

Page 1 of 12

DIODES, SILICON, POWER, SCHOTTKY RECTIFIER

BASED ON TYPES 1N5822 AND 1N5822U

ESCC Detail Specification No. 5106/020

Issue 4 May 2019

Document Custodian: European Space Agency – see https://escies.org

LEGAL DISCLAIMER AND COPYRIGHT

European Space Agency, Copyright © 2019. All rights reserved.

The European Space Agency disclaims any liability or responsibility, to any person or entity, with respect to any loss or damage caused, or alleged to be caused, directly or indirectly by the use and application of this ESCC publication.

This publication, without the prior permission of the European Space Agency and provided that it is not used for a commercial purpose, may be:

- copied in whole, in any medium, without alteration or modification.
- copied in part, in any medium, provided that the ESCC document identification, comprising the ESCC symbol, document number and document issue, is removed.

DOCUMENTATION CHANGE NOTICE

(Refer to https://escies.org for ESCC DCR content)

DCR No.	CHANGE DESCRIPTION
1185	Specification upissued to incorporate changes per DCR.

ESCC Detail Specification

PAGE 4

No. 5106/020

ISSUE 4

TABLE OF CONTENTS

1	GENERAL	5
1.1	SCOPE	5
1.2	APPLICABLE DOCUMENTS	5
1.3	TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS	5
1.4	THE ESCC COMPONENT NUMBER AND COMPONENT TYPE VARIANTS	5
1.4.1	The ESCC Component Number	5
1.4.2	Component Type Variants	5
1.5	MAXIMUM RATINGS	6
1.6	HANDLING PRECAUTIONS	6
1.7	PHYSICAL DIMENSIONS AND TERMINAL IDENTIFICATION	7
1.7.1	Leadless Chip Carrier Package (LCC2B) - 2 Terminal	7
1.7.2	Die	8
1.8	FUNCTIONAL DIAGRAM	8
1.9	MATERIALS AND FINISHES	8
1.9.2	Materials and Finishes of Die Components	8
2	REQUIREMENTS	9
2.1	GENERAL	9
2.1.1	Deviations from the Generic Specification	9
2.2	MARKING	9
2.3	ELECTRICAL MEASUREMENTS AT ROOM, HIGH AND LOW TEMPERATURES	9
2.3.1	Room Temperature Electrical Measurements	9
2.3.2	High and Low Temperatures Electrical Measurements	10
2.3.3	Notes to Electrical Measurements Tables	10
2.4	PARAMETER DRIFT VALUES	10
2.5	INTERMEDIATE AND END-POINT ELECTRICAL MEASUREMENTS	11
2.6	HIGH TEMPERATURE REVERSE BIAS BURN-IN CONDITIONS	11
2.7	POWER BURN-IN CONDITIONS	11
2.8	OPERATING LIFE CONDITIONS	11
APPEND	DIX A	12

1 GENERAL

1.1 SCOPE

This specification details the ratings, physical and electrical characteristics and test and inspection data for the component type variants and/or the range of components specified below. It supplements the requirements of, and shall be read in conjunction with, the ESCC Generic Specification listed under Applicable Documents.

1.2 <u>APPLICABLE DOCUMENTS</u>

The following documents form part of this specification and shall be read in conjunction with it:

- (a) ESCC Generic Specification No. 5000
- (b) MIL-STD-750, Test Methods and Procedures for Semiconductor Devices

1.3 TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS

For the purpose of this specification, the terms, definitions, abbreviations, symbols and units specified in ESCC Basic Specification No. 21300 shall apply.

1.4 THE ESCC COMPONENT NUMBER AND COMPONENT TYPE VARIANTS

1.4.1 The ESCC Component Number

The ESCC Component Number shall be constituted as follows:

Example: 510602001

• Detail Specification Reference: 5106020

• Component Type Variant Number: 01 (as required)

1.4.2 <u>Component Type Variants</u>

The component type variants applicable to this specification are as follows:

Variant Number	Based on Type	Case	Terminal Finish	Weight max g
01	1N5822U	LCC2B	2	0.18
02	1N5822U	LCC2B	4	0.18
03	1N5822	Die	N/A	N/A

The terminal finish shall be in accordance with the requirements of ESCC Basic Specification No. 23500.

1.5 <u>MAXIMUM RATINGS</u>

The maximum ratings shall not be exceeded at any time during use or storage.

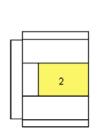
Maximum ratings shall only be exceeded during testing to the extent specified in this specification and when stipulated in Test Methods and Procedures of the ESCC Generic Specification.

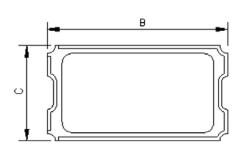
Characteristics	Symbols	Maximum Ratings	Unit	Remarks
Forward Surge Current	I _{FSM}	80	Α	Notes 1, 2
Working Peak Reverse Voltage	V _{RWM}	40	V	
Average Output Rectified Current	lo	3	Α	Note 3
Critical Rate of Rise of Reverse Voltage	dV/dt	10000	V/µs	
Operating Temperature Range	Тор	-55 to +150	°C	T _{case} , Note 4
Junction Temperature	Tj	+150	°C	
Storage Temperature Range	T _{stg}	-65 to +150	°C	Note 4
Soldering Temperature	T _{sol}	+245	°C	Note 5
Thermal Resistance, Junction to Case	R _{th(j-c)}	7	°C/W	

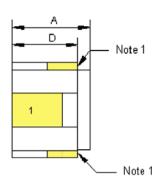
NOTES:

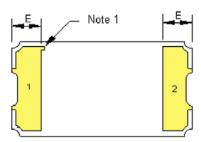
- 1. Sinusoidal pulse of 10ms duration.
- 2. At $T_{amb} \le +25$ °C.
- 3. At $T_{case} \ge +139$ °C, derate linearly to 0A at +150°C.
- 4. For Variant 02 with hot solder dip terminal finish, all testing performed at $T_{amb} > +125$ °C shall be carried out in a 100% inert atmosphere.
- 5. Duration 5 seconds maximum and the same package shall not be resoldered until 3 minutes have elapsed.

1.6 HANDLING PRECAUTIONS


These devices are susceptible to damage by electrostatic discharge. Therefore, suitable precautions shall be employed for protection during all phases of manufacture, testing, packaging, shipment and any handling.


These components are categorised as Class 3 per ESCC Basic Specification No. 23800 with a Minimum Critical Path Failure Voltage of 8000 Volts.




1.7 PHYSICAL DIMENSIONS AND TERMINAL IDENTIFICATION

1.7.1 <u>Leadless Chip Carrier Package (LCC2B) - 2 Terminal</u>

Symbols	Dimensions mm		Notes
	Min	Max	
А	2.04	2.42	2
В	5.27	5.6	
С	3.49	3.76	
D	1.71	2.09	
E	0.48	0.71	

NOTES:

- 1. Terminal identification: The anode is identified by metallisation in the two castellations and by the index mark on the bottom metallisation.
- 2. For Variant 02, dimension limits apply prior to solder coating of terminals.

ISSUE 4

1.7.2 Die

NOTES:

- 1. Die materials and dimensions:
 - Die substrate: Silicon
 - Die length: 1.69 mm
 - Die width: 1.69 mm
 - Die thickness: 280 ±20μm
 - Top passivation: Pix with thickness 8.9µm or Probimide with thickness 6µm
 - Top metallisation: TiW/Ni/Al with thickness 0.1/0.08/10µm
 - Backside metallisation: Ti/Ni/Au with thickness 0.1/0.4/0.05µm
 - Pad dimensions: 1.5 x 1.5 mm
- 2. Terminal identification is not applicable
- 3. Bias details: top contact = anode, backside contact = cathode

1.8 <u>FUNCTIONAL DIAGRAM</u>

Terminal 1: Anode Terminal 2: Cathode

1

NOTES:

- 1. For LCC2B (Variants 01, 02), the lid is not connected to any terminal.
- 2. For Die Components (Variant 03), the terminal numbering is not applicable.

1.9 MATERIALS AND FINISHES

Materials and Finishes of Packaged Components

For Variants 01 and 02, the materials and finishes shall be as follows:

(a) Case

The case shall be hermetically sealed and have an Aluminium Nitride body with a Kovar lid.

(b) Terminal Finish

As specified in Para. 1.4.2, Component Type Variants.

1.9.2 Materials and Finishes of Die Components

For Variant 03, the materials and finishes shall be as specified in Para. 1.7.2.

ISSUE 4

2 **REQUIREMENTS**

2.1 **GENERAL**

The complete requirements for procurement of the components specified herein are as stated in this specification and the ESCC Generic Specification. Permitted deviations from the Generic Specification, applicable to this specification only, are listed below.

Permitted deviations from the Generic Specification and this Detail Specification, formally agreed with specific Manufacturers on the basis that the alternative requirements are equivalent to the ESCC requirement and do not affect the component's reliability, are listed in the appendices attached to this specification.

2.1.1 **Deviations from the Generic Specification**

None.

2.2 MARKING

The marking shall be in accordance with the requirements of ESCC Basic Specification No. 21700

The information to be marked on the component or its primary package shall be:

- Terminal Identification (see Para. 1.7; not applicable to Variant 03). (a)
- (b) The ESCC qualified components symbol (for ESCC qualified components only).
- (c) The ESCC Component Number (see Para. 1.4.1).
- Traceability information. (d)

2.3 ELECTRICAL MEASUREMENTS AT ROOM, HIGH AND LOW TEMPERATURES

Electrical measurements shall be performed at room, high and low temperatures. Consolidated notes are given after the tables; see Para. 2.3.3.

2.3.1 Room Temperature Electrical Measurements

The measurements shall be performed at $T_{amb} = +22 \pm 3^{\circ}C$.

Characteristics	Symbols	MIL-STD-750	Test Conditions	Limits		Units
		Test Method		Min	Max	
Forward Voltage	V _{F1}	4011	Pulse Method I _F = 1A, Note 1	-	400	mV
	V _{F2}	4011	Pulse Method I _F = 3A, Note 1	-	485	mV
	V _{F3}	4011	Pulse Method I _F = 9.4A, Note 1	-	700	mV
Reverse Current	I _R	4016	Pulse Method Note 1 V _R = 40V	-	80	μА
Capacitance	С	4001	$V_R = 5V$ $V_{sig} = 50mV (p-p) max$ $f = 1MHz$	-	240	pF
Thermal Impedance, Junction to Case	Z _{th(j-c)}	3101	$I_H = 1 \text{ to } 10A$ $t_H = 50\text{ms}$ $I_M = 50\text{mA}$ $t_{md} = 100\mu\text{s}$, Note 2	`	ate ΔV _F , lote 3)	°C/W

2.3.2 <u>High and Low Temperatures Electrical Measurements</u>

Characteristics	Symbols	MIL-STD-750			nits	Units
		Test Method	Note 4	Min	Max	
Forward Voltage 2	V _{F2}	4011	T _{amb} = +100 (+0 -5)°C Pulse Method I _F = 3A, Note 1	-	455	mV
			T _{amb} = -55 (+5 -0)°C Pulse Method I _F = 3A, Note 1	-	560	mV
Reverse Current	I _R	4016	T _{amb} = +100 (+0 -5)°C Pulse Method Note 1 V _R = 40V	-	12	mA
			T _{amb} = -55 (+5 -0)°C Pulse Method Note 1 V _R = 40V	-	40	μА

2.3.3 <u>Notes to Electrical Measurements Tables</u>

- Pulse Width ≤ 680µs, Duty Cycle ≤ 2%.
- Performed only during Screening Tests Parameter Drift Values (Initial Measurements), go-no-go.
- 3. The limits for ΔV_F shall be defined by the Manufacturer on every lot in accordance with MIL-STD-750 Method 3101 and shall guarantee the $R_{th(j-c)}$ limits specified in Para. 1.5, Maximum Ratings.
- 4. Read and record measurements shall be performed on a sample of 5 components with 0 failures allowed. Alternatively a 100% inspection may be performed.

2.4 PARAMETER DRIFT VALUES

Unless otherwise specified, the measurements shall be performed at T_{amb} = +22 ±3°C.

The test methods and test conditions shall be as per the corresponding test defined in Para. 2.3.1, Room Temperature Electrical Measurements.

The drift values (Δ) shall not be exceeded for each characteristic specified. The corresponding absolute limit values for each characteristic shall not be exceeded.

Characteristics	Symbols		Limits		Units
		Drift	Abso	olute	
		Value Δ	Min	Max	
Forward Voltage 2	V _{F2}	±30	-	485	mV
Reverse Current	I _R	±25 or (1) ±100%	-	80	μА

NOTES:

1. Whichever is the greater referred to the initial value.

2.5 <u>INTERMEDIATE AND END-POINT ELECTRICAL MEASUREMENTS</u>

Unless otherwise specified, the measurements shall be performed at $T_{amb} = +22 \pm 3$ °C.

The test methods and test conditions shall be as per the corresponding test defined in Para. 2.3.1, Room Temperature Electrical Measurements.

Characteristics	Symbols	Lin	nits	Units
		Min	Max	
Forward Voltage 2	V _{F2}	-	485	mV
Reverse Current	I _R	-	80	μΑ

2.6 HIGH TEMPERATURE REVERSE BIAS BURN-IN CONDITIONS

Characteristics	Symbols	Limits	Units
Ambient Temperature	T _{amb}	+80 ±3	°C
Reverse Voltage	V_R	40 (Note 1)	V
Duration	t	96	hours

NOTES:

1. V_R = rectangular wave, f = 50Hz, duty cycle = 25%.

2.7 POWER BURN-IN CONDITIONS

Characteristics	Symbols	Test Conditions	Units
Ambient Temperature	T _{amb}	+22 ±3	°C
Junction Temperature	Tj	+150 (+0 -5)	°C
Average Output Rectified Current	lo	Note 1	Α

NOTES:

The output current may be adjusted, within the given limit range, to attain the specified junction temperature.

2.8 OPERATING LIFE CONDITIONS

The conditions shall be as specified in Para. 2.7, Power Burn-in.

APPENDIX A AGREED DEVIATIONS FOR STMICROELECTRONICS (F)

ITEMS AFFECTED	DESCRIPTION OF DEVIATIONS
Para. 2.1.1, Deviations from the Generic Specification: Special	Internal Visual Inspection. Wedge bonds equal to 1.1 wire diameters are acceptable for bonding with a V-Groove tool.
In-Process Controls - Chart F2	Internal Visual Inspection. For CCP packages, the criteria specified for voids in the fillet and minimum die mounting material around the visible die perimeter for die mounting defects may be omitted providing that a radiographic inspection to verify the die-attach process is performed on a sample basis in accordance with STMicroelectronics control plans internal procedure as specified in the PID.
Para. 2.1.1, Deviations from the Generic Specification: Screening Tests - Chart F3	Solderability is not applicable unless specifically stipulated in the Purchase Order.
Para. 2.3.1, Room Temperature Electrical Measurements	All AC characteristics (C) may be considered guaranteed but not tested if successful pilot lot testing has been performed in accordance with STMicroelectronics "Acceptation wafers" internal procedure as specified in the PID, which includes AC characteristic measurements per the Detail Specification.
	A summary of the pilot lot testing shall be provided if required by the Purchase Order.