

Page 1 of 15

TRANSISTORS, LOW POWER, PNP BASED ON TYPE 2N5401

ESCC Detail Specification No. 5202/014

Issue 10 November 2024

Document Custodian: European Space Agency - see https://escies.org

LEGAL DISCLAIMER AND COPYRIGHT

European Space Agency, Copyright © 2024. All rights reserved.

The European Space Agency disclaims any liability or responsibility, to any person or entity, with respect to any loss or damage caused, or alleged to be caused, directly or indirectly by the use and application of this ESCC publication.

This publication, without the prior permission of the European Space Agency and provided that it is not used for a commercial purpose, may be:

- copied in whole, in any medium, without alteration or modification.
- copied in part, in any medium, provided that the ESCC document identification, comprising the ESCC symbol, document number and document issue, is removed.

DOCUMENTATION CHANGE NOTICE

(Refer to https://escies.org for ESCC DCR content)

DCR No.	CHANGE DESCRIPTION
1684	Specification updated to incorporate changes per DCR.

ESCC Detail Specification

PAGE 4

No. 5202/014 ISSUE 10

TABLE OF CONTENTS

1	GENERAL	5
1.1	SCOPE	5
1.2	APPLICABLE DOCUMENTS	5
1.3	TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS	5
1.4	THE ESCC COMPONENT NUMBER AND COMPONENT TYPE VARIANTS	5
1.4.1	The ESCC Component Number	5
1.4.2	Component Type Variants	5
1.5	MAXIMUM RATINGS	6
1.6	PHYSICAL DIMENSIONS AND TERMINAL IDENTIFICATION	7
1.6.1	Chip Carrier Package (CCP) - 3 terminal (Variants 04, 05)	7
1.6.2	Chip Carrier Package (CCP) - 4 terminal (Variants 06, 07)	8
1.6.3	Die (Variant 08)	9
1.7	FUNCTIONAL DIAGRAM	9
1.8	MATERIALS AND FINISHES	10
1.8.1	Materials and Finishes of Packaged Components	10
1.8.2	Materials and Finishes of Die Components	10
2	REQUIREMENTS	10
2.1	GENERAL	10
2.1.1	Deviations from the Generic Specification	10
2.2	MARKING	10
2.3	ELECTRICAL MEASUREMENTS AT ROOM, HIGH AND LOW TEMPERATURES	11
2.3.1	Room Temperature Electrical Measurements	11
2.3.2	High and Low Temperatures Electrical Measurements	12
2.4	PARAMETER DRIFT VALUES	12
2.5	INTERMEDIATE AND END-POINT ELECTRICAL MEASUREMENTS	13
2.6	HIGH TEMPERATURE REVERSE BIAS BURN-IN CONDITIONS	13
2.7	POWER BURN-IN CONDITIONS	13
2.8	OPERATING LIFE CONDITIONS	13
2.9	TOTAL DOSE RADIATION TESTING	13
2.9.1	Bias Conditions and Total Dose Level for Total dose Radiation Testing	13
2.9.2	Electrical Measurements for Radiation Testing	14
APPEND	IX A	15

ISSUE 10

1 **GENERAL**

1.1 SCOPE

This specification details the ratings, physical and electrical characteristics and test and inspection data for the component type variants and/or the range of components specified below. It supplements the requirements of, and shall be read in conjunction with, the ESCC Generic Specification listed under Applicable Documents.

1.2 APPLICABLE DOCUMENTS

The following documents form part of this specification and shall be read in conjunction with it:

- (a) ESCC Generic Specification No. 5000
- (b) MIL-STD-750, Test Methods and Procedures for Semiconductor Devices

1.3 TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS

For the purpose of this specification, the terms, definitions, abbreviations, symbols and units specified in ESCC Basic Specification No. 21300 shall apply.

1.4 THE ESCC COMPONENT NUMBER AND COMPONENT TYPE VARIANTS

1.4.1 The ESCC Component Number

The ESCC Component Number shall be constituted as follows:

Example: 520201404R

Detail Specification Reference: 5202014

Component Type Variant Number: 04 (as required)Total Dose Radiation Level Letter: R (as required)

1.4.2 <u>Component Type Variants</u>

The component type variants applicable to this specification are as follows:

Variant Number	Based on Type	Case	Terminal Finish	Weight max g	Total Dose Radiation Level Letter
04	2N5401	CCP (3 Terminal)	2	0.06	R [100krad(Si)]
05	2N5401	CCP (3 Terminal)	4	0.06	R [100krad(Si)]
06	2N5401	CCP (4 Terminal)	2	0.06	R [100krad(Si)]
07	2N5401	CCP (4 Terminal)	4	0.06	R [100krad(Si)]
08	2N5401	Die	N/A	N/A	R [100krad(Si)]

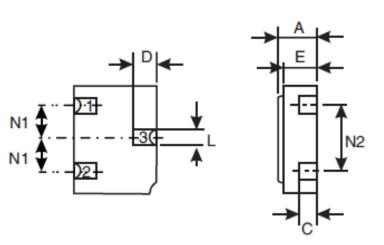
The lead/terminal material and/or finish shall be in accordance with the requirements of ESCC Basic Specification No. 23500.

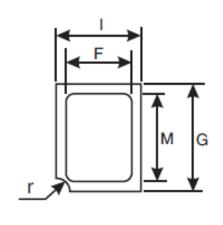
Total dose radiation level letters are defined in ESCC Basic Specification No. 22900. If an alternative radiation test level is specified in the Purchase Order, the letter shall be changed accordingly.

1.5 <u>MAXIMUM RATINGS</u>

The maximum ratings shall not be exceeded at any time during use or storage.

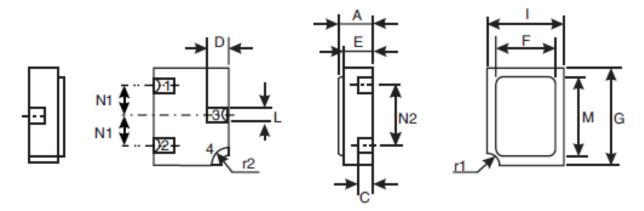
Maximum ratings shall only be exceeded during testing to the extent specified in this specification and when stipulated in Test Methods and Procedures of the ESCC Generic Specification.


Characteristics	Symbols	Maximum Ratings	Unit	Remarks
Collector-Base Voltage	V _{CBO}	-160	V	Over entire operating
Collector-Emitter Voltage	V _{CEO}	-150	V	temperature range
Emitter-Base Voltage	V _{EBO}	-5	V	
Collector Current: For CCP (Variants 04, 05, 06, 07)	lc	-500	mA	Continuous
Power Dissipation: For CCP (Variants 04, 05, 06, 07)	P _{tot}	0.36	W	At T _{amb} ≤ +25°C
Thermal Resistance, Junction-to-Ambient	R _{th(j-a)}	486	°C/W	
Operating Temperature Range	Тор	-65 to +200	°C	Note 1
Storage Temperature Range	T _{stg}	-65 to +200	°C	Note 1
Soldering Temperature: For CCP (Variants 04, 05, 06, 07)	T _{sol}	+245	°C	Note 2


- 1. For Variants 05, 07 with hot solder dip lead finish, all testing, and any handling, performed at $T_{amb} > +125$ °C shall be carried out in a 100% inert atmosphere.
- 2. Duration 5 seconds maximum and the same terminal shall not be resoldered until 3 minutes have elapsed.

1.6 PHYSICAL DIMENSIONS AND TERMINAL IDENTIFICATION

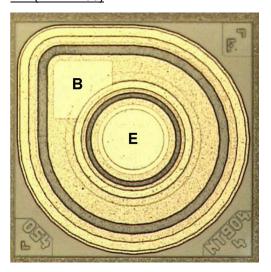
1.6.1 Chip Carrier Package (CCP) - 3 terminal (Variants 04, 05)



Symbols	Dimensi	ions mm	Notes
	Min	Max	
А	1.15	1.5	
С	0.45	0.56	2
D	0.6	0.91	2
Е	0.91	1.12	
F	1.9	2.15	
G	2.9	3.25	
I	2.4	2.85	
L	0.4	0.6	2
М	2.4	2.65	
N1	0.855	1.055	
N2	1.8	2	
r	0.3 TY	PICAL	1

- Terminal identification is specified by reference to the corner notch position where terminal 1 = emitter, terminal 2 = base, terminal 3 = collector.
- 2. Applies to all terminals.

1.6.2 <u>Chip Carrier Package (CCP) - 4 terminal (Variants 06, 07)</u>



Symbols	Dimensi	ions mm	Notes
	Min	Max	
Α	1.15	1.5	
С	0.45	0.56	2
D	0.6	0.91	2
Е	0.91	1.12	
F	1.9	2.15	
G	2.9	3.25	
I	2.4	2.85	
L	0.4 0.6		2
М	2.4	2.65	
N1	0.855	1.055	
N2	1.8	2	
r1	0.3 TYPICAL		1
r2	0.56 TY	/PICAL	1

- Terminal identification is specified by reference to the corner notch position where terminal 1 = emitter, terminal 2 = base, terminal 3 = collector, terminal 4 = shielding connected to the lid.
- 2. Applies to terminals 1, 2, 3.

1.6.3 <u>Die (Variant 08)</u>

NOTES:

1. Die materials and dimensions:

• Die substrate: Silicon

• Die length: 660 μm

Die width: 660 μm

• Die thickness: 230 ±20µm

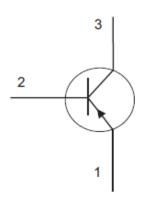
Top Glassivation:

o P-Vapox with thickness: 720 ±80nm and

o Nitride with thickness 540 ±60nm

Top metallisation: Al/Si (1%) with thickness: 1.9 ±0.1µm (Typ.)

• Backside metallisation: Au with thickness: 1.485 ±0.165μm


• Emitter pad dimensions: 186 μm diameter

Base pad dimensions: 149 × 149 μm

2. Terminal identification: B = Base, E = Emitter

3. Bias details: backside contact = Collector

1.7 <u>FUNCTIONAL DIAGRAM</u>

- 1. Emitter.
- 2. Base.
- Collector.
- 4. Shield.

- 1. For 3 terminal CCP (Variants 04, 05), the lid is not connected to any terminal.
- 2. For 4 terminal CCP (Variants 06, 07), the shielding terminal is connected to the lid.
- 3. For Die Components (Variant 08), the terminal numbering and the Shield are not applicable.

1.8 <u>MATERIALS AND FINISHES</u>

1.8.1 <u>Materials and Finishes of Packaged Components</u>

For Variants 04, 05, 06, 07, the materials and finishes shall be as follows:

- (a) Case
 - The case shall be hermetically sealed and have a ceramic body with a Kovar lid.
- (b) Leads/Terminals
 As specified in Para. 1.4.2, Component Type Variants.

1.8.2 Materials and Finishes of Die Components

For Variant 08, the materials and finishes shall be as specified in Para. 1.6.3.

2 REQUIREMENTS

2.1 GENERAL

The complete requirements for procurement of the components specified herein are as stated in this specification and the ESCC Generic Specification. Permitted deviations from the Generic Specification, applicable to this specification only, are listed below.

Permitted deviations from the Generic Specification and this Detail Specification, formally agreed with specific Manufacturers on the basis that the alternative requirements are equivalent to the ESCC requirement and do not affect the component's reliability, are listed in the appendices attached to this specification.

2.1.1 Deviations from the Generic Specification

None.

2.2 MARKING

The marking shall be in accordance with the requirements of ESCC Basic Specification No. 21700 and as follows.

The information to be marked on the component or its primary package shall be:

- (a) The ESCC qualified components symbol (for ESCC qualified components only).
- (b) The ESCC Component Number (see Para. 1.4.1).
- (c) Traceability information.

2.3 <u>ELECTRICAL MEASUREMENTS AT ROOM, HIGH AND LOW TEMPERATURES</u>

Electrical measurements shall be performed at room, high and low temperatures.

2.3.1 Room Temperature Electrical Measurements

The measurements shall be performed at T_{amb} = +22 ±3°C.

Characteristics	Symbols	MIL-STD-750	Test Conditions	Limits		Units
		Test Method		Min	Max	
Collector-Base Breakdown Voltage	$V_{(BR)CBO}$	3001	I _C = -100μA Bias condition D	-160	-	V
Collector-Emitter Breakdown Voltage	V _{(BR)CEO}	3011	I _C = -1mA Bias condition D Note 1	-150	-	V
Emitter-Base Breakdown Voltage	$V_{(BR)EBO}$	3026	I _E = -10μA Bias condition D	-5	-	V
Collector-Base Cut-off Current	Ісво	3036	V _{CB} = -120V Bias condition D	ı	-50	nA
Emitter-Base Cut-off Current	I _{EBO}	3061	V _{EB} = -3V Bias condition D	-	-50	nA
Collector-Emitter Saturation Voltage	V _{CE(sat)1}	3071	I_C = -10mA, I_B = -1mA Note 1	-	-200	mV
	V _{CE(sat)2}		I_C = -50mA, I_B = -5mA Note 1	-	-500	mV
Base-Emitter Saturation Voltage	V _{BE(sat)1}	3066	I_C = -10mA, I_B = -1mA Test condition A Note 1	-	-1	V
	V _{BE(sat)2}		I _C = -50mA, I _B = -5mA Test condition A Note 1	-	-1	V
Forward-Current Transfer	h _{FE1}	3076	V _{CE} = -5V, I _C = -1mA	50	-	-
Ratio	h _{FE2}		V_{CE} = -5V, I_{C} = -10mA Note 1	60	240	-
	h _{FE3}		V_{CE} = -5V, I_{C} = -50mA Note 1	60	-	-
Small-Signal Current Gain	h _{fe}	3206	V _{CE} = -10V, I _C = -10mA f = 10MHz Notes 2, 3	5	-	-
Output Capacitance	Cobo	3236	V _{CB} = -10V, I _E = 0A f = 1MHz Notes 2, 3	-	6	pF

- 1. Pulse measurement: Pulse Width ≤ 300μs, Duty Cycle ≤ 2%
- 2. For Packaged Components (Variants 04, 05, 06, 07), all AC characteristics read and record measurements shall be performed on a sample of 32 components with 0 failures allowed. Alternatively a 100% inspection may be performed.
- 3. For Die Components (Variant 08), all AC characteristics read and record measurements shall be performed on either a sample of 32 components or 100% of the Packaged Test Sublot, whichever is less, with 0 failures allowed.

ISSUE 10

2.3.2 <u>High and Low Temperatures Electrical Measurements</u>

Characteristics	Symbols	MIL-STD-750	Test Conditions	Lin	nits	Units
		Test Method	Note 1	Min	Max	
Collector-Base Cut-off Current	Ісво	3036	T_{amb} = +150 (+0 -5)°C V_{CB} = -120V Bias condition D	ı	-50	μA
Forward-Current Transfer Ratio 2	h _{FE2}	3076	T _{amb} = 55 (+5 -0)°C V _{CE} = -5V, I _C = -10mA Note 2	20	1	-

NOTES:

- 1. Measurements shall be performed on a sample basis as specified in the Generic Specification.
- 2. Pulse measurement: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%

2.4 PARAMETER DRIFT VALUES

Unless otherwise specified, the measurements shall be performed at T_{amb} = +22 ±3°C.

The test methods and test conditions shall be as per the corresponding test defined in Para. 2.3.1, Room Temperature Electrical Measurements.

The drift values (Δ) shall not be exceeded for each characteristic specified. The corresponding absolute limit values for each characteristic shall not be exceeded.

Characteristics	Symbols		Limits		Units
		Drift	Abso	olute	
		Value Δ	Min	Max	
Collector-Base Cut-off Current	Ісво	±5 or (1) ±100%	-	-50	nA
Collector-Emitter Saturation Voltage 2	V _{CE(sat)2}	±30 or (1) ±15%	-	-500	mV
Forward-Current Transfer Ratio 2	h _{FE2}	±15%	60	240	-

NOTES:

1. Whichever is the greater referred to initial value.

ISSUE 10

2.5 <u>INTERMEDIATE AND END-POINT ELECTRICAL MEASUREMENTS</u>

Unless otherwise specified, the measurements shall be performed at T_{amb} = +22 ±3°C.

The test methods and test conditions shall be as per the corresponding test defined in Para. 2.3.1, Room Temperature Electrical Measurements.

The limit values for each characteristic shall not be exceeded.

Characteristics	Symbols	Limits		Units
		Min	Max	
Collector-Base Cut-off Current	Ісво	-	-50	nA
Collector-Emitter Saturation Voltage 2	V _{CE(sat)2}	-	-500	mV
Forward-Current Transfer Ratio 2	h _{FE2}	60	240	-

2.6 <u>HIGH TEMPERATURE REVERSE BIAS BURN-IN CONDITIONS</u>

Characteristics	Symbols	Test Conditions	Units
Ambient Temperature	T _{amb}	+150 (+0 -5)	°C
Collector-Base Voltage	V _{CB}	-128	V
Duration	t	48 minimum	Hours

2.7 POWER BURN-IN CONDITIONS

Characteristics	Symbols	Test Conditions	Units
Ambient Temperature	T _{amb}	+25 to +50	ů
Power Dissipation	P _{tot}	As per Para. 1.5, Maximum Ratings. Derate P _{tot1} at the chosen T _{amb} using the specified R _{th(j-a)} .	W
Collector-Base Voltage	V _{CB}	90	V

2.8 OPERATING LIFE CONDITIONS

The conditions shall be as specified in Para. 2.7, Power Burn-in Conditions.

2.9 TOTAL DOSE RADIATION TESTING

All lots shall be irradiated in accordance with ESCC Basic Specification No. 22900, low dose rate (window 2: 36rad(Si) to 360rad(Si) per hour).

2.9.1 Bias Conditions and Total Dose Level for Total dose Radiation Testing

The following bias conditions shall be used for Total Dose Radiation Testing:

Characteristics	Symbols	Test Conditions	Units
Ambient Temperature	perature T _{amb} +20 ±5		ပ္
Bias Condition 1: Collector-Emitter Voltage	Vces	≥ 80% V _{(BR)CEO}	V
Bias Condition 2: Collector-Emitter Voltage	Vces	0	V

The total dose level applied shall be as specified in Para. 1.4.2 or in the Purchase Order.

2.9.2 <u>Electrical Measurements for Radiation Testing</u>

Prior to irradiation testing the devices shall have successfully met Room Temperature Electrical Measurements specified in Para. 2.3.1.

Unless otherwise stated the measurements shall be performed at T_{amb} = +22 ±3°C.

Unless otherwise specified the test methods and test conditions shall be as per the corresponding test defined in Para. 2.3.1, Room Temperature Electrical Measurements.

The parameters to be measured during and on completion of irradiation testing are shown below.

Characteristics	Symbols	MIL-STD-750	Test Conditions	Limits		Units
Test Metho		Test Method		Min	Max	
Collector-Base Breakdown Voltage	V _(BR) CBO	See Para. 2.3.1	See Para. 2.3.1	-160	-	V
Collector-Emitter Breakdown Voltage	V _(BR) CEO	See Para. 2.3.1	See Para. 2.3.1	-150	-	V
Emitter-Base Breakdown Voltage	V _{(BR)EBO}	See Para. 2.3.1	See Para. 2.3.1	-5	-	V
Collector-Base Cut-off Current	Ісво	See Para. 2.3.1	See Para. 2.3.1	-	-50	nA
Emitter-Base Cut-off Current	l _{ЕВО}	See Para. 2.3.1	See Para. 2.3.1	-	-50	nA
Collector-Emitter Saturation	V _{CE(sat)1}	See Para. 2.3.1	See Para. 2.3.1	-	-200	mV
Voltage	V _{CE(sat)2}	See Para. 2.3.1	See Para. 2.3.1	-	-500	mV
Base-Emitter Saturation Voltage	V _{BE(sat)1}	See Para. 2.3.1	See Para. 2.3.1	-	-1	V
	V _{BE(sat)2}	See Para. 2.3.1	See Para. 2.3.1	-	-1	V
Forward-Current Transfer Ratio (post irradiation gain calculation) (Note 1)	[h _{FE1}]	3076	$V_{CE} = -5V$, $I_C = -1mA$	[25]	-	-
	[h _{FE2}]		V _{CE} = -5V, I _C = -10mA	[30]	240	-
	[h _{FE3}]		$V_{CE} = -5V, I_{C} = -50mA$	[30]	-	-

NOTES:

The post-irradiation gain calculation of [hfe], made using hfe measurements from prior to and on completion of irradiation testing and after each annealing step if any, shall be as specified in MIL-STD-750 Method 1019.

APPENDIX A AGREED DEVIATIONS FOR STMICROELECTRONICS (F)

ITEMS AFFECTED	DESCRIPTION OF DEVIATIONS
Para. 2.1.1, Deviations from the Generic Specification: Para. 8, Test Methods and Procedures	For qualification and qualification maintenance, or procurement of qualified or unqualified components, the following replacement test method specifications shall be used instead of the following ESCC Basic Specifications:
	No. 20400, Internal Visual Inspection: replaced by MIL-STD-750 Test Method 2072.
	No. 20500, External Visual Inspection: replaced by MIL-STD-750 Test Method 2071.
	No. 20900, Radiographic Inspection of Electronic Components: replaced by MIL-STD-750 Test Method 2076.
Para. 2.1.1, Deviations from the Generic Specification: Deviations from Production Control - Chart F2	Special In-Process Controls - Internal Visual Inspection. For CCP packages the criteria specified for voids in the fillet and minimum die mounting material around the visible die perimeter for die mounting defects may be omitted providing that a radiographic inspection to verify the die-attach process is performed on a sample basis in accordance with STMicroelectronics procedure 0076637.
Para. 2.1.1, Deviations from the Generic Specification: Deviations from Screening Tests - Chart F3	Solderability is not applicable unless specifically stipulated in the Purchase Order.
Para. 2.3.1, Room Temperature Electrical Measurements	All AC characteristics (Para. 2.3.1, Notes 2 and 3) may be considered guaranteed but not tested if successful pilot lot testing has been performed on the wafer lot which includes AC characteristic measurements per the Detail Specification. A summary of the pilot lot testing shall be provided if required by
Para. 2.3.2, High and Low Temperatures Electrical Measurements	the Purchase Order. All characteristics specified may be considered guaranteed but not tested if successful pilot lot testing has been performed on the wafer lot which includes characteristic measurements at high and low temperatures per the Detail Specification. A summary of the pilot lot testing shall be provided if required by the Purchase Order.