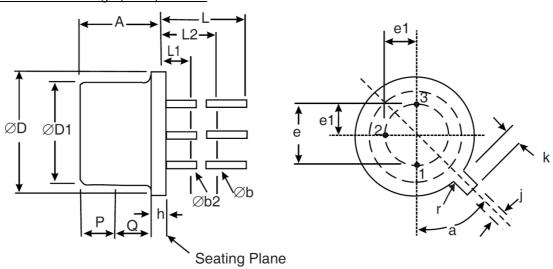
Variant Number	Based on Type	Case	Lead/Terminal Material and Finish	Weight max g
01	2N3501	TO-5	D2	1.2
02	2N3501	TO-39	D2	1.2

The lead/terminal material and finish shall be in accordance with the requirements of ESCC Basic Specification No. 23500.

1.5 MAXIMUM RATINGS

The maximum ratings shall not be exceeded at any time during use or storage.

Maximum ratings shall only be exceeded during testing to the extent specified in this specification and when stipulated in Test Methods and Procedures of the ESCC Generic Specification.


Characteristics	Symbols	Maximum Ratings	Unit	Remarks
Collector-Base Voltage	V_{CBO}	150	V	Over entire
Collector-Emitter Voltage	V_{CEO}	150	V	operating temperature
Emitter-Base Voltage	V_{EBO}	6	V	range
Collector Current	I _C	300	mA	
Power Dissipation	P _{tot1}	1	W	At $T_{amb} \le +25$ °C
	P _{tot2}	5	W	At T _{case} ≤ +25°C
Thermal Resistance, Junction-to-Ambient	R _{th(j-a)}	175	°C/W	
Thermal Resistance, Junction-to-Case	R _{th(j-c)}	35	°C/W	
Operating Temperature Range	T _{op}	-65 to +200	°C	Note 1
Storage Temperature Range	T _{stg}	-65 to +200	°C	Note 1
Soldering Temperature	T _{sol}	+260	°C	Note 2

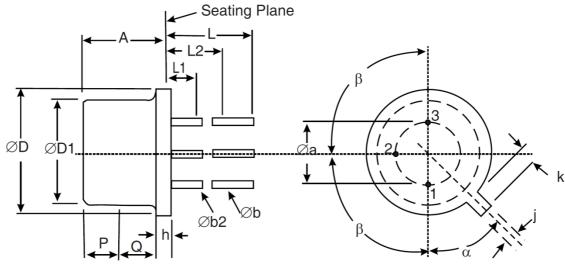
NOTES:

- For Variants with tin-lead plating or hot solder dip lead finish all testing, and any handling, performed at T_{amb} > +125°C shall be carried out in a 100% inert atmosphere. Duration 10 seconds maximum at a distance of not less than 1.5mm from the device body and
- 2. the same lead shall not be resoldered until 3 minutes have elapsed.

1.6 PHYSICAL DIMENSIONS AND TERMINAL IDENTIFICATION

1.6.1 Metal Can Package (TO-5) - 3 lead

Cymbolo	Dimensi	Notes	
Symbols	Min	Max	notes
А	6.1	6.6	
Øb	0.406	0.533	2, 3

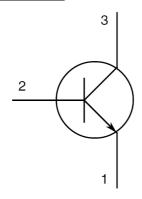


No. 5201/013

Symbols	Dimensi	ons mm	Notes
Symbols	Min	Max	Notes
Øb2	0.406	0.483	2, 3
ØD	8.51	9.4	
ØD1	7.75	8.51	
е	5.08	BSC	6
e1	2.54	BSC	
h	0.229	3.18	
j	0.711	0.864	
k	0.737	1.14	4
L	38.1	-	2
L1	-	1.27	2, 3
L2	6.35	-	2, 3
Р	2.54	-	5
Q	-	-	7
r	-	0.179	8
a	45° I	BSC	1, 9

- 1. Terminal identification is specified by reference to the tab position where lead 1 = emitter, lead 2 = base, lead 3 = collector.
- 2. Applies to all leads.
- 3. Øb2 applies between L1 and L2. Øb applies between L2 and 38.1mm from the seating plane. Diameter is uncontrolled within L1 and beyond 38.1mm from the seating plane.
- 4. Measured from the maximum diameter of the actual device.
- 5. This zone is controlled for automatic handling. The variation in actual diameter within this zone shall not exceed 0.254mm.
- 6. Leads having maximum diameter 0.483mm measured in the gauging plane 1.37 (+0.025, -0)mm below the seating plane of the device shall be within 0.178mm of their true position relative to a maximum-width-tab.
- 7. The details of outline in this zone are optional.
- 8. Radius.
- 9. Measured from the tab centreline.

1.6.2 Metal Can Package (TO-39) -3 lead



Symbols	Dimensi	Notos	
Symbols	Min	Max	Notes
Øa	4.83	5.35	
Α	6	6.6	
Øb	0.4	0.533	2, 3
Øb2	0.4	0.483	2, 3
ØD	8.31	9.4	
ØD1	7.75	8.51	5
h	0.229	3.18	
j	0.711	0.864	
k	0.737	1.14	4
L	12.7	19	2
L1	-	1.27	2, 3
L2	6.35	-	2, 3
Р	2.54	-	5
Q	-	-	6
α	45°	1, 7	
β	90°	BSC	1

- 1. Terminal identification is specified by reference to the tab position where Lead 1 = emitter, Lead 2 = base and Lead 3 = collector.
- 2. Applies to all leads.
- 3. Øb2 applies between L1 and L2. Øb applies between L2 and 12.7mm from the seating plane. Diameter is uncontrolled within L1 and beyond 12.7mm from the seating plane.
- 4. Measured from the maximum diameter of the actual device.
- 5. This zone is controlled for automatic handling. The variation in actual diameter within this zone shall not exceed 0.254mm.
- 6. The details of outline in this zone are optional.
- 7. Measured from the tab centreline.

1.7 FUNCTIONAL DIAGRAM

- 1. Emitter.
- 2. Base.
- 3. Collector.

NOTES:

1. The collector is internally connected to the case.

1.8 MATERIALS AND FINISHES

Materials and finishes shall be as follows:

- (a) Case
 - The case shall be hermetically sealed and have a metal body with hard glass seals.
- (b) Leads/TerminalsAs specified in Component Type Variants.

2 **REQUIREMENTS**

2.1 GENERAL

The complete requirements for procurement of the components specified herein are as stated in this specification and the ESCC Generic Specification. Permitted deviations from the Generic Specification, applicable to this specification only, are listed below.

Permitted deviations from the Generic Specification and this Detail Specification, formally agreed with specific Manufacturers on the basis that the alternative requirements are equivalent to the ESCC requirement and do not affect the component's reliability, are listed in the appendices attached to this specification.

2.1.1 <u>Deviations from the Generic Specification</u>

(a) Deviation from Screening Tests - Chart F3
High Temperature Reverse Bias Burn-in and the subsequent Final Measurements for HTRB shall be omitted.

2.2 MARKING

The marking shall be in accordance with the requirements of ESCC Basic Specification No. 21700 and as follows.

The information to be marked on the component shall be:

- (a) The ESCC qualified components symbol (for ESCC qualified components only).
- (b) The ESCC Component Number.
- (c) Traceability information.

2.3 TERMINAL STRENGTH

The test conditions for terminal strength, tested as specified in the ESCC Generic Specification, shall be as follows:

Test Condition: E, lead fatigue.

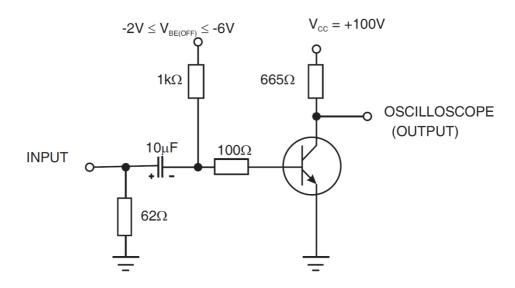
2.4 <u>ELECTRICAL MEASUREMENTS AT ROOM, HIGH AND LOW TEMPERATURES</u>

Electrical measurements shall be performed at room, high and low temperatures.

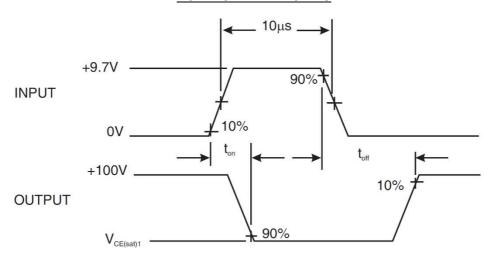
2.4.1 Room Temperature Electrical Measurements

The measurements shall be performed at $T_{amb} = +22 \pm 3$ °C.

Characteristics	Symbols MIL-STD-750		Test Conditions	Limits		Units
		Test Method		Min	Max	
Collector-Base Breakdown Voltage	$V_{(BR)CBO}$	3001	I _C = 10μA Bias Condition D	150	-	V
Collector-Emitter Breakdown Voltage	$V_{(BR)CEO}$	3011	I _C = 10mA Bias Condition D Note 1	150	-	V
Emitter-Base Breakdown Voltage	$V_{(BR)EBO}$	3026	I _E = 10μA Bias Condition D	6	-	٧
Collector-Base Cut- off Current	I _{CBO}	3036	V _{CB} = 75V Bias Condition D	-	50	nA
Emitter-Base Cut-off Current	I _{EBO}	3061	V _{CB} = 4V Bias Condition D	-	25	nA
Collector-Emitter Saturation Voltage	V _{CE(sat)1}	3071	$I_C = 150$ mA, $I_B = 15$ mA Note 1	-	400	mV
	V _{CE(sat)2}	3071	I _C = 10mA, I _B = 1mA Note 1	-	200	mV
Base-Emitter Saturation Voltage	V _{BE(sat)1}	3066	I _C = 150mA, I _B = 15mA Test Condition A Note 1	-	1.2	V
	V _{BE(sat)2}	3066	I _C = 10mA, I _B = 1mA Test Condition A Note 1	-	800	mV



Characteristics	Symbols	MIL-STD-750	Test Conditions	Lin	Limits	
		Test Method		Min	Max	
Forward-Current Transfer Ratio	h _{FE1}	3076	$V_{CE} = 10V, I_{C} = 100\mu A$ Note 1	35	-	-
	h _{FE2}	3076	$V_{CE} = 10V, I_{C} = 150mA$ Note 1	100	300	-
	h _{FE3}	3076	$V_{CE} = 10V, I_{C} = 300mA$ Note 1	20	-	-
Input Capacitance	C _{ibo}	3240	$V_{EB} = 500$ mV, $I_{C} = 0$ A f = 100kHz Note 2	-	80	pF
Output Capacitance	C_obo	3236	$V_{CB} = 10V$, $I_E = 0A$ f = 100kHz Note 2	-	8	pF
Small-Signal Short- Circuit Forward- Current Transfer Ratio	h _{fe}	3306	$V_{CE} = 10V$, $I_C = 10mA$ f = 1kHz Note 2	75	375	_
Magnitude of Small- Signal Short-Circuit Forward Current Transfer Ratio	h _{fe}	3306	$V_{CE} = 20V I_C = 20mA$ f = 100MHz Note 2	1.5	8	-
Gain Bandwidth Product	f _⊤	3261	V _{CE} = 20V, I _C = 20mA f = 100MHz Note 2	150	-	MHz
Turn-on Time	t _{on}	-	I _B = 15mA Notes 2, 3	-	70	ns
Turn-off Time	t _{off}	-	$I_{B1} = I_{B2} = 15mA$ Notes 2, 3	-	240	ns


- Pulsed measurement: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 2. For AC characteristics read and record measurements shall be performed on a sample of 32 components with 0 failures allowed. Alternatively a 100% inspection may be performed.
- 3. t_{on} and t_{off} shall be measured using the following test circuit. The input waveforms for t_{on} and t_{off} shall be supplied by a pulse generator with the following characteristics: $Z_{OUT} = 50\Omega$, $t_r = t_f \le 20$ ns, Pulse Width $\ge 10\mu$ s, Duty Cycle $\le 2\%$. The output waveforms shall be monitored on an oscilloscope with the following characteristics: $t_r \le 1$ ns, $Z_{IN} = 50\Omega$.

VOLTAGE WAVEFORMS

2.4.2 <u>High and Low Temperatures Electrical Measurements</u>

Characteristics	Symbols MIL-STD-750	Test Conditions	Limits		Units	
		Test Method	Note 1	Min	Max	
Collector-Base Cut-off Current	I _{CBO}	3036	T_{amb} = +150 (+0 -5)°C V_{CB} = 75V Bias Condition D	-	50	μA
Forward-Current Transfer Ratio 2	h _{FE2}	3076	$T_{amb} = -55 (+5 -0)^{\circ}C$ $V_{CE} = 10V, I_{C} = 150mA$ Note 2	50	-	-

- 1. Read and record measurements shall be performed on a sample of 5 components with 0 failures allowed. Alternatively a 100% inspection may be performed.
- 2. Pulsed measurement: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.

2.5 PARAMETER DRIFT VALUES

Unless otherwise specified, the measurements shall be performed at T_{amb} = +22 ±3°C.

The test methods and test conditions shall be as per the corresponding test defined in Room Temperature Electrical Measurements.

The drift values (Δ) shall not be exceeded for each characteristic specified. The corresponding absolute limit values for each characteristic shall not be exceeded.

Characteristics	Symbols		Units		
		Drift	Abso	olute	
		Value Δ	Min	Max	
Collector-Base Cut-off Current	I _{CBO}	±10 or (1) ±100%	-	50	nA
Collector-Emitter Saturation Voltage 1	V _{CE(sat)1}	±50 or (1) ±15%	-	400	mV
Forward-Current Transfer Ratio 2	h _{FE2}	±15%	100	300	-

NOTES:

2.6 INTERMEDIATE AND END-POINT ELECTRICAL MEASUREMENTS

Unless otherwise specified, the measurements shall be performed at $T_{amb} = +22 \pm 3^{\circ}C$.

The test methods and test conditions shall be as per the corresponding test defined in Room Temperature Electrical Measurements.

The limit values for each characteristic shall not be exceeded.

Characteristics	Symbols	Lin	nits	Units
		Min	Max	
Collector-Base Cut-off Current	I _{CBO}	-	50	nA
Collector-Emitter Saturation Voltage 1	$V_{\text{CE(sat)}1}$	1	400	mV
Forward-Current Transfer Ratio 2	h _{FE2}	100	300	-

2.7 POWER BURN-IN CONDITIONS

Characteristics	Symbols	Conditions	Units
Ambient Temperature	T_{amb}	+22 ±3	°C
Power Dissipation	P _{tot}	1	W
Collector-Base Voltage	V_{CB}	10	V

^{1.} Whichever is the greater referred to the initial value.

No. 5201/013

PAGE 14

ISSUE 4

2.8 OPERATING LIFE CONDITIONS

The conditions shall be as specified for Power Burn-in.