

Page i

INTEGRATED CIRCUITS, SILICON MONOLITHIC, BIPOLAR, OCTAL BUFFER/LINE DRIVER/LINE RECEIVERS WITH 3-STATE OUTPUTS, BASED ON TYPE 54LS244 ESCC Detail Specification No. 9402/003

ISSUE 1 October 2002

ESCC Detail Specification

PAGE	ii
ISSUE	1

LEGAL DISCLAIMER AND COPYRIGHT

European Space Agency, Copyright © 2002. All rights reserved.

The European Space Agency disclaims any liability or responsibility, to any person or entity, with respect to any loss or damage caused, or allleged to be caused, directly or indirectly by the use and application of this ESCC publication.

This publication, without the prior permission of the European Space Ageny and provided that it is not used for a commercial purpose, may be:

- copied in whole in any medium without alteration or modification.
- copied in part, in any medium, provided that the ESCC document identification, comprising the ESCC symbol, document number and document issue, is removed.

european space agency agence spatiale européenne

Pages 1 to 30

INTEGRATED CIRCUITS, SILICON MONOLITHIC, BIPOLAR, OCTAL BUFFER/LINE DRIVER/LINE RECEIVERS WITH 3-STATE OUTPUTS, BASED ON TYPE 54LS244

ESA/SCC Detail Specification No. 9402/003

space components coordination group

		Аррг	oved by
Issue/Rev.	Date	SCCG Chairman	ESA Director Genera or his Deputy
Issue 2	September 1993	Tomomens	1 lest
Revision 'A'	April 1995	Tomores	Avom

Rev. 'A'

PAGE 2 ISSUE 2

DOCUMENTATION CHANGE NOTICE

Rev. Letter	Rev. Date	Reference	CHANGE Item	Approved DCR No.
Lottor	Julio	This issue supersede	es Issue 1 and incorporates all modifications defined in 'C' to Issue 1 and the following DCR's:- : Lead Material and/or Finish amended for existing Variants : Variant 02 added and existing figure reference amended : Variants 11 and 12 added : No. 2, in Remarks, Note No. amended to "1" : No. 3, in Remarks, Note No. amended to "2" : No. 6, existing temperature specified for DIL/FP and	None None 22881 22920 22881 23573 23573 23573
		Figure 2(a) Figure 2(b) Figure 2(c) Notes to Figures Figure 3(a)	Note No. amended to "3" , new temperature and Note reference added for CCP : Note 1 renumbered as "2" : Note 2 renumbered as "3" and text amended : Note 3 renumbered as "1" : New Note 4 added : New figure added : Drawing and Table amended : New figure added : Title of the notes amended : Existing Notes deleted, new Notes added : Note 2, "Not applicable" deleted, new Note added : 2nd outline on 'chip carrier package' added : Title of 1st outline added	23573 23573 23573 23573 23573 22920 23592 22881 22881 22881 22920 22881 22881
		Para. 4.7.1	 '(Top View)' added to the 2 outlines Note amended Deviation deleted, "None" added Deviation deleted, "None" added Deviation deleted, "None" added Paragraph rewritten Paragraph rewritten Paragraph rewritten Paragraph standardised "and functional test sequence" deleted "T_{amb}" added before " + 22 ± 3°C" In title and paragraph, "burn-in" amended to read "power burn-in" Title amended 	22920 22881 23519 21048 22919 22919 22920/ 23460 22881/ 22920 23519 23519 23519 23519
'A'	Apr. '95	P1. Cover Page P2. DCN P14. Para. 4.3.2	: F/P and DIL weights amended	None None 221047

PAGE 3

ISSUE 2

TABLE OF CONTENTS

1.	GENERAL	Page 5
1.1	Scope	5
1.2	Component Type Variants	5
1.3	Maximum Ratings	5
1.4	Parameter Derating Information	5
1.5	Physical Dimensions	5
1.6	Pin Assignment	5
1.7	Truth Table	5
1.8	Circuit Schematic	5
1.9	Functional Diagram	5
2.	APPLICABLE DOCUMENTS	14
3.	TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS	14
4.	REQUIREMENTS	14
4.1	General	13
4.2	Deviations from Generic Specification	13
4.2.1	Deviations from Special In-process Controls	13
4.2.2	Deviations from Final Production Tests	13
4.2.3	Deviations from Burn-in Tests	13
4.2.4	Deviations from Qualification Tests	13
4.2.5	Deviations from Lot Acceptance Tests	14 14
4.3	Mechanical Requirements	14
4.3.1 4.3.2	Dimension Check	14
4.3.2 4.4	Weight Materials and Finishes	14
4.4.1	Case	14
4.4.2	Lead Material and Finish	14
4.5	Marking	14
4.5.1	General	14
4.5.2	Lead Identification	14
4.5.3	The SCC Component Number	15
4.5.4	Traceability Information	15
4.6	Electrical Measurements	15
4.6.1	Electrical Measurements at Room Temperature	15
4.6.2	Electrical Measurements at High and Low Temperatures	_ 15
4.6.3	Circuits for Electrical Measurements	15
4.7	Burn-in Tests	15
4.7.1	Parameter Drift Values	15
4.7.2	Conditions for Power Burn-in	15
4.7.3	Electrical Circuits for Power Burn-in	15
4.8	Environmental and Endurance Tests	28
4.8.1	Electrical Measurements on Completion of Environmental Tests	28 28
4.8.2	Electrical Measurements at Intermediate Points during Endurance Tests	28
4.8.3 4.8.4	Electrical Measurements on Completion of Endurance Tests Conditions for Operating Life Tests	28
4.8.5	Electrical Circuits for Operating Life Tests	28
4.8.6	Conditions for High Temperature Storage Test	28

PAGE 4

		<u>Page</u>
TABLES	<u>i</u>	
1(a)	Type Variants	6
1(b)	Maximum Ratings	6
2	Electrical Measurements at Room Temperature, D.C. Parameters	16
	Electrical Measurements at Room Temperature, A.C. Parameters	18
3	Electrical Measurements at High and Low Temperatures	19
4	Parameter Drift Values	26
5	Conditions for Power Burn-in and Operating Life Test	26
6	Electrical Measurements on Completion of Environmental Tests and at Intermediate	29
	Points and on Completion of Endurance Tests	
FIGURE	<u>s</u>	
1	Not applicable	N/A
2	Physical Dimensions	7
3(a)	Pin Assignment	11
3(b)	Truth Table	11
3(c)	Circuit Schematic	12
3(d)	Functional Diagram	12
4	Circuits for Electrical Measurements	21
5	Electrical Circuit for Power Burn-in and Operating Life Test	27
APPEN	DICES (Applicable to specific Manufacturers only)	
'A'	Agreed Deviations for Texas Instruments (F)	30

PAGE

ISSUE 2

5

1. **GENERAL**

1.1 SCOPE

This specification details the ratings, physical and electrical characteristics, test and inspection data for a silicon monolithic, low power bipolar Schottky Octal Buffer/Line Driver/Line Receiver, with 3-state outputs, based on Type 54LS244. It shall be read in conjunction with ESA/SCC Generic Specification No. 9000, the requirements of which are supplemented herein.

1.2 COMPONENT TYPE VARIANTS

Variants of the basic type integrated circuits specified herein, which are also covered by this specification, are given in Table 1(a).

1.3 MAXIMUM RATINGS

The maximum ratings, which shall not be exceeded at any time during use or storage, applicable to the integrated circuits specified herein, are as scheduled in Table 1(b).

1.4 PARAMETER DERATING INFORMATION (FIGURE 1)

Not applicable.

1.5 PHYSICAL DIMENSIONS

The physical dimensions of the integrated circuits specified herein are shown in Figure 2.

1.6 PIN ASSIGNMENT

As per Figure 3(a).

1.7 TRUTH TABLE

As per Figure 3(b).

1.8 <u>CIRCUIT SCHEMATIC</u>

As per Figure 3(c).

1.9 <u>FUNCTIONAL DIAGRAM</u>

As per Figure 3(d).

PAGE 6

TABLE 1(a) - TYPE VARIANTS

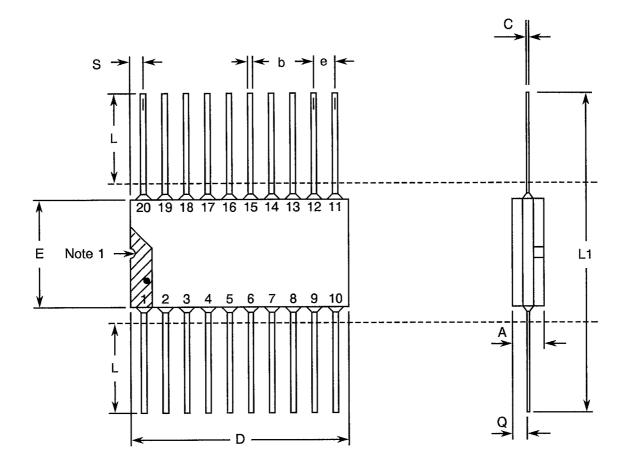
VARIANT	CASE	FIGURE	LEAD MATERIAL AND/OR FINISH
02	FLAT	2(a)	G4
05	DIL	2(b)	D7
06	DIL	2(b)	G4
11	CCP	2(c)	7
12	CCP	2(c)	4

TABLE 1(b) - MAXIMUM RATINGS

No.	CHARACTERISTICS	SYMBOL	MAXIMUM RATINGS	UNIT	REMARKS
1	Supply Voltage	V _{CC}	-0.5 to 7.0	٧	-
2	Input Voltage	V _{IN}	-0.5 to 7.0	V	Note 1
3	Device Dissipation	P _D	297	mWdc	Note 2
4	Operating Temperature Range	T _{op}	-55 to +125	°C	- -
5	Storage Temperature Range	T _{stg}	65 to + 150	°C	-
6	Soldering Temperature For FP and DIP For CCP	T _{sol}	+ 265 + 245	°C	Note 3 Note 4

NOTES

- Input current limited to −18mA.
- 2. Must withstand added P_D due to short circuit conditions (i.e. I_{OS}) at one output for 5 seconds.
- 3. Duration 10 seconds maximum at a distance of not less than 1.5mm from the device body and the same lead shall not be resoldered until 3 minutes have elapsed.
- 4. Duration 5 seconds maximum and the same terminal shall not be resoldered until 3 minutes have elapsed.



PAGE 7

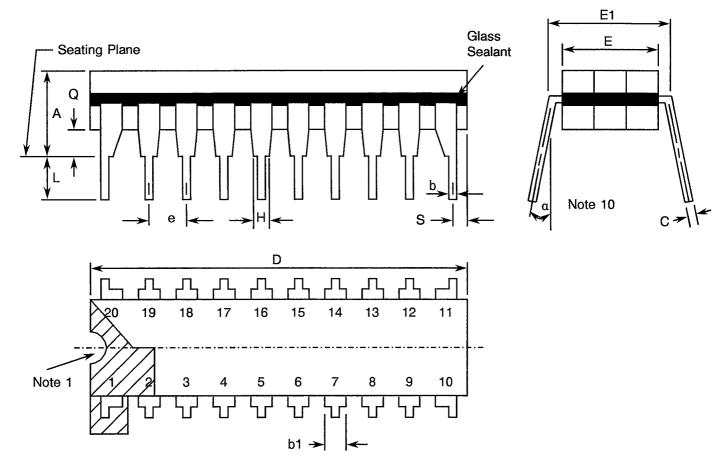
ISSUE 2

FIGURE 2 - PHYSICAL DIMENSIONS

FIGURE 2(a) - FLAT PACKAGE

SYMBOL	MILLIM	ETRES	NOTES
STIVIBOL	MIN	MAX	NOTES
Α	1.14	2.34	
b	0.38	0.56	8
С	0.08	0.23	8
D	-	12.95	4
E	6.60	7.65	
E1	8.15	TYPICAL	4
е	1.27	TYPICAL	5, 9
Ļ	6.35	9.40	8
L1	18.90	25.90	
Q	0.25	1.02	2
S	0.13	1.14	7

NOTES: See Page 10.


PAGE

ISSUE 2

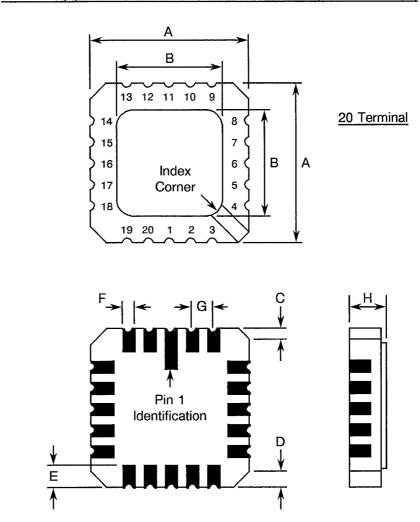
8

FIGURE 2 - PHYSICAL DIMENSIONS (CONTINUED)

FIGURE 2(b) - DUAL-IN-LINE PACKAGE

SYMBOL	MILLIM	ETRES	NOTES
STIVIBOL	MIN	MAX	NOTES
Α	-	5.08	
b	0.38	0.66	8
b1	-	1.78	8
С	0.20	0.44	8
D	23.62	24.76	4
E	6.22	7.62	4
E1	7.37	8.13	
е	2.54 T	/PICAL	6, 9
F	1.27 T	YPICAL	
Н	0.76	-	
L ·	3.30	5.08	8
Q	0.51	-	3
S	0.38	1.27	7
α	0°	15°	10

NOTES: See Page 10.



PAGE

ISSUE 2

FIGURE 2 - PHYSICAL DIMENSIONS (CONTINUED)

FIGURE 2(c) - SQUARE CHIP CARRIER PACKAGE (3 LAYER BASE)

SYMBOL	MILLIM	ETRES NOTES	
STIVIDOL	MIN.	MAX.	NOTES
Α	8.687	9.093	-
В	7.798	9.093	-
С	0.250	0.510	11
D	0.889	1.143	12
E .	1.140	1.400	8
F	0.559	0.712	8
· G	1.27 TYPICAL		5, 9
Н	1.630	2.540	-

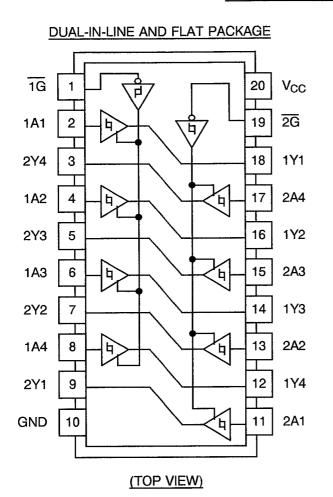
NOTES: See Page 10.

PAGE 10

ISSUE 2

FIGURE 2 - PHYSICAL DIMENSIONS (CONTINUED)

NOTES TO FIGURES 2(a) TO 2(c)


- 1. Index area: a notch or a dot shall be located adjacent to Pin 1 and shall be within the shaded area shown. For chip carrier packages, the index shall be as shown in Figure 2(c).
- 2. Dimension Q shall be measured at the point of exit of the lead from the body.
- 3. Dimension Q shall be measured from the seating plane to the base plane.
- 4. This dimension allows for off-centre lids, meniscus and glass overrun.
- 5. The true position pin spacing is 1.27mm between centrelines. Each pin centreline shall be located within ± 0.13mm of its true longitudinal position relative to Pins 1 and 20.
- 6. The true position pin spacing is 2.54mm between centrelines. Each pin centreline shall be located within ±0.25mm of its true longitudinal position relative to Pins 1 and 20.
- 7. Applies to all four corners.
- 8. All leads or terminals.
- 18 spaces for flat and dual-in-line packages.
 16 spaces for chip carrier packages.
- 10. Lead centre when α is 0°.
- 11. Index corner only 2 dimensions.
- 12. 3 non-index corners 6 dimensions.

PAGE 11

ISSUE 2

FIGURE 3(a) - PIN ASSIGNMENT

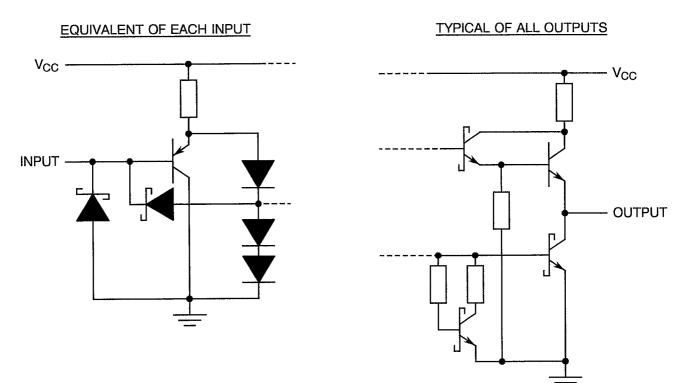
CHIP CARRIER PACKAGE

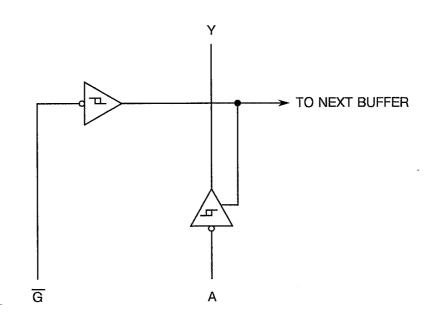
(TOP VIEW)

FIGURE 3(b) - TRUTH TABLE

INPUTS		OUTPUT
G	Α	Υ
L	L	L
L	Н	Н
Н	X	Z

NOTES


1. Logic Level Definitions: L = Low Level, H = High Level, X = Don't Care, Z = High Impedance.


PAGE 12

ISSUE 2

FIGURE 3(c) - CIRCUIT SCHEMATIC

FIGURE 3(d) - FUNCTIONAL DIAGRAM (EACH BUFFER)

PAGE 13

ISSUE 2

2. APPLICABLE DOCUMENTS

The following documents form part of this specification and shall be read in conjunction with it:-

- (a) ESA/SCC Generic Specification No. 9000 for Integrated Circuits.
- (b) MIL-STD-883, Test Methods and Procedures for Micro-electronics.

3. TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS

For the purpose of this specification, the terms, definitions, abbreviations, symbols and units specified in ESA/SCC Basic Specification No. 21300 shall apply. In addition, the following abbreviations are used:-

V_{IC} = Input Clamp Voltage.

I_{CC} = Supply Current.

 V_{CC} = Supply Voltage.

I_{CCZ} = Supply Current, all Outputs Disabled.

I_{OZH} = Off State Current, Outputs High. = Off State Current, Outputs Low.

 I_{OZL} = Off State Current, Outputs Low. V_H = Hysteresis Voltage (V_{TP} - V_{TN}).

 $V_{TP} = V_{IN}$ for V_{OUT} to change when V_{IN} increases from 0V.

 $V_{TN} = V_{IN}$ for V_{OUT} to change when V_{IN} decreases from 5V.

4. REQUIREMENTS

4.1 GENERAL

The complete requirements for procurement of the integrated circuits specified herein are stated in this specification and ESA/SCC Generic Specification No. 9000 for Integrated Circuits. Deviations from the Generic Specification applicable to this specification only, are listed in Para. 4.2.

Deviations from the applicable Generic Specification and this Detail Specification, formally agreed with specific Manufacturers on the basis that the alternative requirements are equivalent to the ESA/SCC requirements and do not affect the components' reliability, are listed in the appendices attached to this specification.

4.2 <u>DEVIATIONS FROM GENERIC SPECIFICATION</u>

4.2.1 Deviations from Special In-process Controls

None.

4.2.2 Deviations from Final Production Tests (Chart II)

None.

4.2.3 Deviations from Burn-in Tests (Chart III)

- (a) Para. 7.1.1(a), High Temperature Reverse Bias tests and subsequent electrical measurements related to this test shall be omitted.
- (b) Para. 9.9.2, Electrical Measurements at High and Low Temperatures: Only a test result summary, based on go-no-go tests and presented in histogram form is required.

4.2.4 Deviations from Qualification Tests (Chart IV)

None.

Rev. 'A'

PAGE 14

ISSUE 2

4.2.5 Deviations from Lot Acceptance Tests (Chart V)

None.

4.3 MECHANICAL REQUIREMENTS

4.3.1 Dimension Check

The dimensions of the integrated circuits specified herein shall be checked. They shall conform to those shown in Figure 2.

4.3.2 Weight

The maximum weight of the integrated circuits specified herein shall be 0.9 grammes for the flat package, 3.2 grammes for the dual-in-line package and 0.6 grammes for the chip carrier package.

4.4 MATERIALS AND FINISHES

The materials and finishes shall be as specified herein. Where a definite material is not specified, a material which will enable the integrated circuits specified herein to meet the performance requirements of this specification shall be used. Acceptance or approval of any constituent material does not guarantee acceptance of the finished product.

4.4.1 Case

The case shall be hermetically sealed and have a metal body with hard glass seals or a ceramic body and the lids shall be welded, brazed, preform-soldered or glass frit-sealed.

4.4.2 Lead Material and Finish

For dual-in-line and flat packages, the material shall be either Type 'D' or Type 'G' with either Type '4' or Type '7' finish in accordance with the requirements of ESA/SCC Basic Specification No. 23500. For chip carrier packages, the finish shall be either Type '4' or Type '7' in accordance with the requirements of ESA/SCC Basic Specification No. 23500. (See Table 1(a) for Type Variants).

4.5 MARKING

4.5.1 General

The marking of all components delivered to this specification shall be in accordance with the requirements of ESA/SCC Basic Specification No. 21700. Each component shall be marked in respect of:-

- (a) Lead Identification.
- (b) The SCC Component Number.
- (c) Traceability Information.

4.5.2 <u>Lead Identification</u>

For dual-in-line and flat packages, an index shall be located at the top of the package in the position defined in Note 1 to Figure 2 or, alternatively, a tab may be used to identify Pin No. 1. The pin numbering must be read with the index or tab on the left-hand side. For chip carrier packages, the index shall be as defined by Figure 2(c).

PAGE 15

ISSUE 2

4.5.3 The SCC Component Number

Each component shall bear the SCC Component Number which shall be constituted and marked as follows:

	<u>940200302B</u>
Detail Specification Number	
Type Variant (see Table 1(a)) -	
Testing Level (B or C, as applica	able)

4.5.4 Traceability Information

Each component shall be marked in respect of traceability information in accordance with the requirements of ESA/SCC Basic Specification No. 21700.

4.6 ELECTRICAL MEASUREMENTS

4.6.1 Electrical Measurements at Room Temperature

The parameters to be measured in respect of electrical characteristics are scheduled in Table 2. Unless otherwise specified, the measurements shall be performed at T_{amb} = +22±3 °C.

4.6.2 Electrical Measurements at High and Low Temperatures

The parameters to be measured at high and low temperatures are scheduled in Table 3. The measurements shall be performed at T_{amb} = +125 and -55 °C respectively.

4.6.3 Circuits for Electrical Measurements

Circuits for use in performing the electrical measurements listed in Tables 2 and 3 of this specification are shown in Figure 4.

4.7 BURN-IN TESTS

4.7.1 Parameter Drift Values

The parameter drift values applicable to burn-in are specified in Table 4 of this specification. Unless otherwise stated, measurements shall be performed at T_{amb} = +22 ±3 °C. The parameter drift values (Δ) applicable to the parameters scheduled, shall not be exceeded. In addition to these drift value requirements, the appropriate limit value specified for a given parameter in Table 2 shall not be exceeded.

4.7.2 Conditions for Power Burn-in

The requirements for power burn-in are specified in Section 7 of ESA/SCC Generic Specification No. 9000. The conditions for power burn-in shall be as specified in Table 5 of this specification.

4.7.3 Electrical Circuits for Power Burn-in

Circuits for use in performing the power burn-in tests are shown in Figure 5 of this specification.

PAGE 16

ISSUE 2

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - D.C. PARAMETERS

	0	CHARACTERISTICS SYMBOL		TEST	TEST CONDITIONS	LIMITS		UNIT
No.	CHARACTERISTICS	SYMBOL	MIL-STD 883	FIG.	1 E		MAX	ONIT
1	Functional Test	-	-	3(b)	Verify Truth Table with Load. Note 1	-	-	-
2 to 11	Input Current High Level 1	l _{IH1}	3010	4(a)	V_{CC} = 5.5V, V_{IN} = 2.7V (Pins 1-2-4-6-8-11-13-15-17-19)	1	20	μА
12 to 21	Input Current High Level 2 (Max. Input Voltage)	l _{IH2}	3010	4(a)	V _{CC} = 5.5V, V _{IN} = 7.0V (Pins 1-2-4-6-8-11-13-15- 17-19)	-	100	μΑ
22 to 31	Input Clamp Voltage	V _{IC}	3008	4(b)	V_{CC} = 4.5V, I_{IN} = $-$ 18mA Note 2 (Pins 1-2-4-6-8-11-13-15- 17-19)	-	– 1.5	V
32 to 41	Input Current Low Level	I _{IL}	3009	4(c)	V _{CC} = 4.5V, V _{IN} = 0.4V (Pins 1-2-4-6-8-11-13-15- 17-19)	-	-200	μА
42 to 49	Output Voltage Low Level	V _{OL}	3007	4(d)	V _{CC} = 4.5V, V _{IL} = 0.7V V _{IH} = 2.0V, I _{OL} = 12mA (Pins 3-5-7-9-12-14-16-18)	1	0.4	٧
50 to 57	Output Voltage High Level	V _{OH1}	3006	4(e)	V _{CC} = 4.5V, V _{IL} = 0.7V V _{IH} = 2.0V, I _{OH} = -3.0mA (Pins 3-5-7-9-12-14-16-18)	2.4	1	V
58 to 65	Output Voltage High Level	V _{OH2}	3006	4(e)	V_{CC} = 4.5V, V_{IL} = 0.5V V_{IH} = 2.0V, I_{OH} = -12mA (Pins 3-5-7-9-12-14-16-18)	2.0	-	V
66 to 73	Off State Output Current Low Level Applied	l _{OZL}	3006	4(h)	V _{CC} = 5.5V, V _{OUT} = 0.4V V _{IL} = 0.7V, V _{IH} = 2.0V (Pins 3-5-7-9-12-14-16-18)		-20 -	μ A
74 to 81	Off State Output Current High Level Applied	lоzн	3006	4(h)	$V_{CC} = 5.5V, V_{OUT} = 2.7V$ $V_{IL} = 0.7V, V_{IH} = 2.0V$ (Pins 3-5-7-9-12-14-16-18)		20	μА
82 to 89	Short Circuit Output Current	los	3011	4(f)	V _{CC} = 5.5V Note 3 (Pins 3-5-7-9-12-14-16-18)	-40	-225	mA

NOTES: See Page 18.

PAGE 17

ISSUE 2

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - D.C. PARAMETERS (CONT'D)

	OLIADA OTEDIOTIOS	OVADOL	TEST METHOD	TEST FIG.	TEST CONDITIONS	LIMITS		UNIT
No.	CHARACTERISTICS	SYMBOL	MIL-STD 883		(PINS UNDER TEST)	MIN	MAX	UNIT
90	Supply Current All Outputs High	Іссн	3005	4(g)	V _{CC} = 5.5V, V _{IH} = 2.0V V _{IL} = 0.7V (Pin 20)	-	27	mA
91	Supply Current All Outputs Low	ICCL	3005	4(g)	V _{CC} = 5.5V, V _{IH} = 2.0V V _{IL} = 0.7V (Pin 20)	-	46	mA
92	Supply Current All Outputs Disabled	lccz	3005	4(g)	V _{CC} = 5.5V, V _{IH} = 2.0V V _{IL} = 0.7V (Pin 20)	-	54	mA
93 to 102	Input Hysteresis Voltage	V _H	-	4(i)	V _{CC} = 4.5V Note 5 (Pins 1-2-4-6-8-11-13-15- 17-19)	0.2	•	V

NOTES: See Page 18.

PAGE 18

ISSUE 2

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - A.C. PARAMETERS

	CHARACTERISTICS	SYMBOL	TEST METHOD	TEST	TEST CONDITIONS	LIMITS		UNIT
No.	CHARACTERISTICS	STIVIBUL	MIL-STD 883	FIG.			MAX	
103 to 110	Propagation Delay, Low to High Level	t _{PLH}	3003	4(j)	$V_{CC} = 5.0V$ $R_L = 667\Omega \pm 5\%$ $C_L = 45pF \pm 5\%$	•	18	ns
111 to 118	Propagation Delay, High to Low Level	t _{PHL}			Pins 2 to 18 4 to 16 6 to 14 8 to 12 11 to 9 13 to 7 15 to 5 17 to 3 Note 4	-	18	
119 to 126	Output Enable Time to Low Level	t _{PZL}	3003	4(j)	$V_{CC} = 5.0V$ $R_L = 667\Omega \pm 5\%$ $C_L = 45pF \pm 5\%$		30	ns
127 to 134	Output Enable Time to High Level	tрzн			Pins 1 to 18 1 to 16 1 to 14 1 to 12 19 to 9 19 to 7 19 to 5 19 to 3	1	23	
135 to 142	Output Disable Time from Low Level	t _{PLZ}	3003	4(j)	$V_{CC} = 5.0V$ $R_L = 667\Omega \pm 5\%$ $C_L = 15pF \pm 5\%$	-	25	ns
143 to 150	Output Disable Time from High Level	t _{PHZ}			Pins 1 to 18 1 to 16 1 to 14 1 to 12 19 to 9 19 to 7 19 to 5 19 to 3	-	18	

NOTES

- 1. Go-no-go test with $V_{IL} = 0.3V$; $V_{IH} = 3.0V$; trip point 1.5V.
- 2. All inputs and outputs not under test shall be open.
- 3. No more than one output should be shorted at a time, and only for 1 second maximum. I_{OS} measurement may be performed with $V_{OUT} = 2.25V$ instead of 0V. In this case, the limits are divided by 2.
- 4. Propagation delay measurements shall be performed as a go-no-go test on a 100% basis. Read-and-record measurements shall be performed on an LTPD7 sample basis following the Chart III Burn-in Test.
- 5. Measurement performed during Qualification and Maintenance of Qualification only.

PAGE 19

ISSUE 2

TABLE 3 - ELECTRICAL MEASUREMENTS AT HIGH AND LOW TEMPERATURES, +125(+0-5) °C AND -55(+5-0) °C

	OLIA DA OTERIOTIO	0)/////////////////////////////////////	TEST METHOD	TEST	TEST CONDITIONS	LIM	ITS	LINUT
No.	CHARACTERISTICS	SYMBOL	MIL-STD 883	FIG.	- I		MAX	UNIT
1	Functional Test	-	-	3(b)	Verify Truth Table with Load. Note 1	-	-	ı
2 to 11	Input Current High Level 1	I _{IH1}	3010	4(a)	V_{CC} = 5.5V, V_{IN} = 2.7V (Pins 1-2-4-6-8-11-13-15-17-19)	-	20	μA
12 to 21	Input Current High Level 2 (Max. Input Voltage)	l _{IH2}	3010	4(a)	V _{CC} = 5.5V, V _{IN} = 7.0V (Pins 1-2-4-6-8-11-13-15- 17-19)	1	100	μА
22 to 31	Input Clamp Voltage	V _{IC}	3008	4(b)	V_{CC} = 4.5V, I_{IN} = $-$ 18mA Note 2 (Pins 1-2-4-6-8-11-13-15-17-19)	-	1.5	٧
32 to 41	Input Current Low Level	IIL	3009	4(c)	V _{CC} = 4.5V, V _{IN} = 0.4V (Pins 1-2-4-6-8-11-13-15- 17-19)	1	-200	μA
42 to 49	Output Voltage Low Level	V _{OL}	3007	4(d)	V _{CC} = 4.5V, V _{IL} = 0.7V V _{IH} = 2.0V, I _{OL} = 12mA (Pins 3-5-7-9-12-14-16-18)	-	0.4	V
50 to 57	Output Voltage High Level	V _{OH1}	3006	4(e)	V_{CC} = 4.5V, V_{IL} = 0.7V V_{IH} = 2.0V, I_{OH} = -3.0mA (Pins 3-5-7-9-12-14-16-18)	2.4	-	V
58 to 65	Output Voltage High Level	V _{OH2}	3006	4(e)	V _{CC} = 4.5V, V _{IL} = 0.5V V _{IH} = 2.0V, I _{OH} = -12mA (Pins 3-5-7-9-12-14-16-18)	2.0	-	V
66 to 73	Off State Output Current Low Level Applied	lozL	3006	4(h)	V_{CC} = 5.5V, V_{OUT} = 0.4V V_{IL} = 0.7V, V_{IH} = 2.0V (Pins 3-5-7-9-12-14-16-18)	-	-20	μΑ
74 to 81	Off State Output Current High Level Applied	ЮZН	3006	4(h)	V _{CC} = 5.5V, V _{OUT} = 2.7V V _{IL} = 0.7V, V _{IH} = 2.0V (Pins 3-5-7-9-12-14-16-18)		20	μА
82 to 89	Short Circuit Output Current	los	3011	4 (f)	V _{CC} = 5.5V Note 3 (Pins 3-5-7-9-12-14-16-18)	-40	- 225	mA

NOTES: See Page 18.

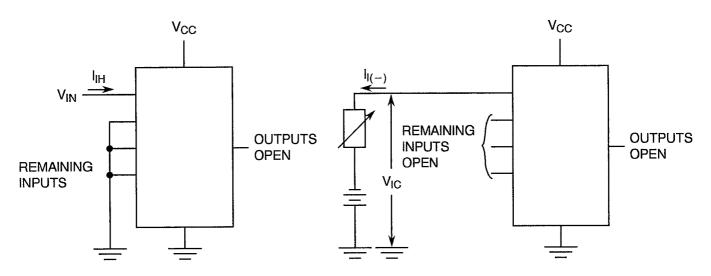
PAGE 20

ISSUE 2

TABLE 3 - ELECTRICAL MEASUREMENTS AT HIGH AND LOW TEMPERATURES, $\pm 125(\pm 0-5)$ °C AND $\pm -55(\pm 5-0)$ °C (CONT'D)

No OLIAF	CHADACTEDISTICS	SYMBOL.	TEST METHOD	TEST	TEST CONDITIONS	LIMITS		UNIT
NO.	No. CHARACTERISTICS		MIL-STD 883	FIG.	(PINS UNDER TEST)	MIN	MAX	
90	Supply Current All Outputs High	Іссн	3005	4(g)	V_{CC} = 5.5V, V_{IH} = 2.0V V_{IL} = 0.7V (Pin 20)	-	27	mA
91	Supply Current All Outputs Low	ICCL	3005	4(g)	V _{CC} = 5.5V, V _{IH} = 2.0V V _{IL} = 0.7V (Pin 20)	-	46	mA
92	Supply Current All Outputs Disabled	Iccz	3005	4(g)	$V_{CC} = 5.5V, V_{IH} = 2.0V$ $V_{IL} = 0.7V$ (Pin 20)	1	54	mA
93 to 102	Input Hysteresis Voltage	V _H	-	4(i)	V _{CC} = 4.5V Note 5 (Pins 1-2-4-6-8-11-13-15- 17-19)	0.2	-	٧

NOTES: See Page 18.


PAGE 21

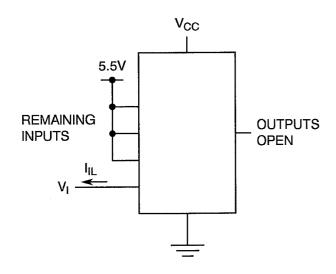
ISSUE 2

FIGURE 4 - CIRCUITS FOR ELECTRICAL MEASUREMENTS

FIGURE 4(a) - HIGH LEVEL INPUT CURRENT

FIGURE 4(b) - INPUT CLAMP VOLTAGE

NOTES


1. Each input to be tested separately.

NOTES

1. Each input to be tested separately.

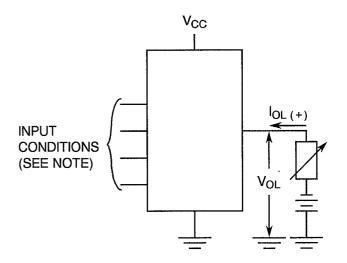

FIGURE 4(c) - LOW LEVEL INPUT CURRENT

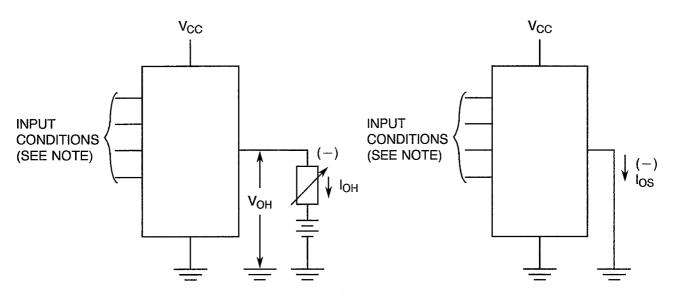
FIGURE 4(d) - LOW LEVEL OUTPUT VOLTAGE

NOTES

1. Each input to be tested separately.

NOTES

1. All inputs at V_{IL} min.


PAGE 22

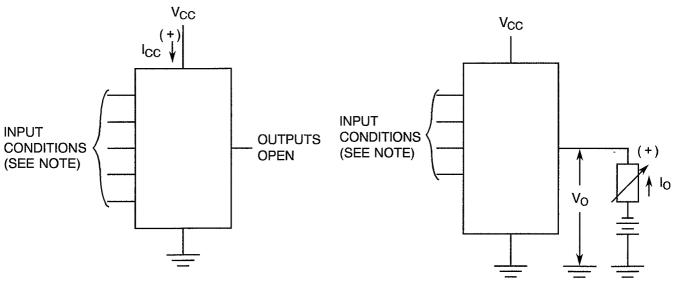
ISSUE 2

FIGURE 4 - CIRCUITS FOR ELECTRICAL MEASUREMENTS (CONTINUED)

FIGURE 4(e) - HIGH LEVEL OUTPUT VOLTAGE

FIGURE 4(f) - SHORT CIRCUIT OUTPUT CURRENT

NOTES


1. Input \overline{G} at V_{IL} and Input A at V_{IH} .

NOTES

1. Input \overline{G} at V_{IL} and Input A at V_{IH} .

FIGURE 4(g) - SUPPLY CURRENT

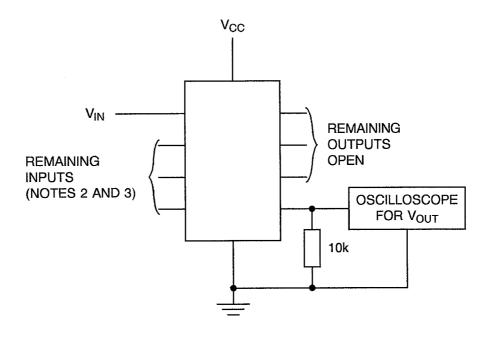
FIGURE 4(h) - LOW LEVEL OUTPUT VOLTAGE

NOTES

1. See Figure 3(b) for low, high or off-state output.

NOTES

1. See Figure 3(b) for off-state output.



PAGE 23

ISSUE 2

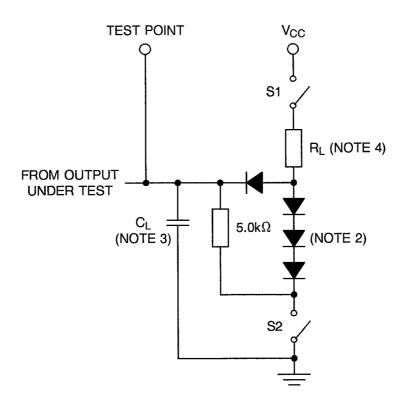
FIGURE 4 - CIRCUITS FOR ELECTRICAL MEASUREMENTS (CONTINUED)

FIGURE 4(i) - INPUT HYSTERESIS VOLTAGE

NOTES

- 1. V_H shall be derived as follows:-
 - (i) Slowly increase input voltage (V_{IN}) from 0V until the output condition (V_{OUT}) changes. Record the value of V_{IN} at which the change occurs and call it V_{TP} .
 - (ii) Slowly decrease input voltage (V_{IN}) from 5V until the output condition changes. Record the value of V_{IN} at which the change occurs and call it V_{TN} .
 - (iii) $V_H = V_{TP} V_{TN}$.
- 2. Measurement of 'A' inputs shall be performed with $\overline{G} = 0.7V$. Inputs not under test shall be open.
- 3. For measurement of \overline{G} inputs, one output shall be monitored and the input conditions for that output shall be such that the output is high when enabled.

All inputs not under test shall be open.


PAGE 24

ISSUE 2

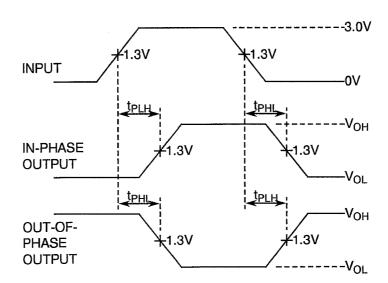
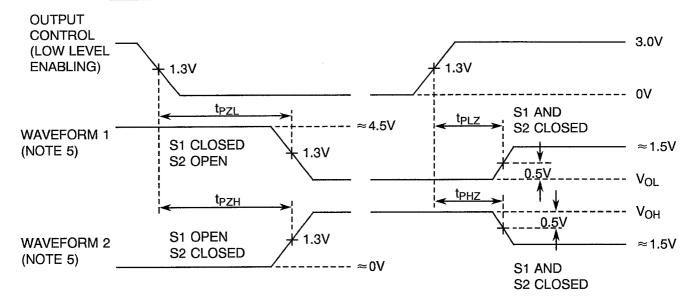

FIGURE 4 - CIRCUITS FOR ELECTRICAL MEASUREMENTS (CONTINUED)

FIGURE 4(j) - TEST FIGURE FOR SWITCHING TIME

LOAD CIRCUIT FOR 3-STATE OUTPUTS

VOLTAGE WAVEFORMS PROPAGATION DELAY TIME


PAGE 25

ISSUE 2

FIGURE 4 - CIRCUITS FOR ELECTRICAL MEASUREMENTS (CONTINUED)

FIGURE 4(i) - DYNAMIC TEST AND SWITCHING WAVEFORMS (CONTINUED)

VOLTAGE WAVEFORMS, ENABLE AND DISABLE TIMES, 3-STATE OUTPUTS

NOTES

- 1. All input pulses are supplied by generators having the following characteristics: $t_r < 15$ ns, $t_p < 6.0$ ns, PRR < 1.0MHz, $Z_{OUT} = 50\Omega$.
- 2. All diodes are 1N916 or 1N3064.
- 3. $C_L = 45 pF$ or 5.0pF $\pm 5\%$ (see Table 2) including scope, wiring and stray capacitance without package in test fixture.
- 4. $R_L = 667\Omega \pm 5\%$.
- 5. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
 - Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- 6. When measuring propagation delay time of 3-State Outputs, S1 and S2 are closed.

PAGE 26

ISSUE 2

TABLE 4 - PARAMETER DRIFT VALUES

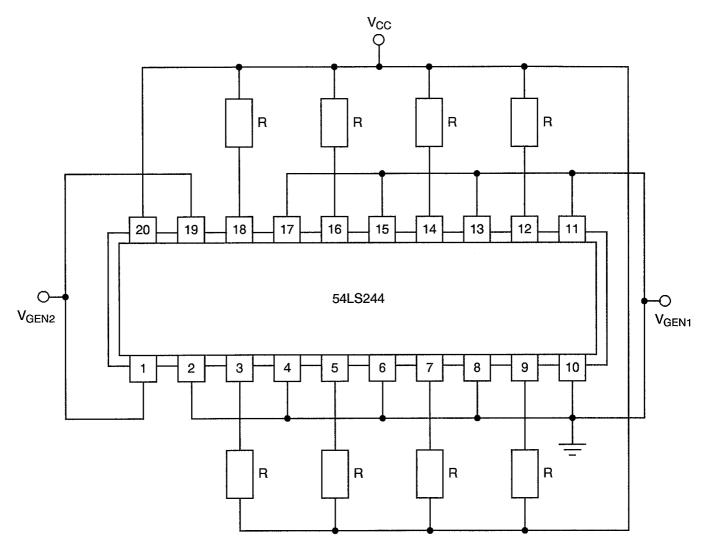
No.	CHARACTERISTICS	SYMBOL	SPEC. AND/OR TEST METHOD	TEST CONDITIONS	CHANGE LIMITS (Δ)	UNIT
2 to 11	Input Current High Level 1	l _{IH1}	As per Table 2	As per Table 2	±20 or (1) ±0.5	% μ A
32 to 41	Input Current Low Level	l _{IL}	As per Table 2	As per Table 2	± 18	μА
42 to 49	Output Voltage Low Level	V _{OL}	As per Table 2	As per Table 2	± 60	mV
50 to 57	Output Voltage High Level 1	V _{OH1}	As per Table 2	As per Table 2	± 240	mV

NOTES

TABLE 5 - CONDITIONS FOR POWER BURN-IN AND OPERATING LIFE TEST

No.	CHARACTERISTICS	SYMBOL	CONDITION	UNIT
1	Ambient Temperature	T _{amb}	+ 125(+ 0 – 5)	°C
2	Power Supply Voltage	V _{CC}	5(+0.5-0)	٧
3	Pulse Voltage	$V_{\sf GEN}$	0.5 max. to 3.0 min.	٧
4	Frequency	f _{GEN1} GEN2	100 50 (Note 1)	Hz
5	Fan-out	-	10	-
6	Rise Time	t _r	50 max.	μs
7	Fall Time	t _f	50 max.	μs
8	Duty Cycle	-	20 min.	%

NOTES


1. Tolerance ± 10%.

^{1.} Whichever is greater, referred to the initial value.

PAGE 27

ISSUE 2

FIGURE 5 - ELECTRICAL CIRCUIT FOR POWER BURN-IN AND OPERATING LIFE TEST

NOTES 1. $R = 1.2k\Omega$.

PAGE 28

ISSUE 2

4.8 <u>ENVIRONMENTAL AND ENDURANCE TESTS (CHARTS IV AND V OF ESA/SCC GENERIC SPECIFICATION NO. 19000)</u>

4.8.1 Electrical Measurements on Completion of Environmental Tests

The parameters to be measured on completion of environmental tests are scheduled in Table 6. Unless otherwise stated, the measurements shall be performed at $T_{amb} = +22 \pm 3$ °C.

4.8.2 Electrical Measurements at Intermediate Points during Endurance Tests

The parameters to be measured at intermediate points during endurance tests are as scheduled in Table 6 of this specification.

4.8.3 Electrical Measurements on Completion of Endurance Tests

The parameters to be measured on completion of endurance testing are as scheduled in Table 6 of this specification. Unless otherwise stated, the measurements shall be performed at $T_{amb} = +22 \pm 31$ °C.

4.8.4 Conditions for Operating Life Tests

The requirements for operating life testing are specified in Section 9 of ESA/SCC Generic Specification No. 9000. The conditions for operating life testing shall be as specified in Table 5 of this specification.

4.8.5 Electrical Circuits for Operating Life Tests

Circuits for use in performing the operating life tests are shown in Figure 5.

4.8.6 Conditions for High Temperature Storage Test

The requirements for the high temperature storage test are specified in ESA/SCC Generic Specification No. 9000. The conditions for high temperature storage shall be $T_{amb} = +150(+0-5)$ ¶°C.

PAGE 29

ISSUE 2

TABLE 6 - ELECTRICAL MEASUREMENTS ON COMPLETION OF ENVIRONMENTAL TESTS AND AT INTERMEDIATE POINTS AND ON COMPLETION OF ENDURANCE TESTS

No.	CHARACTERISTICS	SYMBOL	SPEC. AND/OR	TEST	CHAN	UNIT	
INO.	CHARACTERISTICS	STIVIBOL	TEST METHOD	CONDITIONS	(Δ)	ABSOLUTE	OIVIT
2 to 11	Input Current High Level 1	l _{IH1}	As per Table 2	As per Table 2	±1.0	-	μΑ
12 to 21	Input Current High Level 2	l _{IH2}	As per Table 2	As per Table 2		100	μА
32 to 41	Input Current Low Level	I _{IL}	As per Table 2	As per Table 2	± 12	-	μΑ
42 to 49	Output Voltage Low Level	V _{OL}	As per Table 2	As per Table 2	±60	-	mV
50 to 57	Output Voltage High Level 1	V _{OH1}	As per Table 2	As per Table 2	±240	-	mV
90	Supply Current Outputs High	Іссн	As per Table 2	As per Table 2	±20	-	%
91	Supply Current Outputs Low	ICCL	As per Table 2	As per Table 2	±20	-	%

PAGE 30

ISSUE 2

APPENDIX 'A'

Page 1 of 1

AGREED DEVIATIONS FOR TEXAS INSTRUMENTS (F)

ITEMS AFFECTED	DESCRIPTION OF DEVIATIONS
Para. 4.2.1	Scanning Electron Microscope (SEM) Inspection may be performed using TIF document TIF 3.61.610.001.
Para. 4.2.2	Prior to Die Shear Test TIF may perform a Radiographic Inspection on the randomly chosen samples to be subjected to this test, using TIF document TIF 50.42-3002.
Para. 4.2.3	Radiographic Inspection may be performed using TIF document TIF 50.42-3002.