

Page 1 of 21

CRYSTAL OSCILLATORS, CLASS 2, 4MHz TO 100MHz, AHCMOS COMPATIBLE OUTPUT, RAD-HARD

BASED ON TYPE RK135

ESCC Detail Specification No. 3503/001

Issue 1	November 2015

Document Custodian: European Space Agency - see https://escies.org

ISSUE 1

PAGE 2

LEGAL DISCLAIMER AND COPYRIGHT

European Space Agency, Copyright © 2015. All rights reserved.

The European Space Agency disclaims any liability or responsibility, to any person or entity, with respect to any loss or damage caused, or alleged to be caused, directly or indirectly by the use and application of this ESCC publication.

This publication, without the prior permission of the European Space Agency and provided that it is not used for a commercial purpose, may be:

- copied in whole, in any medium, without alteration or modification.
- copied in part, in any medium, provided that the ESCC document identification, comprising the ESCC symbol, document number and document issue, is removed.

No. 3503/001

ISSUE 1

DOCUMENTATION CHANGE NOTICE

(Refer to https://escies.org for ESCC DCR content)

DCR No.	CHANGE DESCRIPTION

PAGE 4

TABLE OF CONTENTS

1	GENERAL	5
1.1	SCOPE	5
1.2	APPLICABLE DOCUMENTS	5
1.3	TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS	5
1.4	THE ESCC COMPONENT NUMBER AND COMPONENT TYPE VARIANTS	5
1.4.1	The ESCC Component Number	5
1.4.2	Characteristics Codes	5
1.4.3	Component Type Variants	6
1.5	MAXIMUM RATINGS	7
1.6	PHYSICAL DIMENSIONS AND TERMINAL IDENTIFICATION	8
1.6.1	Flat Package (FP1) – 14 leads	8
1.6.2	Flat Package (FP2) – 20 leads	9
1.6.3	Flat Package (FP3) – 12 leads	10
1.6.4	Flat Package (FP4) – 16 leads	11
1.6.5	Dual-in–Line Package (DIL1) – 14 leads	12
1.6.6	J-Lead Package (JL2) – 4 leads	13
1.7	FUNCTIONAL DIAGRAM	14
1.8	MATERIALS AND FINISHES	14
2	REQUIREMENTS	15
2.1	GENERAL	15
2.1.1	Oscillator Class	15
2.1.2	Deviations from the Generic Specification	15
2.2	MARKING	15
2.3	ELECTRICAL MEASUREMENTS AT ROOM, HIGH AND LOW TEMPERATURES	16
2.3.1	Room Temperature Electrical Measurements	16
2.3.2	High and Low Temperatures Electrical Measurements	17
2.3.3	Notes to Room, High and Low Electrical Measurements	17
2.4	PARAMETER DRIFT VALUES	18
2.5	INTERMEDIATE AND END-POINT ELECTRICAL MEASUREMENTS	19
2.6	BURN-IN CONDITIONS	20
2.7	FREQUENCY AGEING CONDITIONS	20
2.8	OPERATING LIFE CONDITIONS	20
2.9	TOTAL DOSE RADIATION TESTING	20
2.9.1	Bias Conditions and Total Dose Level for Total Dose Radiation Testing	20
2.9.2	Electrical Measurements for Total Dose Radiation Testing	21

ISSUE 1

1 <u>GENERAL</u>

1.1 <u>SCOPE</u>

This specification details the ratings, physical and electrical characteristics and test and inspection data for the component type variants and/or the range of components specified below. It supplements the requirements of, and shall be read in conjunction with, the ESCC Generic Specification listed under Applicable Documents.

1.2 APPLICABLE DOCUMENTS

The following documents form part of this specification and shall be read in conjunction with it:

- (a) ESCC Generic Specification No. 3503.
- 1.3 <u>TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS</u> For the purpose of this specification, the terms, definitions, abbreviations, symbols and units specified in ESCC Basic Specification No. 21300 shall apply.

1.4 THE ESCC COMPONENT NUMBER AND COMPONENT TYPE VARIANTS

1.4.1 <u>The ESCC Component Number</u>

The ESCC Component Number shall be constituted as follows:

Example: 350300101R100M000000

- Detail Specification Reference: 3503001
- Component Type Variant Number: 01 (as required)
- Total Dose Radiation Level Letter (100kRAD(Si)): R (as required)
- Characteristic code: Nominal Frequency (100MHz): 100M000000 (as required)

1.4.2 <u>Characteristics Codes</u>

Characteristics to be codified as part of the ESCC Component Number shall be as follows:

(a) Nominal Frequency expressed by means of the following codes. The unit quantity shall be <u>MHz:</u>

Nominal Frequency f _{Nom} (MHz)	Code
X.XXXXXX	XMXXXXXX
XX.XXXXXX	XXMXXXXXX
XXX.XXXXXX	XXXMXXXXXX

1.4.3 Component Type Variants

The component type variants applicable to this specification are as follows:

Variant Number	Nominal Output Frequency f _{Nom} (MHz)	Case	Nominal Supply Voltage V _{CCNom} (V)	Terminal Material and Finish	Weight max g	Total Dose Radiation Level Letter
01	4 to 100	FP1	3.3	D2	5	R [100kRAD(Si)]
02	4 to 100	FP2	3.3	D2	5	R [100kRAD(Si)]
03	4 to 100	FP3	3.3	D2	5	R [100kRAD(Si)]
04	4 to 100	FP4	3.3	D2	5	R [100kRAD(Si)]
05	4 to 100	DIL1	3.3	G2	5	R [100kRAD(Si)]
06	4 to 100	JL2	3.3	D2	2	R [100kRAD(Si)]
07	4 to 100	FP1	5	D2	5	R [100kRAD(Si)]
08	4 to 100	FP2	5	D2	5	R [100kRAD(Si)]
09	4 to 100	FP3	5	D2	5	R [100kRAD(Si)]
10	4 to 100	FP4	5	D2	5	R [100kRAD(Si)]
11	4 to 100	DIL1	5	G2	5	R [100kRAD(Si)]
12	4 to 100	JL2	5	D2	2	R [100kRAD(Si)]

The terminal material and finish shall be in accordance with the requirements of ESCC Basic Specification No. 23500.

Total dose radiation level letters are defined in ESCC Basic Specification No. 22900. If an alternative radiation test level is specified in the Purchase Order the letter shall be changed accordingly.

No. 3503/001

ISSUE 1

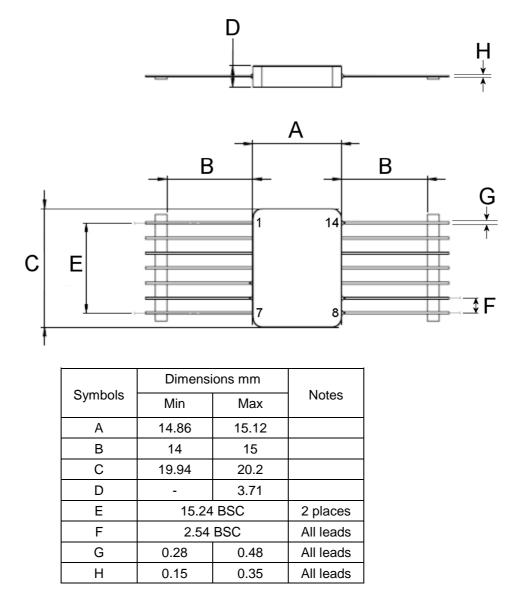
1.5 MAXIMUM RATINGS

The maximum ratings shall not be exceeded at any time during use or storage.

Maximum ratings shall only be exceeded during testing to the extent specified in this specification and when stipulated in Test Methods and Procedures of the ESCC Generic Specification.

Characteristics	Symbols	Maximum Ratings	Unit	Remarks
Supply Voltage	V _{cc}	-0.5 to +7	V	Note 1
Load Impedance	CL	50	pF	Note 2
Operating Temperature Range	T _{op}	-55 to +125	°C	T _{amb}
Storage Temperature Range	T _{stg}	-55 to +125	°C	
Soldering Temperature	T _{sol}	+260	°C	Note 3

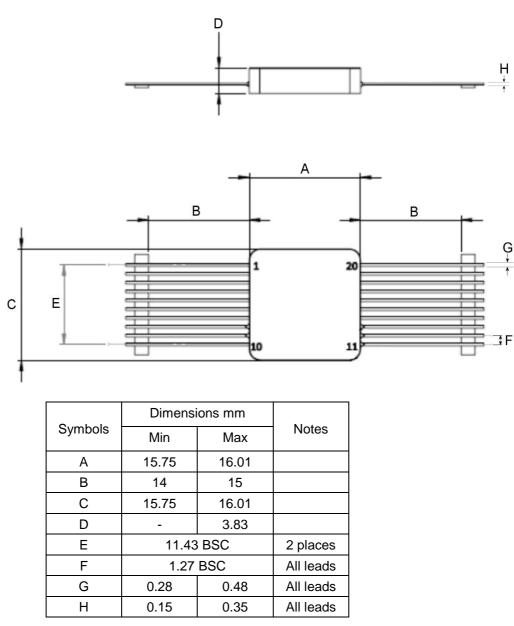
NOTES:


- 1. Device is functional as follows:
 - Variants 01 to 06: 2.97V \leq V_{CC} \leq 3.63V (where nominal V_{CC}, V_{CCNom} = 3.3V)
 - Variants 07 to 12: $4.5V \le V_{CC} \le 5.5V$ (where nominal V_{CC} , $V_{CCNom} = 5V$)
- 2. Device is functional as follows:
 - Variants 01 to 06:
 - For 4MHz ≤ f_{Nom} < 80MHz: C_{LMin} = 13pF ≤ C_L ≤ C_{LMax} = 18pF (load in parallel with R_L = 1kΩ) (where nominal C_L , C_{LNom} = 15pF)
 - $\circ \quad \mbox{For 80MHz} \le f_{Nom} \le 100\mbox{MHz}: \ C_{LMin} = 8.2\mbox{pF} \le C_L \le C_{LMax} = 11\mbox{pF} \ (\mbox{load in parallel with} \ R_L = 1\mbox{k}\Omega) \ (\mbox{where nominal } C_L, \ C_{LNom} = 10\mbox{pF})$
 - Variants 07 to 12: $C_{LMin} = 13pF \le C_L \le C_{LMax} = 18pF$ (load in parallel with $R_L = 1k\Omega$)) (where nominal C_L , $C_{LNom} = 15pF$)
- 3. Hand soldering: duration 10 seconds maximum at a distance of not less than 1.5mm from the device body and the same lead shall not be resoldered until 3 minutes have elapsed.

ISSUE 1

1.6 PHYSICAL DIMENSIONS AND TERMINAL IDENTIFICATION

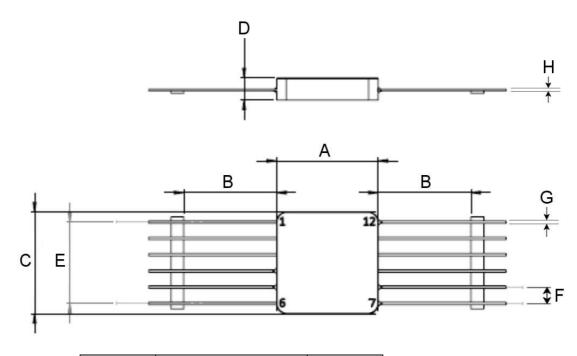
1.6.1 Flat Package (FP1) – 14 leads


NOTES:

1. The terminal identification is specified by marking of the terminal number on the lid as shown. See Functional Diagram for the terminal connections.

ISSUE 1

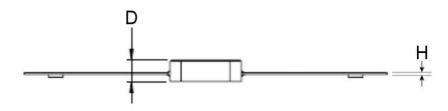
1.6.2 Flat Package (FP2) – 20 leads

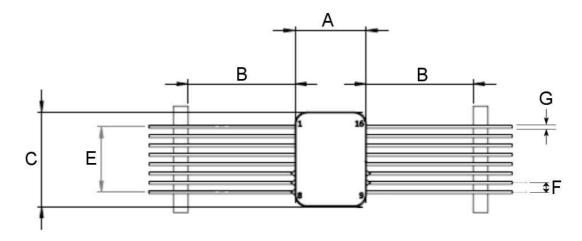

NOTES:

1. The terminal identification is specified by marking of the terminal number on the lid as shown. See Functional Diagram for the terminal connections.

ISSUE 1

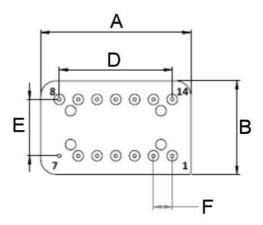
1.6.3 Flat Package (FP3) – 12 leads

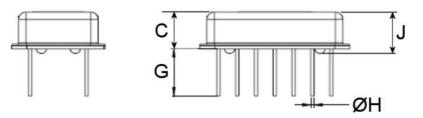

	Dimensi	N 1 <i>i</i>		
Symbols	Min	Max	Notes	
А	15.75	16.01		
В	B 14 15			
С	15.75	16.01		
D	-	3.58		
E	12.7	12.7 BSC		
F	2.54	All leads		
G	0.28	0.48	All leads	
Н	0.15	0.35	All leads	

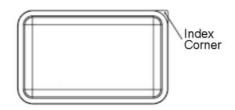

NOTES:

1. The terminal identification is specified by marking of the terminal number on the lid as shown. See Functional Diagram for the terminal connections.

1.6.4 Flat Package (FP4) - 16 leads




	Dimensi	N 1 <i>i</i>		
Symbols	Min	Max	Notes	
А	-	9.66		
В	13.9	15.1		
С	-	12.83		
D	-	3.1		
E	8.89	8.89 BSC		
F	1.27	1.27 BSC		
G	0.28	0.48	All leads	
Н	0.15	0.35	All leads	


NOTES: 1. The terminal identification is specified by marking of the terminal number on the lid as shown. See Functional Diagram for the terminal connections.

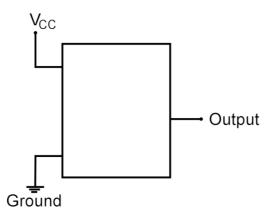
1.6.5 Dual-in-Line Package (DIL1) - 14 leads

	Dimensi	Notes	
Symbols	Min Max		
А	-	20.7	
В	-	13.1	
С	-	5.45	
D	15.24	2 places	
E	7.62	BSC	All leads
F	2.54	BSC	All leads
G	6.22 6.48		All leads
ØН	0.25	0.65	All leads
J	-	6	4 places

NOTES: 1. The terminal identification is specified by reference to the index corner as shown. See Functional Diagram for the terminal connections.

ISSUE 1

1.6.6 J-Lead Package (JL2) - 4 leads


	Dimensi	N 1 /		
Symbols	Min	Max	Notes	
А	13.72	14.22		
В	8.8	9.8	2 places	
С	-	4.2	All leads	
D	4.93	5.23	2 places	
E	0.46	0.56	All leads	
F	7.42	7.82	All leads	
G	1.58	1.78	All leads	
Н	0.89 1.15		All leads	

NOTES: 1. The terminal identification is specified by reference to the index corner as shown. See Functional Diagram for the terminal connections.

ISSUE 1

1.7 FUNCTIONAL DIAGRAM

Variant	Case		Terminal Number						
Number		Output	V_{CC}	Ground	Not Connected				
01, 07	FP1	8	14	1, 2, 3, 4, 7, 10, 11, 12, 13	5, 6, 9	1, 2			
02, 08	FP2	11	13	1, 2, 3, 4, 5, 6, 7, 10, 14, 15, 16, 17, 18, 19, 20	8, 9, 12	1, 2			
03, 09	FP3	7	12	1, 2, 3, 6, 9, 10, 11	4, 5, 8	1, 2			
04, 10	FP4	10	8	1, 2, 3, 4, 5, 9, 12, 13, 14, 15, 16	6, 7, 11	1, 2			
05, 11	DIL1	8	14	7	1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13	1, 2			
06, 12	JL2	3	4	2	1	1, 2			

NOTES:

- 1. The case is connected to Ground.
- 2. Not connected pins must be connected to a potential (e.g. Ground)

1.8 MATERIALS AND FINISHES

Materials and finishes shall be as follows:

(a) Case

The FP1, FP2, FP3, FP4 and DIL1 cases shall be hermetically sealed, and have a metal body with hard glass seals and a seam sealed metal lid.

The JL2 case shall be hermetically sealed, and have a ceramic body with brazed leads and a seam sealed lid.

(b) Terminals

As specified in Component Type Variants.

No. 3503/001

ISSUE 1

2 <u>REQUIREMENTS</u>

2.1 <u>GENERAL</u>

The complete requirements for procurement of the components specified herein are as stated in this specification and the ESCC Generic Specification. Permitted deviations from the Generic Specification, applicable to this specification only, are listed below.

Permitted deviations from the Generic Specification and this Detail Specification, formally agreed with specific Manufacturers on the basis that the alternative requirements are equivalent to the ESCC requirement and do not affect the component's reliability, are listed in the appendices attached to this specification.

2.1.1 Oscillator Class

The components specified herein shall satisfy the requirements Class 2 Oscillators in accordance with the Generic Specification.

2.1.2 <u>Deviations from the Generic Specification</u> None.

2.2 MARKING

The marking shall be in accordance with the requirements of ESCC Basic Specification No. 21700 and as follows.

The information to be marked on the component shall be:

- (a) Terminal identification.
- (b) The ESCC Qualified Component symbol (for ESCC qualified components only).
- (c) The ESCC Component Number.
- (d) Traceability information.

ISSUE 1

2.3 <u>ELECTRICAL MEASUREMENTS AT ROOM, HIGH AND LOW TEMPERATURES</u> Electrical measurements shall be performed at room, high and low temperatures. Consolidated notes are given after the tables.

2.3.1 <u>Room Temperature Electrical Measurements</u>

Characteristics	Symbols	Test Method	Test Conditions	Lin	nits	Units
			Note 1	Min	Max	
Input Current	I _{IN}	ESCC No. 24200	For $4MHz \le f_{Nom} < 20MHz$: For $20MHz \le f_{Nom} < 50MHz$: For $50MHz \le f_{Nom} \le 100MHz$:	- - -	20 25 30	mA
Output Waveform	-	ESCC No. 24200			etrical Wave	-
Output Voltage High Level Variants 01 to 06: Variants 07 to 12:	V _{OH}	ESCC No. 24200		2.4 4.5	-	V
Output Voltage Low Level Variants 01 to 06: Variants 07 to 12:	V _{OL}	ESCC No. 24200		-	0.4 0.5	V
Frequency Accuracy	∆f/f _{Nom}	ESCC No. 24200	At T_{amb} = +25 ±1°C Referred to f_{Nom}	-	±25	ppm
Frequency-Voltage Tolerance Variants 01 to 06: Variants 07 to 12:	∆f/f(V)	ESCC No. 24200	At T_{amb} = +25 ±1°C Referred to f at V _{CCNom} For 2.97V, 3.3V & 3.63V: For 4.5V, 5V & 5.5V:	-	±3 ±3	ppm
Frequency-Load Tolerance	∆f/f(L)	ESCC No. 24200	At $T_{amb} = +25 \pm 1^{\circ}C$ For $C_L = C_{LMin}$, $C_{LNom} \& C_{LMax}$, $R_L = 1k\Omega$, Referred to f at C_{LNom}	-	±5	ppm
Startup Time	t _{su}	ESCC No. 24200		-	10	ms
Rise Time	t _r	ESCC No. 24200	For $4MHz \le f_{Nom} < 16MHz$: For $16MHz \le f_{Nom} \le 100MHz$:	-	10 5	ns
Fall Time	t _f	ESCC No. 24200	For $4MHz \le f_{Nom} < 16MHz$: For $16MHz \le f_{Nom} \le 100MHz$:	-	10 5	ns
Duty Cycle	DC	ESCC No. 24200		45	55	%
Ageing Analysis	∆f/f	ESCC No. 3503	Ageing Period = 1 year Note 3	-	±5	ppm

PAGE 17 ISSUE 1

2.3.2 <u>High and Low Temperatures Electrical Measurements</u>

Characteristics	Symbols	Test Method	Test Conditions	Limits		Units
			Note 1	Min	Max	1
Input Current	I _{IN}	ESCC No. 24200	$\begin{array}{l} \mbox{At } T_{amb} = -55 \; (+5 \; -0)^{\circ} C \; \mbox{and} \; +125 \; (+0 \; -5)^{\circ} C \\ \mbox{For } 4MHz \leq f_{Nom} < 20MHz: \\ \mbox{For } 20MHz \leq f_{Nom} < 50MHz: \\ \mbox{For } 50MHz \leq f_{Nom} \leq 100MHz: \end{array}$	- -	20 25 30	mA
Output Waveform	-	ESCC No. 24200	At T_{amb} = -55 (+5 -0)°C and +125 (+0 -5)°C	Symmetrical Square Wave		-
Output Voltage High Level Variants 01 to 06: Variants 07 to 12:	V _{OH}	ESCC No. 24200	At T_{amb} = -55 (+5 -0)°C and +125 (+0 -5)°C	2.4 4.5	-	V
Output Voltage Low Level Variants 01 to 06: Variants 07 to 12:	V _{OL}	ESCC No. 24200	At $T_{amb} = -55 (+5 -0)^{\circ}C$ and $+125 (+0 -5)^{\circ}C$	-	0.4 0.5	V
Frequency- Temperature Stability	Δf/f(T)	ESCC No. 24200	At T_{amb} = -55 (+1 -0)°C to +125 (+0 -1)°C. Note 2 Referred to f at T_{amb} = +25 ±1°C	-	50	ppm
Frequency-Voltage Tolerance Variants 01 to 06: Variants 07 to 12:	∆f/f(V)	ESCC No. 24200	$\begin{array}{l} \mbox{At } T_{amb} = -55 \; (+1 \; -0)^\circ \mbox{C} \; \mbox{and} \; +125 \; (+0 \; -1)^\circ \mbox{C} \\ \mbox{Referred to f at } V_{CCNom} \\ \mbox{For } 2.97 \mbox{V}, \; 3.3 \mbox{V} \; \& \; 3.63 \mbox{V} : \\ \mbox{For } 4.5 \mbox{V}, \; 5 \mbox{V} \; \& \; 5.5 \mbox{V} : \end{array}$	-	±3 ±3	ppm
Startup Time	t _{su}	ESCC No. 24200	At T_{amb} = -55 (+5 -0)°C and +125 (+0 -5)°C		10	ms
Rise Time	t _r	ESCC No. 24200	$\begin{array}{l} \mbox{At } T_{amb} = -55 \; (+5 \; -0)^{\circ} C \; \mbox{and} \; +105 \; (+0 \; -5)^{\circ} C \\ \mbox{For } 4MHz \leq f_{Nom} < 16MHz: \\ \mbox{For } 16MHz \leq f_{Nom} \leq 100MHz: \end{array}$	-	10 5	ns
			At T_{amb} = +125 (+0 -5)°C For 4MHz ≤ f_{Nom} < 16MHz: For 16MHz ≤ f_{Nom} ≤ 100MHz:	-	10 7	
Fall Time	t _f	ESCC No. 24200	At $T_{amb} = -55 (+5 -0)^{\circ}C$ and $+105 (+0 -5)^{\circ}C$ For 4MHz $\leq f_{Nom} < 16MHz$: For 16MHz $\leq f_{Nom} \leq 100MHz$:	-	10 5	ns
			At T_{amb} = +125 (+0 -5)°C For 4MHz ≤ f_{Nom} < 16MHz: For 16MHz ≤ f_{Nom} ≤ 100MHz:	-	10 7	
Duty Cycle	DC	ESCC No. 24200	At $T_{amb} = -55 (+5 -0)^{\circ}C$ and $+125 (+0 -5)^{\circ}C$	45	55	%

2.3.3 Notes to Room, High and Low Electrical Measurements

1. Unless otherwise specified, the measurements shall be performed at $T_{amb} = +22 \pm 3^{\circ}C$ and the component under test shall be operated at V_{CCNom} with an output load of C_{LNom} in parallel with $R_L = 1k\Omega$. V_{CCNom} and C_{LNom} are specified in Maximum Ratings.

2. Frequency-Temperature Stability shall be measured at a minimum of 10 equally spaced increments over the specified temperature range.

3. All measurements aquired during Frequency Ageing shall be taken into account when performing Ageing Analysis.

No. 3503/001

ISSUE 1

2.4 PARAMETER DRIFT VALUES

Unless otherwise specified, the measurements shall be performed at T_{amb} = +22 ±3°C.

The test methods and test conditions shall be as per the corresponding test defined in Room Temperature Electrical Measurements.

The drift values (Δ) shall not be exceeded for each characteristic specified. The corresponding absolute limit values for each characteristic shall not be exceeded.

Characteristics	Symbols	Limits			Units
		Drift	Absolute		
		Value Δ	Min	Max	
Input Current	I _{IN}				mA
For 4MHz ≤ f _{Nom} < 20MHz:		±5%	-	20	
For 20MHz \leq f _{Nom} < 50MHz:		±5%	-	25	
For 50MHz $\leq f_{Nom} \leq 100MHz$:		±5%	-	30	
Frequency Accuracy	∆f/f _{Nom}	±10			ppm
			-	±15 (1)	
			-	±25 (2)	

NOTES:

- 1. Initial measurement.
- 2. Final measurement.

No. 3503/001

ISSUE 1

2.5 INTERMEDIATE AND END-POINT ELECTRICAL MEASUREMENTS

Unless otherwise specified, the measurements shall be performed at T_{amb} = +22 ±3 °C.

The test methods and test conditions shall be as per the corresponding test defined in Room Temperature Electrical Measurements or High and Low Temperatures Electrical Measurements as follows.

The drift values (Δ) shall not be exceeded for each characteristic specified. Unless otherwise specified, the corresponding absolute limit values for each characteristic shall not be exceeded.

Characteristics	Symbols Test Conditions		Limits			Units
			Drift	Absolute		-
			Value Δ	Min	Max	
$ \begin{array}{l} \mbox{Input Current} \\ \mbox{For 4MHz} \leq f_{Nom} < 20 \mbox{MHz}: \\ \mbox{For 20MHz} \leq f_{Nom} < 50 \mbox{MHz}: \\ \mbox{For 50MHz} \leq f_{Nom} \leq 100 \mbox{MHz}: \end{array} $	I _{IN}	As per Room Temperature Electrical Measurements	- -		20 25 30	mA
Output Waveform	-	As per Room Temperature Electrical Measurements	-	Symmetrical Square Wave		-
Output Voltage High Level Variants 01 to 06: Variants 07 to 12:	V _{OH}	As per Room Temperature Electrical Measurements	-	2.4 4.5	-	V
Output Voltage Low Level Variants 01 to 06: Variants 07 to 12:	V _{OL}	As per Room Temperature Electrical Measurements	-	-	0.4 0.5	V
Frequency Accuracy	Frequency Accuracy Δf/f _{Nom} As per F Temperature Measure		±8.5 (1)	-	±25 (2)	ppm
Frequency-Temperature Stability	∆f/f(T)	As per High and Low Temperatures Electrical Measurements		-	50	ppm
Rise Time For 4MHz $\leq f_{Nom} < 16$ MHz: For 16MHz $\leq f_{Nom} \leq 100$ MHz:	t _r	As per Room Temperature Electrical Measurements	-		10 5	ns
Fall Time For 4MHz ≤ f _{Nom} < 16MHz: For 16MHz ≤ f _{Nom} ≤ 100MHz:	t _r	As per Room Temperature Electrical Measurements	-	-	10 5	ns
Duty Cycle	DC	As per Room Temperature Electrical Measurements	-	45	55	%

NOTES:

1. Drift value (Δ) is only applicable to testing during the Endurance Subgroup.

2. Absolute limit is only applicable to testing during the Environmental/Mechanical Subgroup.

No. 3503/001

ISSUE 1

2.6 BURN-IN CONDITIONS

The test conditions for Burn-in, tested as specified in the ESCC Generic Specification, shall be as follows:

(a) Ouptut Load: C_{LNom} in parallel with $R_L = 1k\Omega$. C_{LNom} is specified in Maximum Ratings.

2.7 FREQUENCY AGEING CONDITIONS

The test conditions for Frequency Ageing, tested as specified in the ESCC Generic Specification, shall be as follows:

(a) Ouptut Load: C_{LNom} in parallel with $R_L = 1k\Omega$. C_{LNom} is specified in Maximum Ratings.

2.8 OPERATING LIFE CONDITIONS

The test conditions for Operating Life, tested as specified in the ESCC Generic Specification, shall be as follows:

(a) Ouptut Load: C_{LNom} in parallel with $R_L = 1k\Omega$. C_{LNom} is specified in Maximum Ratings.

2.9 TOTAL DOSE RADIATION TESTING

All lots shall be irradiated in accordance with ESCC Basic Specification No. 22900, low dose rate (window 2: 36RAD to 360RAD per hour).

2.9.1 <u>Bias Conditions and Total Dose Level for Total Dose Radiation Testing</u> The following bias condition (worst-case) shall be used for Total Dose Radiation Testing at $T_{amb} = +22 \pm 3^{\circ}C$:

With Supply Voltage:

- Variants 01 to 06: $V_{CC} = 3.63V$ during irradiation.
- Variants 07 to 12: $V_{CC} = 5.5V$ during irradiation.

The total dose level applied shall be as specified in the component type variant information herein or in the Purchase Order.

2.9.2 <u>Electrical Measurements for Total Dose Radiation Testing</u>

Prior to irradiation testing the devices shall have successfully met Room Temperature Electrical Measurements specified herein.

Unless otherwise specified, the measurements shall be performed at T_{amb} = +22 ±3°C.

Unless otherwise specified, the test methods and test conditions shall be as per the corresponding test defined in Room Temperature Electrical Measurements.

The parameters to be measured during irradiation testing, on completion of irradiation testing, after 24 hours anneal at Room Temperature and after 168 hours anneal at $T_{amb} = +100 \pm 3^{\circ}C$ are shown below.

Characteristics	Symbols	Limits		Units
		Absolute		-
		Min	Max	-
Input Current	I _{IN}			mA
For $4MHz \le f_{Nom} < 20MHz$:		-	20	
For 20MHz \leq f _{Nom} < 50MHz:		-	25	
For 50MHz \leq f _{Nom} \leq 100MHz:		-	30	
Output Waveform	-	Symmetrical Square		-
		Wave		
Output Voltage High Level	V _{OH}			V
Variants 01 to 06:		2.4	-	
Variants 07 to 12:		4.5	-	
Output Voltage Low Level	V _{OL}			V
Variants 01 to 06:		-	0.4	
Variants 07 to 12:		-	0.5	
Frequency Accuracy	$\Delta f/f_{Nom}$	-	±25	ppm
Rise Time	tr			ns
For $4MHz \le f_{Nom} < 16MHz$:		-	10	
For $16MHz \le f_{Nom} \le 100MHz$:		-	5	
Fall Time	t _f			ns
For $4MHz \le f_{Nom} < 16MHz$:		-	10	
For $16MHz \le f_{Nom} \le 100MHz$:		-	5	
Duty Cycle	DC	45	55	%