

Page 1 of 15

TRANSISTORS, LOW POWER, PNP

BASED ON TYPE 2N2894 AND 2N2894A

ESCC Detail Specification No. 5202/004

Issue 4 October 2015

LEGAL DISCLAIMER AND COPYRIGHT

European Space Agency, Copyright © 2015. All rights reserved.

The European Space Agency disclaims any liability or responsibility, to any person or entity, with respect to any loss or damage caused, or alleged to be caused, directly or indirectly by the use and application of this ESCC publication.

This publication, without the prior permission of the European Space Agency and provided that it is not used for a commercial purpose, may be:

- copied in whole, in any medium, without alteration or modification.
- copied in part, in any medium, provided that the ESCC document identification, comprising the ESCC symbol, document number and document issue, is removed.

DOCUMENTATION CHANGE NOTICE

(Refer to https://escies.org for ESCC DCR content)

DCR No.	CHANGE DESCRIPTION
946	Specification upissued to incorporate editorial changes per DCR.

ESCC Detail Specification

No. 5202/004

PAGE 4

ISSUE 4

TABLE OF CONTENTS

1	GENERAL	5
1.1	SCOPE	5
1.2	APPLICABLE DOCUMENTS	5
1.3	TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS	5
1.4	THE ESCC COMPONENT NUMBER AND COMPONENT TYPE VARIANTS	5
1.4.1	The ESCC Component Number	5
1.4.2	Component Type Variants	5
1.5	MAXIMUM RATINGS	6
1.6	PHYSICAL DIMENSIONS AND TERMINAL IDENTIFICATION	7
1.6.1	Metal Can Package (TO-18) - 3 lead	7
1.6.2	Chip Carrier Package (CCP) - 3 terminal	8
1.7	FUNCTIONAL DIAGRAM	9
1.8	MATERIALS AND FINISHES	9
2	REQUIREMENTS	9
2.1	GENERAL	9
2.1.1	Deviations from the Generic Specification	10
2.2	MARKING	10
2.3	TERMINAL STRENGTH	10
2.4	ELECTRICAL MEASUREMENTS AT ROOM, HIGH AND LOW TEMPERATURES	10
2.4.1	Room Temperature Electrical Measurements	10
2.4.2	High and Low Temperatures Electrical Measurements	14
2.5	PARAMETER DRIFT VALUES	14
2.6	INTERMEDIATE AND END-POINT ELECTRICAL MEASUREMENTS	15
2.7	HIGH TEMPERATURE REVERSE BIAS BURN-IN CONDITIONS	15
2.8	POWER BURN-IN CONDITIONS	15
2.9	OPERATING LIFE CONDITIONS	15

1 **GENERAL**

1.1 SCOPE

This specification details the ratings, physical and electrical characteristics and test and inspection data for the component type variants and/or the range of components specified below. It supplements the requirements of, and shall be read in conjunction with, the ESCC Generic Specification listed under Applicable Documents.

1.2 APPLICABLE DOCUMENTS

The following documents form part of this specification and shall be read in conjunction with it:

- (a) ESCC Generic Specification No. 5000
- (b) MIL-STD-750, Test Methods and Procedures for Semiconductor Devices

1.3 TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS

For the purpose of this specification, the terms, definitions, abbreviations, symbols and units specified in ESCC Basic Specification No. 21300 shall apply.

1.4 THE ESCC COMPONENT NUMBER AND COMPONENT TYPE VARIANTS

1.4.1 The ESCC Component Number

The ESCC Component Number shall be constituted as follows:

Example: 520200401

Detail Specification Reference: 5202004

Component Type Variant Number: 01 (as required)

1.4.2 Component Type Variants

The component type variants applicable to this specification are as follows:

Variant Number	Based on Type	Case	Lead/Terminal Material and/or Finish	Weight max g
01	2N2894	TO-18	D2	0.4
02	2N2894A	TO-18	D2	0.4
03	2N2894	TO-18	D3 or D4	0.4
04	2N2894A	TO-18	D3 or D4	0.4
05	2N2894	TO-18	D7	0.4
06	2N2894	CCP	2	0.06
07	2N2894	CCP	4	0.06

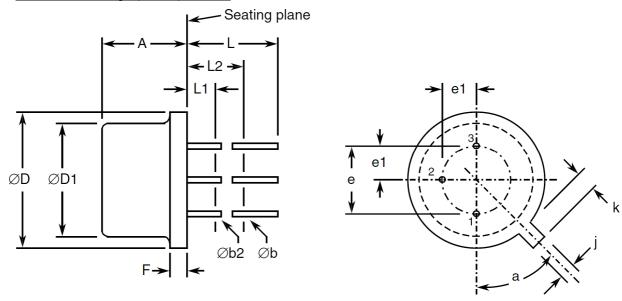
The lead/terminal material and/or finish shall be in accordance with the requirements of ESCC Basic Specification No. 23500.

1.5 MAXIMUM RATINGS

The maximum ratings shall not be exceeded at any time during use or storage.

Maximum ratings shall only be exceeded during testing to the extent specified in this specification and when stipulated in Test Methods and Procedures of the ESCC Generic Specification.

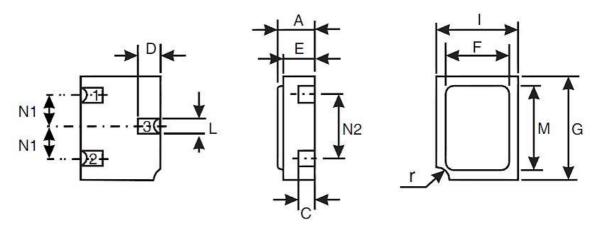
Characteristics	Symbols	Maximum Ratings	Unit	Remarks
Collector-Base Voltage	V_{CBO}	-12	V	Over entire
Collector-Emitter Voltage	V_{CEO}	-12	V	operating temperature
Emitter-Base Voltage	V_{EBO}	-4	V	range
Collector Current	I _C	-200	mA	Continuous
Power Dissipation For TO-18 and CCP For TO-18	P _{tot1}	0.36 1.2	W	At $T_{amb} \le +25^{\circ}C$ At $T_{case} \le +25^{\circ}C$
Thermal Resistance, Junction-to-Ambient	R _{th(j-a)}	486	°C/W	
Thermal Resistance, Junction-to-Case	R _{th(j-c)}	145.8	°C/W	Note 1
Operating Temperature Range	T_op	-65 to +200	°C	Note 2
Storage Temperature Range	T_{stg}	-65 to +200	°C	Note 2
Soldering Temperature For TO-18 For CCP	T_{sol}	+260 +245	°C	Note 3 Note 4


NOTES:

- 1. Thermal Resistance, Junction-to-Case only applies to TO-18 packaged Variants.
- 2. For Variants with tin-lead plating or hot solder dip lead finish all testing, and any handling, performed at $T_{amb} > +125$ °C shall be carried out in a 100% inert atmosphere.
- 3. Duration 10 seconds maximum at a distance of not less than 1.5mm from the device body and the same lead shall not be resoldered until 3 minutes have elapsed.
- 4. Duration 5 seconds maximum and the same terminal shall not be resoldered until 3 minutes have elapsed.

1.6 PHYSICAL DIMENSIONS AND TERMINAL IDENTIFICATION

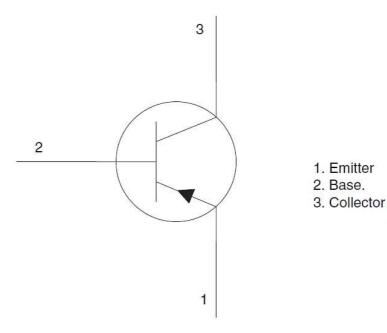
1.6.1 Metal Can Package (TO-18) - 3 lead


Cympholo	Dimensi	Notes	
Symbols	Min	Max	Notes
Α	4.32	5.33	
Øb	0.406	0.533	2, 3
Øb2	0.406	0.483	2, 3
ØD	5.31	5.84	
ØD1	4.52	4.95	
е	2.54	4	
e1	1.27	BSC	4
F	-	0.762	
j	0.914	1.17	
k	0.711	1.22	5
L	12.7	-	2
L1	-	1.27	3
L2	6.35	-	3
а	45° l	BSC	1, 4, 6

NOTES:

- 1. Terminal identification is specified by reference to the tab position where lead 1 = emitter, lead 2 = base, lead 3 = collector.
- 2. Applies to all leads.
- 3. Øb2 applies between L1 and L2. Øb applies between L2 and 12.7mm from the seating plane. Diameter is uncontrolled within L1 and beyond 12.7mm from the seating plane.
- 4. Leads having maximum diameter 0.483mm measured in the gauging plane 1.37 (+0.025, -0) mm below the seating plane of the device shall be within 0.178mm of their true position relative to a maximum-width-tab.
- 5. Measured from the maximum diameter of the actual device.
- 6. Tab centreline.

1.6.2 Chip Carrier Package (CCP) - 3 terminal


Cymholo	Dimens	Notes	
Symbols	Min	Max	Notes
Α	1.15	1.5	
С	0.45	0.56	2
D	0.6	0.91	2
E	0.91	1.12	
F	1.9	2.15	
G	2.9	3.25	
l	2.4	2.85	
L	0.4	0.6	2
M	2.4	2.65	
N1	0.855	1.055	
N2	1.8	2	
r	0.3 TY	1	

NOTES:

- Terminal identification is specified by reference to the corner notch position where terminal 1 = emitter, terminal 2 = base, terminal 3 = collector.
- 2. Applies to all terminals.

1.7 FUNCTIONAL DIAGRAM

NOTES:

- 1. For TO-18, the collector is internally connected to the case.
- 2. For CCP, the lid is not connected to any terminal.

1.8 MATERIALS AND FINISHES

Materials and finishes shall be as follows:

(a) Case

For the metal can package the case shall be hermetically sealed and have a metal body with hard glass seals.

For the chip carrier package the case shall be hermetically sealed and have a ceramic body with a Kovar lid.

(b) Leads/Terminals

As specified in Component Type Variants.

2 **REQUIREMENTS**

2.1 GENERAL

The complete requirements for procurement of the components specified herein are as stated in this specification and the ESCC Generic Specification. Permitted deviations from the Generic Specification, applicable to this specification only, are listed below.

Permitted deviations from the Generic Specification and this Detail Specification, formally agreed with specific Manufacturers on the basis that the alternative requirements are equivalent to the ESCC requirement and do not affect the component's reliability, are listed in the appendices attached to this specification.

2.1.1 <u>Deviations from the Generic Specification</u>

None.

2.2 MARKING

The marking shall be in accordance with the requirements of ESCC Basic Specification No. 21700 and as follows.

The information to be marked on the component shall be:

- (a) The ESCC qualified components symbol (for ESCC qualified components only).
- (b) The ESCC Component Number.
- (c) Traceability information.

2.3 TERMINAL STRENGTH

The test conditions for terminal strength, tested as specified in the ESCC Generic Specification, shall be as follows:

For TO-18, Test Condition: E, lead fatigue.

2.4 <u>ELECTRICAL MEASUREMENTS AT ROOM, HIGH AND LOW TEMPERATURES</u>

Electrical measurements shall be performed at room, high and low temperatures.

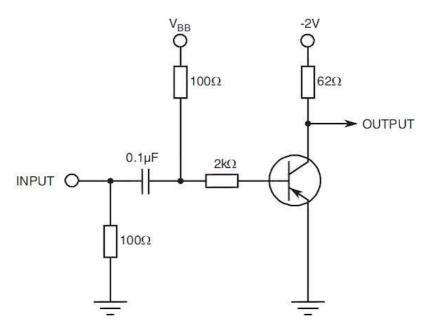
2.4.1 Room Temperature Electrical Measurements

The measurements shall be performed at T_{amb} = +22 ±3°C.

Characteristics	Symbols	MIL-STD-750	Test Conditions	Limits		Units
		Test Method	l est Method		Max	
Collector-Emitter Breakdown Voltage	V _{(BR)CEO}	3011	I _C = -10mA Note 1 Bias condition D	-12	-	V
Collector-Base Breakdown Voltage	V _{(BR)CBO}	3001	$I_C = -10\mu A$ Bias condition D	-12	-	V
Emitter-Base Breakdown Voltage	$V_{(BR)EBO}$	3026	I _E = -100μA Bias condition D	-4	-	V
Collector-Base Cut-off Current	I _{CBO}	3036	V _{CB} = -10V Bias condition D	-	-100	nA

Characteristics	Symbols	MIL-STD-750	Test Conditions	Lin	Units	
		Test Method		Min	Max	
Forward-Current Transfer Ratio	h _{FE1}	3076	$V_{CE} = -300 \text{mV}$ $I_{C} = -10 \text{mA}$ Note 1 $2N2894$ $2N2894A$	30	-	-
	h _{FE2}	3076	$V_{CE} = -500 \text{mV}$ $I_{C} = -30 \text{mA}$ Note 1 2N2894	40	150	-
		0070	2N2894A	40	120	
	h _{FE3}	3076	$V_{CE} = -1V, I_{C} = -100mA$ Note 1 2N2894	25	-	-
Outland Fulling		0074	2N2894A	30	-	\/
Collector-Emitter Saturation Voltage	V _{CE(sat)1}	3071	$I_C = -10 \text{mA}, I_B = -1 \text{mA}$ Note 1 2N2894 2N2894A	-	-150 -	mV
	V _{CE(sat)2}	3071	$I_C = -30$ mA, $I_B = -3$ mA Note 1			mV
			2N2894 2N2894A	-	-200 -190	
	V _{CE(sat)3}	3071	I _C = -100mA, I _B = -10mA Note 1			mV
			2N2894 2N2894A	-	-500 -450	
Base-Emitter Saturation Voltage	V _{BE(sat)1}	3066	I _C = -10mA, I _B = -1mA Note 1 Test condition A			mV
			2N2894 2N2894A	-780 -	-980 -	
	V _{BE(sat)2}	3066	$I_C = -30$ mA, $I_B = -3$ mA Note 1 Test condition A 2N2894	-0.85	-1.2	V
Magnitude of Small-Signal Short-Circuit	 h _{fe}	3306	2N2894A $V_{CB} = -30mA, V_{CE} = -10V$ f = 100MHz Note 2	-	-1.15	-
Forward-Current Transfer Ratio			2N2894 2N2894A	4 7	-	
Output Capacitance	C _{obo}	3236	$V_{CB} = -5V$, $I_E = 0A$ f = 1MHz Note 2	<u> </u>		pF
			2N2894 2N2894A	-	6 4.5	

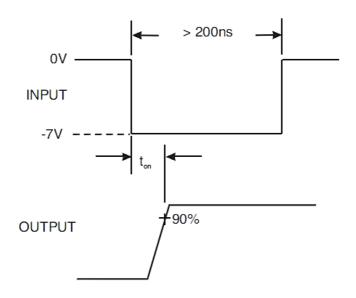
60

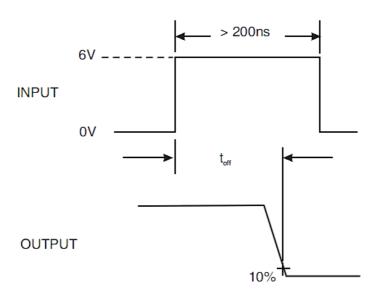

Characteristics	Symbols	-	Test Conditions	Limits		Units
		i est ivietnod	Test Method		Max	
Input Capacitance	C _{ibo}	3240	V_{EB} = -500mV, I_{C} = 0A f = 1MHz Note 2	-	6	pF
Turn-on Time	t _{on}	-	$V_{BB} = 3V, V_{IN} = -7V$ $I_{C} = -30mA$ $I_{BL} = 1.5mA$ Notes 2, 3 $2N2894$ $2N2894A$	<u>-</u>	60 40	ns
Turn-off Time	t _{off}	-	V_{BB} = -4V, V_{IN} = 6V I_{C} = -30mA I_{B1} = I_{B2} = 1.5mA Notes 2, 3 2N2894	_	90	ns

NOTES:

- 1. Pulse measurement: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 2. For AC characteristics read and record measurements shall be performed on a sample of 32 components with 0 failures allowed. Alternatively a 100% inspection may be performed.

2N2894A


3. t_{on} shall be measured using the following test circuit. The input waveform shall be supplied by a pulse generator with the following characteristics: $Z_{OUT} = 50\Omega$, $t_r \le 2$ ns, Pulse Width = 200 ±10ns, Duty Cycle $\le 2\%$. The output waveform shall be monitored on an oscilloscope with the following characteristics: $Z_{IN} \ge 100$ k Ω , input capacitance ≤ 12 pF, $t_r \le 1$ ns.


No. 5202/004

VOLTAGE WAVEFORM FOR ton

VOLTAGE WAVEFORM FOR $t_{\mbox{\tiny off}}$

2.4.2 High and Low Temperatures Electrical Measurements

Characteristics	Symbols	MIL-STD-750	Test Conditions Note 1	Limits		Units
		Test Method	Note i	Min	Max	
Collector-Base Cut-off Current	I _{CBO}	3036	T_{amb} = +150 (+0 -5)°C V_{CB} = -50V Bias condition D	-	-10	μA
Forward-Current Transfer Ratio 2	h _{FE2}	3076	$T_{amb} = -55 (+5 -0)^{\circ}C$ $V_{CE} = -500 \text{mV}$ $I_{C} = -30 \text{mA}$ Note 2	20	-	-

NOTES:

- 1. Read and record measurements shall be performed on a sample of 5 components with 0 failures allowed. Alternatively a 100% inspection may be performed.
- 2. Pulsed measurement: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.

2.5 PARAMETER DRIFT VALUES

Unless otherwise specified, the measurements shall be performed at T_{amb} = +22 ±3°C.

The test methods and test conditions shall be as per the corresponding test defined in Room Temperature Electrical Measurements.

The drift values (Δ) shall not be exceeded for each characteristic specified. The corresponding absolute limit values for each characteristic shall not be exceeded.

Characteristics	Symbols		Limits		Units
		Drift	Abso	olute	
		Value Δ	Min	Max	
Collector-Base Cut-off Current	I _{CBO}	±20 or (1) ±100%	-	-10	nA
Forward-Current Transfer Ratio 2 2N2894 2N2894A	h _{FE2}	±15%	40 40	150 150	-
Collector-Emitter Saturation Voltage 3	V _{CE(sat)}	±50 or (1) ±15%			mV
2N2894 2N2894A			-	-500 -450	

NOTES:

1. Whichever is greater referred to the initial value.

2.6 INTERMEDIATE AND END-POINT ELECTRICAL MEASUREMENTS

Unless otherwise specified, the measurements shall be performed at T_{amb} = +22 ±3°C.

The test methods and test conditions shall be as per the corresponding test defined in Room Temperature Electrical Measurements.

The limit values for each characteristic shall not be exceeded.

Characteristics	Symbols	Limits		Units
		Min	Max	
Collector-Base Cut-off Current	I _{CBO}	1	-100	nA
Forward-Current Transfer Ratio 2 2N2894 2N2894A	h _{FE2}	40 40	150 150	-
Collector-Emitter Saturation Voltage 3	$V_{CE(sat)}$			mV
2N2894 2N2894A		- -	-500 -450	

2.7 <u>HIGH TEMPERATURE REVERSE BIAS BURN-IN CONDITIONS</u>

Characteristics	Symbols	Test Conditions	Units
Ambient Temperature	T _{amb}	+150 (+0 -5)	°C
Collector-Base Voltage	V_{CB}	12	V
Duration	t	72 minimum	Hours

2.8 POWER BURN-IN CONDITIONS

Characteristics	Symbols	Test Conditions	Units
Ambient Temperature	T _{amb}	+20 to +50	°C
Power Dissipation	P _{tot}	As per Maximum Ratings. Derate P_{tot1} at the chosen T_{amb} using the specified $R_{th(j-a)}$.	W
Collector-Base Voltage	V _{CB}	-10	V

2.9 OPERATING LIFE CONDITIONS

The conditions shall be as specified for Power Burn-in.