

Page i

TRANSISTORS, MOSFET, P-CHANNEL POWER, BASED ON TYPE IRF9140

ESCC Detail Specification No. 5206/006

ISSUE 1 October 2002

ESCC Detail Specification

PAGE	ii
ISSUE	1

LEGAL DISCLAIMER AND COPYRIGHT

European Space Agency, Copyright © 2002. All rights reserved.

The European Space Agency disclaims any liability or responsibility, to any person or entity, with respect to any loss or damage caused, or allleged to be caused, directly or indirectly by the use and application of this ESCC publication.

This publication, without the prior permission of the European Space Ageny and provided that it is not used for a commercial purpose, may be:

- copied in whole in any medium without alteration or modification.
- copied in part, in any medium, provided that the ESCC document identification, comprising the ESCC symbol, document number and document issue, is removed.

european space agency agence spatiale européenne

Pages 1 to 23

TRANSISTORS, MOSFET, P-CHANNEL POWER, BASED ON TYPE IRF9140

ESA/SCC Detail Specification No. 5206/006

space components coordination group

		Approved by			
Issue/Rev.	Date	SCCG Chairman	ESA Director General or his Deputy		
Issue 2	February 1992	Ponomical	1. tab		

PAGÊ 2

ISSUE 2

DOCUMENTATION CHANGE NOTICE

Rev. Letter	Rev. Date	Reference	CHANGE Item	Approved DCR No.
		following DCR's:- Cover Page DCN Table 1(a) : Figure 2 : Para. 2 : Para. 4.2.1 : Para. 4.2.2 : Para. 4.2.3 : Para. 4.2.4 : Table 2 :	Values amended Values in Table aligned to those of Table 2 in ESA/SCC Detail Specification No. 5206/004 Reference to ESA/SCC Basic Specification No. 21400 added Para. rewritten Reference to Bond Strength and Die-Shear Tests deleted Reference to PIND Test deleted Reference to radiographic Inspection deleted Reference to Bond Strength and Die-Shear Tests deleted Limits of items Nos. 9, 14 and 16 amended Notes from Tables 2 brought at the bottom of Table 3 except sampling Note	None None 22939 22939 22939 23499 21043 21049 23499 22939 21047

PAGË 3

ISSUE 2

TABLE OF CONTENTS

		Page
1.	GENERAL	5
1.1	Scope	5
1.2	Component Type Variants	5
1.3	Maximum Ratings	5
1.4	Parameter Derating Information	5
1.5	Safe Operating Area	5
1.6	Physical Dimensions	5
1.7	Functional Diagram	5
1.8	Handling Precautions	5
2.	APPLICABLE DOCUMENTS	10
3.	TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS	10
4.	REQUIREMENTS	10
4.1	General	10
4.2	Deviations from Generic Specification	10
4.2.1	Deviations from Special In-Process Controls	10
4.2.2	Deviations from Final Production Tests	10
4.2.3	Deviations from Burn-in and Electrical Measurements	11
4.2.4	Deviations from Qualification Tests	11
4.2.5	Deviations from Lot Acceptance Tests	11
4.3	Mechanical Requirements	11
4.3.1	Dimension Check	11
4.3.2	Weight	11
4.3.3	Terminal Strength	11
4.4	Materials and Finishes	12
4.4.1	Case	12
4.4.2	Lead Material and Finish	12
4.5	Marking	12
4.5.1	General	12
4.5.2	Lead Identification	12
4.5.3	The SCC Component Number	12
4.5.4	Traceability Information	13
4.6	Electrical Measurements	13
4.6.1	Electrical Measurements at Room Temperature	13
4.6.2	Electrical Measurements at High and Low Temperatures	13
4.6.3	Circuits for Electrical Measurements	13
4.7	Burn-In Tests	13
4.7.1	Parameter Drift Values	13
4.7.2	Conditions for H.T.R.B. and Power Burn- in	13
4.7.3	Electrical Circuits for H.T.R.B. and Power Burn- in	13
4.8	Environmental and Endurance Tests	23
4.8.1	Electrical Measurements on Completion of Environmental Tests	23
4.8.2	Electrical Measurements at Intermediate Points and on Completion of Endurance Tests.	23
4.8.3	Conditions for Operating Life Tests	23
4.8.4	Electrical Circuits for Operating Life Tests	23
4.8.5	Conditions for High Temperature Storage Test	23

PAGE 4 ISSUE 2

		<u>Page</u>
TABLE	<u>:S</u>	
1(a)	Type Variants	6
1(b)	Maximum Ratings	6
2	Electrical Measurements at Room Temperature, d.c. Parameters	14
	Electrical Measurements at Room Temperature, a.c. Parameters	15
3(a)	Electrical Measurements at High Temperature	16
3(b)	Electrical Measurements at Low Temperature	16
4	Parameter Drift Values	20
5(a)	Conditions for High Temperature Reverse Bias Burn-in	21
5(b)	Conditions for Power Burn-in and Operating Life Tests	21
6	Electrical Measurements at Intermediate Points and on Completion of Endurance	23
	Testing	
FIGUR	<u>ES</u>	
1(a)	Parameter Derating Information	7
1(b)	Maximum Safe Operating Area	7
2 ′	Physical Dimensions	8
3	Functional Diagram	9
4	Circuits for Electrical Measurement	17
5(a)	Electrical Circuit for High Temperature Reverse Bias Burn-in	22
5(b)	Electrical Circuit for Power Burn-in and Operating Life Tests	22

PAGE

ISSUE 2

5

1. **GENERAL**

1.1 SCOPE

This specification details the ratings, physical and electrical characteristics, test and inspection data for Transistors, MOSFET, P-Channel, Power, based on Type IRF9140. It shall be read in conjunction with ESA/SCC Generic Specification No. 5000, the requirements of which are supplemented herein.

1.2 COMPONENT TYPE VARIANTS

Variants of the basic type transistors specified herein, which are also covered by this specification, are listed in Table 1(a).

1.3 MAXIMUM RATINGS

The maximum ratings, which shall not be exceeded at any time during use or storage, applicable to the transistors specified herein, are as scheduled in Table 1(b).

1.4 PARAMETER DERATING INFORMATION

The parameter derating information applicable to the transistors specified herein is shown in Figure 1(a).

1.5 SAFE OPERATING AREA

The safe operating area information applicable to the transistors specified herein is shown in Figure 1(b).

1.6 PHYSICAL DIMENSIONS

The physical dimensions of the transistors specified herein are shown in Figure 2.

1.7 FUNCTIONAL DIAGRAM

The functional diagram, showing lead identification, of the transistors specified herein, is shown in Figure 3.

1.8 HANDLING PRECAUTIONS

These devices are susceptible to damage by electrostatic discharge. Therefore, suitable precautions shall be taken for protection during all phases of manufacture, testing, packaging, shipment and any handling. These components are categorised as Class 1, with a Minimum Critical Path Failure Voltage of 30Volts.

PAGE

ISSUE 2

6

TABLE 1(a) - TYPE VARIANTS

Variant	(1) Lead Material and Finish	(2) Based on Type	(3) V _{DS} Max (V)	(4) I _D Max (A) (Note 1)	(5) I _D Max (A) (Note 2)	(6) I _s (A) (Note 1)	(7) V _{DS} (80%) (V)	(8) I _{DM} Max (Apk)	(9) V _{DG} (V)
01	D3 or D4	IRF9140	-100	-19	-12	-19	-80	-76	-100

NOTES

1. At $T_C = +25^{\circ}C$

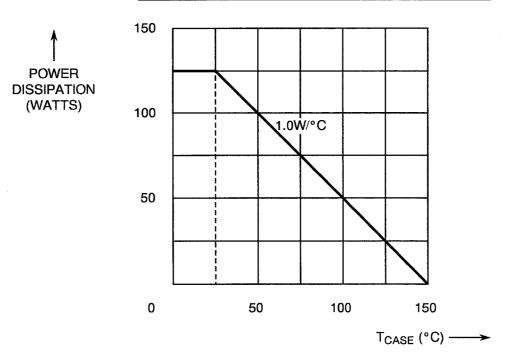
2. At $T_C = +100$ °C

TABLE 1(b) - MAXIMUM RATINGS

NO	CHARACTERISTICS	SYMBOL	MAXIMUM RATINGS	UNIT	REMARKS
1	Drain Source Voltage	V _{DS}	Table 1(a) Column 3	V	
2	Gate Source Voltage	V _{GS}	±20	٧	
3	Drain Gate Voltage	V _{DG}	Table 1(a) Column 9	V	
4	Drain Current, (Continuous)	lD	Table 1(a) Column 4	Α	At T _C = +25°C Note 1
5	Drain Current, (Continuous)	l _D	Table 1(a) Column 5	Α	At T _C = +100°C Note 1
6	Source Current, (Continuous)	ls	Table 1(a) Column 6	А	At T _C = +25°C Note 1
7	Drain Current Pulsed (Peak)	I _{DM}	Table1(a) Column 8	Apk	
8	Total Power Dissipation	P _{tot}	125	W	Note 2
9	Operating Temperature Range	T _{op}	-55 to +150	°C	T _{amb}
10	Storage Temperature Range	T _{stg}	-55 to +150	°C	
11	Soldering Temperature	T _{sol}	+ 300	°C	Time: ≤10 Sec. Distance to Case: ≥1.5mm
12	Thermal Resistance Junction to Case	R _{0JC}	1.0	°C/W	

 $\frac{\text{NOTES}}{\text{1. For T}_{\text{C}}} > + 25^{\circ}\text{C} \text{ derated as follows:-}$

$$I_D = \sqrt{\frac{P(\text{rated})}{K}}$$
 where : P(rated) = 125 - (T_C-25)(1.0) Watts.


: K = rated $r_{DS(ON)}$ at T_j = +150°C.

At T_C < +25°C. For derating at T_C > +25°C, see Figure 1(a). 2.

PAGÉ

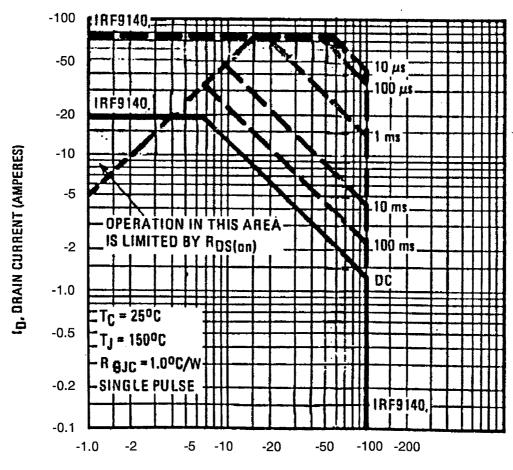
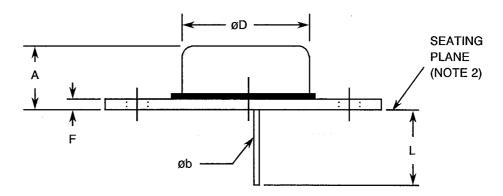

ISSUE 2

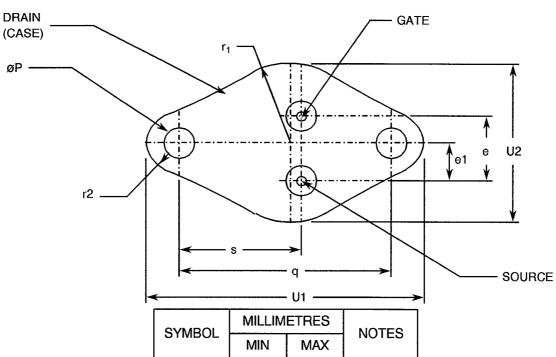
FIGURE 1(a) - PARAMETER DERATING INFORMATION

Power Dissipation Versus Temperature

FIGURE 1(b) - MAXIMUM SAFE OPERATING AREA

V_{DS}, DRAIN-TO-SOURCE VOLTAGE (VOLTS)



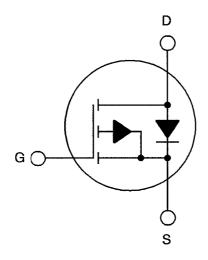

PAGE

ISSUE 2

8

FIGURE 2 - PHYSICAL DIMENSIONS

SYMBOL	MILLIM	ETRES	NOTES
STIVIBOL	MIN	MAX	NOTES
Α	6.86	9.15	
øb	0.97	1.10	
øD	-	22.23	
е	10.67	11.18	1
e1	5.21	5.72	1
F	1.52	3.43	
L	7.92	12.7	
øΡ	3.84	4.09	
q	29.9	30.4	
r1	12.57	13.34	
r2	3.33	4.78	
s	16.64	17.15	
U1	-	40.13	
U2	-	27.17	


- 1. These dimensions should be measured at points 1.27mm, 1.40mm below the seating plane. When a gauge is not used, the measurements will be made at the seating plane.
- 2. The seating plane of the header shall be flat within 0.03mm concave to 0.10mm convex inside a 23.62mm diameter circle on the centre of the header and flat within 0.03mm concave to 0.15mm convex overall.

PAGE

ISSUE 2

FIGURE 3 - FUNCTIONAL DIAGRAM

NOTES

1. The drain is electrically connected to the case.

PAGE 10

ISSUE 2

2. APPLICABLE DOCUMENTS

The following documents form part of this specification and shall be read in conjunction with it:-

- (a) ESA/SCC Generic Specification No. 5000 for Discrete Semiconductors.
- (c) ESA/SCC Basic Specification No. 21400, Scanning Electron Microscope (SEM) Inspection of Semiconductor Dice.
- (c) MIL-STD-750, Test Methods and Procedures for Semiconductor Devices.

3. TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS

For the purpose of this specification, the terms, definitions, abbreviations, symbols and units specified in ESA/SCC Basic Specification No. 21300 shall apply. In addition the following abbreviations are used:-

I_{GSS} = Gate to Source Leakage Current

B_{VGSS} = Gate to Source Breakdown Voltage

V_{GS(th)} = Gate Threshold Voltage

V_{GS} = Gate to Source Voltage

V_{DG} = Drain to Gate Voltage

V_{DS} = Drain to Source Voltage

V_{SD} = Source to Drain Diode Forward Voltage

gfs = Forward Transfer Conductance

C_{iss} = Common Source Input Capacitance

Coss = Common Source Output Capacitance

C_{rss} = Common Source Reverse Transfer Capacitance

I_s = Source CurrentI_D = Drain Current

4. **REQUIREMENTS**

4.1 GENERAL

The complete requirements for procurement of the transistors specified herein shall be as stated in this specification and ESA/SCC Generic Specification No. 5000 for Discrete Semiconductors. Deviations from the Generic Specification, applicable to this Detail Specification only, are listed in Para 4.2.

Deviations from the applicable Generic Specification and this Detail Specification, formally agreed with specific Manufacturers on the basis that the alternative requirements are equivalent to the ESA/SCC requirements and do not affect the components' reliability, are listed in the appendices attached to this specification.

4.2 <u>DEVIATIONS FROM GENERIC SPECIFICATION</u>

4.2.1 Deviations from Special In-process Controls

(a) For testing levels 'B' and 'C', a Scanning Electron Microscope (SEM) inspection shall be performed on samples from each metallisation lot in accordance with ESA/SCC Basic Specification No. 21400. The SEM inspection shall include the gate finger area plus 3 randomly selected transistor cells, magnification X2000 viewed from above and with the die tilted about 60°.

4.2.2 Deviations from Final Production Tests (Chart II)

None.

PAGE 11

ISSUE 2

4.2.3 Deviations from Burn-in and Electrical Measurements (Chart III)

- (a) Para. 7.1.1(a), High Temperature Reverse Bias (H.T.R.B.) Burn-in: Prior to operating power burn-in, a high temperature reverse bias screen at +150°C shall be performed in accordance with Table 5(a) of this specification. The exposure to H.T.R.B. shall be 72 hours and Table 4 Parameter Drift Values shall be applied at 0 and 72 hours.
- (b) Para. 7.1.1(b), Power Burn-in: The duration shall be 240 hours.
- (c) The following test shall be added to the Electrical Measurements at Room Temperature; to be performed after the power burn-in only:-

Verification of Safe Operating Area (See Figure 4(a))

Test 'A' Condition

 $T_{case} = +25 \pm 10$ °C. Duration = 1.0s.

 $V_{DS} = -80V. I_{D} = -1.5A.$

Test 'B' Condition

 T_{case} = +25 ±10 °C. Duration = 1.0s.

 $V_{DS} = -7.0V. I_{D} = -17.8A.$

Test Method for Both Tests

Using a 1.0 second pulse width with a minimum of 1 minute between pulses, increase V_{GS} and the Drain Supply Voltage until the specified value of I_D and V_{DS} are obtained. A load resistor, R_L , shall be used and shall be selected such the $I_D \times R_L = 2.5 \pm 1.0V$.

Electrical Measurements

After performing both tests, the electrical measurements Nos. 1 to 8 inclusive of Table 2 shall be repeated.

4.2.4 Deviations from Qualification Tests (Chart IV)

None.

4.2.5 <u>Deviations from Lot Acceptance Tests (Chart V)</u>

None.

4.3 MECHANICAL REQUIREMENTS

4.3.1 Dimension Check

The dimensions of the transistors specified herein shall be checked; they shall conform to those shown in Figure 2.

4.3.2 Weight

The maximum weight of the transistors specified herein shall be 20 grammes.

PAGE 12

ISSUE 2

4.3.3 Terminal Strength

The requirements for terminal strength testing are specified in Section 9 of ESA/SCC Generic Specification No. 5000. The test conditions shall be as follows:-

Test Condition:

'A', Tension

Applied Force:

10 Newtons

Duration

10 Seconds

4.4 MATERIALS AND FINISHES

The materials and finishes shall be as specified herein. Where a definite material is not specified, a material which will enable the transistors specified herein to meet the performance requirements of this specification shall be used. Acceptance or approval of any constituent material does not guarantee acceptance of the finished product.

4.4.1 <u>Case</u>

The case shall be hermetically sealed and have a metal body with hard glass seals and the lids shall be welded, brazed or pre-form soldered.

4.4.2 <u>Lead Material and Finish</u>

The lead material shall be Type 'D' with Type '3 or 4' finish in accordance with the requirements of ESA/SCC Basic Specification No. 23500.

4.5 MARKING

4.5.1 General

The marking of all components delivered to this specification shall be in accordance with the requirements of ESA/SCC Basic Specification No. 21700. Each component shall be marked in respect of:-

- (a) Terminal Identification.
- (b) The SCC Component Number.
- (c) Traceability information.

4.5.2 <u>Lead Identification</u>

Lead identification shall be as shown in Figures 2 and 3.

4.5.3 The SCC Component Number

Each component shall bear the SCC Component Number which shall be constituted and marked as follows:-

	<u>520600601</u> <u></u>
Detail Specification Number	
Type Variant, (see Table 1(a))	
Testing Level (B or C, as applicable)	

PAGE 13

ISSUE 2

4.5.4 <u>Traceability Information</u>

Each component shall be marked in respect of traceability information in accordance with the requirements of ESA/SCC Basic Specification No. 21700.

4.6 ELECTRICAL MEASUREMENTS

4.6.1 Electrical Measurements at Room Temperature

The parameters to be measured in respect of electrical characteristics are scheduled in Table 2. The measurements shall be performed at $T_{amb} = +22 \pm 3$ °C.

4.6.2 Electrical Measurements at High and Low Temperatures

The parameters to be measured at high and low temperatures are scheduled in Table 3. The measurements shall be performed at $T_{amb} = +125 (+0.5)$ and -55 (+5.0) °C respectively.

4.6.3 Circuits for Electrical Measurements

Circuits for use in performing electrical measurements listed in Tables 2 and 3 are shown in Figure 4.

4.7 BURN-IN TESTS

4.7.1 Parameter Drift Values

The parameter drift values applicable to burn-in are specified in Table 4 of this specification. Unless otherwise stated, measurements shall be performed at T_{amb} = +22 ± 3°C. The parameter drift values (Δ) applicable to the parameters scheduled shall not be exceeded. In addition to these drift value requirements, the appropriate limit value specified in Table 2 shall not be exceeded.

4.7.2 Conditions for H.T.R.B. and Power Burn-in

The requirements for H.T.R.B. and Power Burn-in are specified in Section 7 of ESA/SCC Generic Specification No. 5000. The conditions for H.T.R.B. and Power Burn-in shall be as specified in Tables 5(a) and 5(b) of this specification.

4.7.3 Electrical Circuits for H.T.R.B. and Power Burn-in

Circuits for use in performing the H.T.R.B. and Power Burn-in tests are shown in Figures 5(a) and 5(b) of this specification .

PAGE 14

ISSUE 2

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE, d.c. PARAMETERS

NO	CHARACTERISTICS	SYMBOL	MIL-STD-750	TEST CONDITION	LIM	UNIT	
NO	CHARACTERISTICS	STIVIBOL	TEST METHOD	TEST CONDITION	MIN	MAX	UNIT
1	Breakdown Voltage Drain to Source	BV _{DSS}	3407 Bias Cond. C	V _{GS} = 0 I _D = -0.25mA	-100	-	٧
2	Gate Threshold Voltage	V _{GS(th)}	3403	V _{DS} ≥V _{GS} I _D =-0.25mA	-2.0	-4.0	٧
3 to 4	Gate to Source Leakage Current	I _{GSS}	3411 Bias Cond. C	V _{GS} = -20V V _{GS} = +20V V _{DS} = 0		-100 -100	nA
5	Drain Current	I _{DSS}	3413 Bias Cond C	V _{DS} = -100V V _{GS} = 0	-	-0.25	mA
6	Drain to Source ON Resistance	r _{DS(ON)}	3421	V _{GS} = -10V I _D = -10A Notes 1 and 2	-	0.20	Ω
7	Drain to Source ON Voltage	V _{DS(ON)}	3405	V _{GS} =-10V I _D =-10A Notes 1 and 2	-	-2.0	V
8	Source to Drain Diode Forward Voltage	V_{SD}	4011	I _S = -19A Note 1	-2.4	-4.2	V

- 1. Pulsed Measurement: Pulse Width ≤ 300ns, Duty Cycle ≤ 2%.
- 2. Measured within 2mm of case.
- 3 Measurement to be performed on a sample basis, LTPD 7 or less.

PAGË 15 ISSUE 2

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE, a.c. PARAMETERS

NO	CHARACTERISTICS	SYMBOL	MIL-STD-750	TEST IEST		LIM	UNIT		
NO	CHARACTERISTICS	STWIDOL	METHOD	FIG.	TEST CONDITIONS	MIN	MAX	OIVII	
9	Foward Trans- conductance	gfs	3455	ı	$V_{DS} = -5V$ $I_D = -10A$ Note 1	5.0	11	S	
10	Turn-on Delay Time	t _{D(ON)}	3459	4(b)	$V_{DD} = -50V$ $I_D = -10A$	-	30	ns	
11	Rise Time	t _r	3251	4(b)	V _{DD} = -50V I _D = -10A	-	100	ns	
12	Turn-off Delay Time	t _{D(OFF)}	3251	4(b)	$V_{DD} = -50V$ $I_D = -10A$	-	100	ns	
13	Fall Time	t _f	3251	4(b)	V _{DD} = -50V I _D = -10A	-	50	ns	
14	Common Source Input Capacitance	C _{iss}	3431	-	V _{DS} = -25V V _{GS} = 0A f = 1MHz	900	1600	pF	
15	Common Source Output Capacitance	C _{oss}	3453	4(c)	V _{DS} = - 25V f = 1MHz	400	700	pF	
16	Common Source Reverse Transfer Capacitance	C _{rss}	3433	-	V _{DS} = -25V V _{GS} = 0 f = 1MHz	60	400	pF	

NOTES: See Page 14.

PAGE 16 ISSUE 2

TABLE 3(a) - ELECTRICAL MEASUREMENTS AT HIGH TEMPERATURE, +125 (+0-5) °C

NO CHARACTERISTIC	CHARACTERISTICS	TICS SYMBOL MIL-STD-750 TEST TE		TEST CONDITIONS	LIM	LINIT	
140	OHANAO I ENISTIOS		TEST CONDITIONS	MIN	MAX	UNIT	
2	Gate Threshold Voltage	V _{GS(th)}	3403	$V_{DS} \ge V_{GS}$ $I_D = -0.25 \text{mA}$	-1.0	-	V
3 to 4	Gate to Source Leakage Current	I _{GSS}	3411 Bias Cond. C	V _{GS} = -20V V _{GS} = +20V V _{DS} = 0	1 1	-200 -200	nA
5	Drain Current	I _{DSS}	3413 Bias Cond. C	$V_{DS} = -80V$ $V_{GS} = 0$	•	-1.0	mA
6	Drain to Source ON Resistance	r _{DS(ON)}	3421	V _{GS} = -10V I _D = -10A Notes 1 and 2	-	0.55	Ω

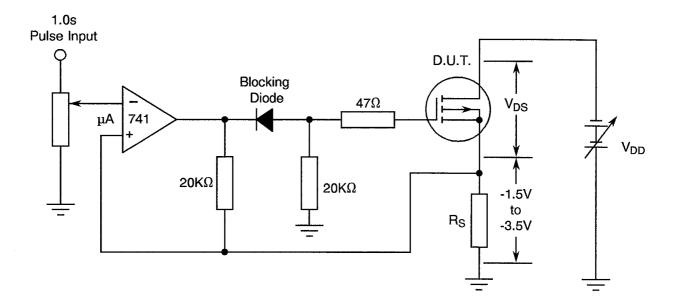
NOTES

- 1. Pulsed Measurement: Pulse Width ≤ 300ns, Duty Cycle ≤ 2%.
- 2. Measured within 2mm of case.

TABLE 3(b) - ELECTRICAL MEASUREMENTS AT LOW TEMPERATURE, -55 (+5-0) °C

NO	CHARACTERISTICS	SYMBOL	MIL-STD-750 TEST METHOD	TEST CONDITIONS	LIMITS		UNIT
					MIN	MAX	
2	Gate Threshold Voltage	V _{GS(th)}	3403	$V_{DS} \ge V_{GS}$ $I_D = -0.25 \text{mA}$	-	-5.0	V

- 1. Pulsed Measurement: Pulse Width ≤ 300ns, Duty Cycle ≤ 2%.
- 2. Measured within 2mm of case.

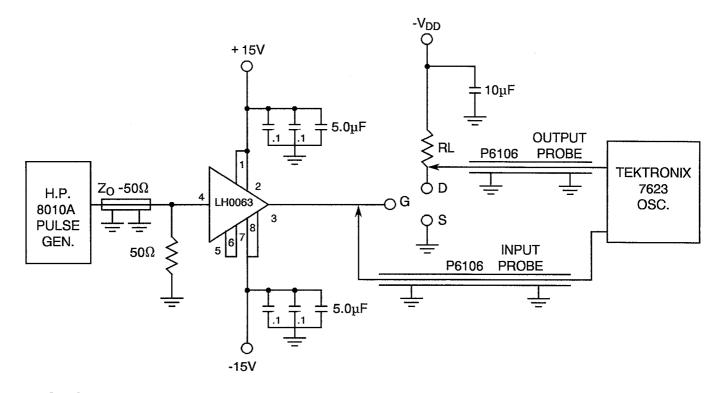


PAGE 17

ISSUE 2

FIGURE 4 - CIRCUITS FOR ELECTRICAL MEASUREMENTS

FIGURE 4(a) - SAFE OPERATING AREA TEST CIRCUIT



PAGE 18

ISSUE 2

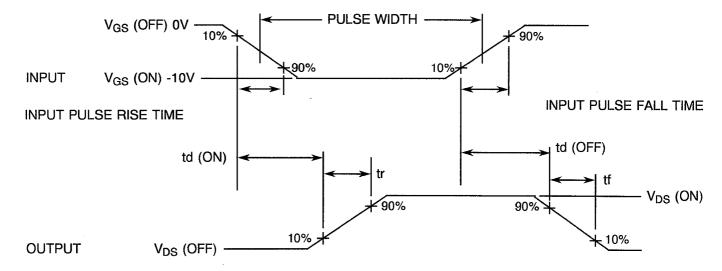
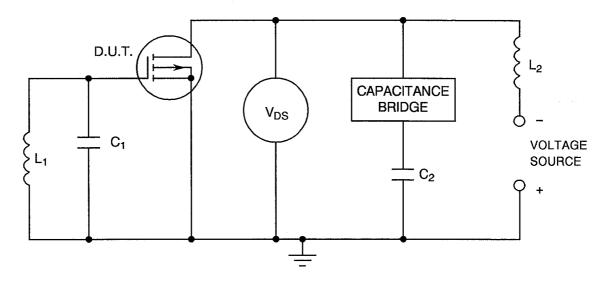

FIGURE 4 - CIRCUITS FOR ELECTRICAL MEASUREMENTS (CONT'D)

FIGURE 4(b) - SWITCHING TIME TESTS CIRCUIT

NOTES

- 1. LH0063 case grounded.
- 2. Grounded connections common to ground plane on board.
- 3. Pulse width ≤ 3.0s, Period ≤ 1.0ms, Amplitude = 0V to -10V.


- 1. When measuring rise time, VGS (on) shall be as specified on the input waveform.
- 2. When measuring fall time, V_{GS} (off) shall be as specified on the input waveform.
- 3. The input transition and drain voltage response detector shall have rise and fall response times such that doubling these responses will not affect the results greater than the precision of measurement.
- 4. The current shall be sufficiently small so that doubling it does not affect test results greater than the precision of measurement.

PAGE 19

ISSUE 2

FIGURE 4 - CIRCUITS FOR ELECTRICAL MEASUREMENTS (CONT'D)

FIGURE 4(c) - COMMON SOURCE OUTPUT CAPACITANCE

PROCEDURE

The capacitors C_1 and C_2 shall present short circuits at the test frequency. L_1 and L_2 shall present a high ac impedance at the test frequency for isolation. The bridge shall have low dc resistance between its output terminals and should be capable of carrying the test current without affecting the desired accuracy of measurement.

PAGÊ 20

ISSUE 2

TABLE 4 - PARAMETER DRIFT VALUES

NO	CHARACTERISTICS	SYMBOL	SPEC. AND/OR TEST METHOD	TEST CONDITIONS	CHANGE LIMITS (Δ)	UNIT
2	Gate Threshold Voltage	V _{GS(th)}	As per Table 2	As per Table 2	± 20	%
3 to 4	Gate to Source Leakage Current	I _{GSS}	As per Table 2	As per Table 2	±20 or (1) ±100	nA ·%
5	Drain Current	I _{DSS}	As per Table 2	As per Table 2	±25 or (1) ±100	μ A %
6	Drain to Source ON Resistance	r _{DS(ON)}	As per Table 2	As per Table 2	± 20	%

NOTES1. Whichever is greater referred to the initial value.

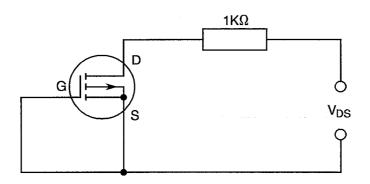
PAGÊ 21

ISSUE 2

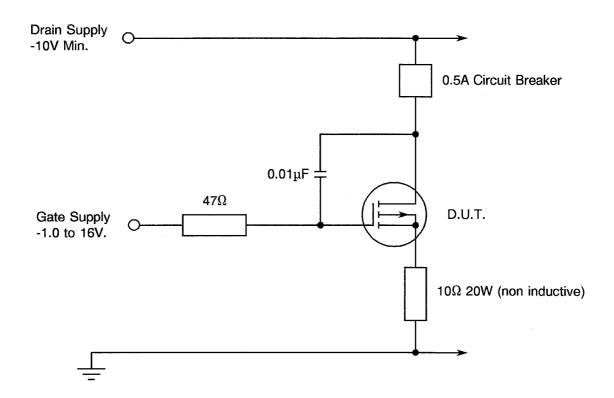
TABLE 5(a) - CONDITIONS FOR HIGH TEMPERATURE REVERSE BIAS BURN-IN

NO	CHARACTERISTIC	SYMBOL	CONDITION	UNIT
1	Ambient Temperature	T _{amb}	+ 150(+ 0-5)	°c
2	Drain-Source Voltage	V _{DS}	-80	V
3	Gate-Source Voltage	V _{GS}	0	V
4	Duration	t	72	h

TABLE 5(b) - CONDITIONS FOR POWER BURN-IN AND OPERATING LIFE TESTS


NO	CHARACTERISTIC	SYMBOL	CONDITION	UNIT
1	Junction Temperature	Тj	+140 ± 10 (1)	°c
2	Drain-Source Voltage	V _{DS}	-10	V
3	Gate-Source Voltage	V _{GS}	-1.0 to -16	V
4	Duration	t	240	h

- 1. Using the circuit shown in Figure 5(b), power shall be applied to the device to achieve the specified junction temperature. The junction temperature (T_i) should be determined as follows:
 - T_i = $(P_T) (R_{\theta JC}) + T_C$
 - P_T = (V_{DS}) (I_D)
 - $R_{\theta JC}$ = 1.0°C/W
 - T_C = Measured value at the hottest point on case.


PAGE 22

ISSUE 2

FIGURE 5(a) - ELECTRICAL CIRCUIT FOR HIGH TEMPERATURE REVERSE BIAS BURN-IN

FIGURE 5(b) - ELECTRICAL CIRCUIT FOR POWER BURN-IN AND OPERATING LIFE TESTS

PAGÊ 23

ISSUE 2

4.8 ENVIRONMENTAL AND ENDURANCE TESTS (CHARTS IV AND V OF ESA/SCC GENERIC SPECIFICATION NO. 5000)

4.8.1 Electrical Measurements on Completion of Environmental Tests

The parameters to be measured on completion of environmental tests are scheduled in Table 2 of this specification. Unless otherwise stated, the measurements shall be performed at T_{amb} = +22 ±3 °C.

4.8.2 Electrical Measurements at Intermediate Points and on Completion of Endurance Tests

The parameters to be measured at intermediate points and on completion of endurance tests are scheduled in Table 6 of this specification. Unless otherwise stated, the measurements shall be performed at $T_{amb} = +22 \pm 3$ °C.

4.8.3 <u>Conditions for Operation Life Tests (Part of Endurance Testing)</u>

The requirements for operating life testing are specified in Section 9 of ESA/SCC Generic Specification No. 5000. The conditions for operating life testing shall be the same as specified in Table 5(b) for the burn-in test.

4.8.4 Electrical Circuits for Operating Life Tests

The circuit to be used for performance of the operating life tests shall be the same as shown in Figure 5(b) for burn-in.

4.8.5 Conditions for High Temperature Storage Test (Part of Endurance Testing)

The requirements for the high temperature storage test are specified in ESA/SCC Generic Specification No. 5000. The temperature to be applied shall be the maximum storage temperature specified in Table 1(b) of this specification.

TABLE 6 - ELECTRICAL MEASUREMENTS AT INTERMEDIATE POINTS AND ON COMPLETION OF ENDURANCE TESTING

NO	CHARACTERISTIC	SYMBOL	SPEC. AND/OR TEST METHOD	TEST CONDITIONS	LIMITS		LINUT
					MIN	MAX	UNIT
2	Gate Threshold Voltage	V _{GS(th)}	As per Table 2	As per Table 2	-2.0	-4.0	٧
3 to 4	Gate to Source Leakage Current	I _{GSS}	As per Table 2	As per Table 2	-	-100	nA
5	Drain Current	I _{DSS}	As per Table 2	As per Table 2	-	-0.25	mA