

Page i

INTEGRATED CIRCUITS, SILICON MONOLITHIC, QUAD EIA-422/423 LINE RECEIVER WITH 3-STATE OUTPUTS, BASED ON TYPE AM26LS32 ESCC Detail Specification No. 9403/003

ISSUE 1 October 2002

ESCC Detail Specification

PAGE	ii
ISSUE	1

LEGAL DISCLAIMER AND COPYRIGHT

European Space Agency, Copyright © 2002. All rights reserved.

The European Space Agency disclaims any liability or responsibility, to any person or entity, with respect to any loss or damage caused, or allleged to be caused, directly or indirectly by the use and application of this ESCC publication.

This publication, without the prior permission of the European Space Ageny and provided that it is not used for a commercial purpose, may be:

- copied in whole in any medium without alteration or modification.
- copied in part, in any medium, provided that the ESCC document identification, comprising the ESCC symbol, document number and document issue, is removed.

european space agency agence spatiale européenne

Pages 1 to 36

INTEGRATED CIRCUITS, SILICON MONOLITHIC, QUAD EIA-422/423 LINE RECEIVER WITH 3-STATE OUTPUTS,

BASED ON TYPE AM26LS32

ESA/SCC Detail Specification No. 9403/003

space components coordination group

		Approved by	
Issue/Rev.	Date	SCCG Chairman	ESA Director General or his Deputy
Issue 1	February 1993	Pomomies	J. Luk

PAGE 2

ISSUE 1

DOCUMENTATION CHANGE NOTICE

Rev. Letter	Rev. Date	Reference	CHANGE Item	Approved DCR No.
	:		·	
	:			
÷				

PAGE 3

ISSUE 1

TABLE OF CONTENTS

1.	GENERAL	<u>Page</u> 5
1.1	Scope	5
1.2	Component Type Variants	5
1.3	Maximum Ratings	5
1.4	Parameter Derating Information	5
1.5	Physical Dimensions	5
1.6	Pin Assignment	5
1.7	Truth Table	5
1.8	Circuit Schematic	5
1.9	Functional Diagram	5
2.	APPLICABLE DOCUMENTS	15
3.	TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS	15
4.	REQUIREMENTS	15
4.1	General	15
4.2	Deviations from Generic Specification	15
4.2.1	Deviations from Special In-process Controls	15
4.2.2	Deviations from Final Production Tests	15
4.2.3	Deviations from Burn-in Tests	15
4.2.4	Deviations from Qualification Tests	15
4.2.5	Deviations from Lot Acceptance Tests	15
4.3	Mechanical Requirements	16 16
4.3.1	Dimension Check	16
4.3.2	Weight	16
4.4 4.4.1	Materials and Finishes Case	16
4.4.1	Lead Material and Finish	16
4.4.2	Marking	16
4.5.1	General	16
4.5.2	Lead Identification	16
4.5.3	The SCC Component Number	17
4.5.4	Traceability Information	17
4.6	Electrical Measurements	17
4.6.1	Electrical Measurements at Room Temperature	17
4.6.2	Electrical Measurements at High and Low Temperatures	17
4.6.3	Circuits for Electrical Measurements	· 17
4.7	Burn-in Tests	17
4.7.1	Parameter Drift Values	17
4.7.2	Conditions for H.T.R.B. Burn-in	17
4.7.3	Conditions for Power Burn-in	17
4.7.4	Electrical Circuit for H.T.R.B. Burn-in	17
4.7.5	Electrical Circuit for Power Burn-in	17
4.8	Environmental and Endurance Tests	35
4.8.1	Electrical Measurements on Completion of Environmental Tests	35
4.8.2	Electrical Measurements at Intermediate Points during Endurance Tests	35
4.8.3	Electrical Measurements on Completion of Endurance Tests	35
4.8.4	Conditions for Operating Life Tests	35
4.8.5	Electrical Circuits for Operating Life Tests	35
4.8.6	Conditions for High Temperature Storage Test	35

PAGE 4

		<u>Page</u>
TABL	<u>ES</u>	
1(a)	Type Variants	6
1(b)	Maximum Ratings	6
2	Electrical Measurements at Room Temperature, d.c. Parameters	18
	Electrical Measurements at Room Temperature, a.c. Parameters	22
3	Electrical Measurements at High and Low Temperatures	24
4	Parameter Drift Values	32
5	Conditions for Power Burn-in and Operating Life Tests	33
6	Electrical Measurements on Completion of Environmental Tests and	36
	at Intermediate Points and on Completion of Endurance Testing	
FIGU	<u>RES</u>	
1	Parameter Derating Information	7
2	Physical Dimensions	8
3(a)	Pin Assignment	13
3(b)	Truth Table	13
3(c)	Circuit Schematic	14
3(d)	Functional Diagram	14
4	Circuits for Electrical Measurements	28
5	Electrical Circuit for Power Burn-in and Operating Life Tests	34

APPENDICES (Applicable to specific Manufacturers only)

None.

PAGE

5

ISSUE 1

1. GENERAL

1.1 <u>SCOPE</u>

This specification details the ratings, physical and electrical characteristics, test and inspection data for a silicon monolithic, low power, Quad ElA-422/423 Line Receiver with 3-State Outputs, based on Type AM26LS32. It shall be read in conjunction with ESA/SCC Generic Specification No. 9000, the requirements of which are supplemented herein.

1.2 COMPONENT TYPE VARIANTS

Variants of the basic type integrated circuits specified herein, which are also covered by this specification, are given in Table 1(a).

1.3 MAXIMUM RATINGS

The maximum ratings, which shall not be exceeded at any time during use or storage, applicable to the integrated circuits specified herein, are as scheduled in Table 1(b).

1.4 PARAMETER DERATING INFORMATION

As per Figure 1.

1.5 PHYSICAL DIMENSIONS

As per Figure 2.

1.6 PIN ASSIGNMENT

As per Figure 3(a).

1.7 TRUTH TABLE

As per Figure 3(b).

1.8 CIRCUIT SCHEMATIC

As per Figure 3(c).

1.9 FUNCTIONAL DIAGRAM

As per Figure 3(d).

PAGE 6

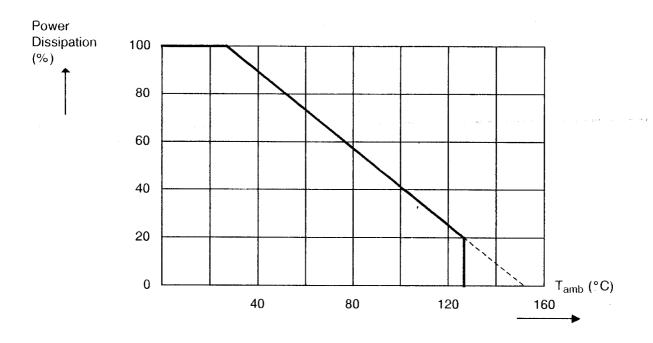
TABLE 1(a) - TYPE VARIANTS

VARIANT	BASED ON TYPE	CASE	FIGURE	LEAD MATERIAL AND/OR FINISH
01	AM26LS32	DIL	2(a)	G4
02	AM26LS32	FLAT	2(b)	G4
03	AM26LS32	DIL	2(c)	G4 1 1 1
04	AM26LS32	CHIP CARRIER	2(d)	7
05	AM26LS32	CHIP CARRIER	2(d)	4

TABLE 1(b) - MAXIMUM RATINGS

No.	CHARACTERISTICS	SYMBOL	MAXIMUM RATINGS	UNIT	REMARKS
1	Supply Voltage	V _{CC}	7.0	V	-
2	Control Input Voltage	VCTRL.	7.0	V	-
3	Input Common Mode Voltage	VICM	± 25	V	-
4	Input Differential Voltage	V _{ID}	± 25	V	-
5	Output Sink Current	lout	50	mA	-
6	Power Dissipation Variant 01 Variant 02 Variants 03 to 05	P _{tot}	1.2 1.0 1.4	W	Note 1
7	Operating Temperature Range	T _{op}	- 55 to + 125	°C	T _{amb}
8	Storage Temperature Range	T _{stg}	- 65 to + 150	°C	-
9	Soldering Temperature For DIL. For FP and CCP	T _{sol}	+ 300	°C	Note 2 Note 3
10	Junction Temperature	TJ	+ 150	°C	-
11	Thermal Resistance Variant 01 Variant 02 Variants 03 to 05	R _{TH (J-A)}	100 125 91	°C/W	

NOTES

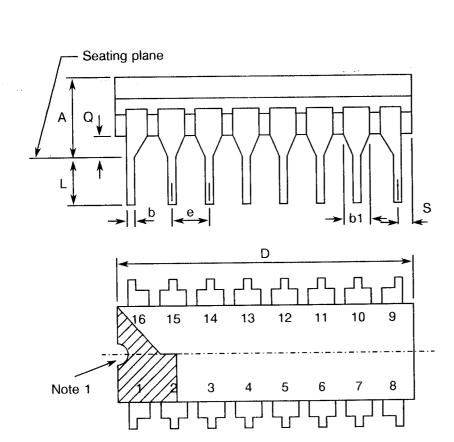

- 1. At T_{amb} = +25°C. For derating at T_{amb} > +25°C, see Figure 1.
- 2. Duration 10 seconds maximum at a distance of not less than 1.5mm from the package and the same lead shall not be resoldered until 3 minutes have elapsed.
- 3. Duration 5 seconds maximum at a distance of not less than 1.5mm from the package and the same lead shall not be resoldered until 3 minutes have elapsed.

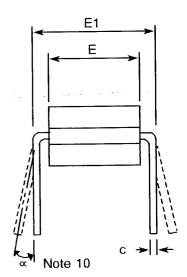
PAGE 7

ISSUE 1

FIGURE 1 - PARAMETER DERATING INFORMATION

Total Device Dissipation versus Temperature



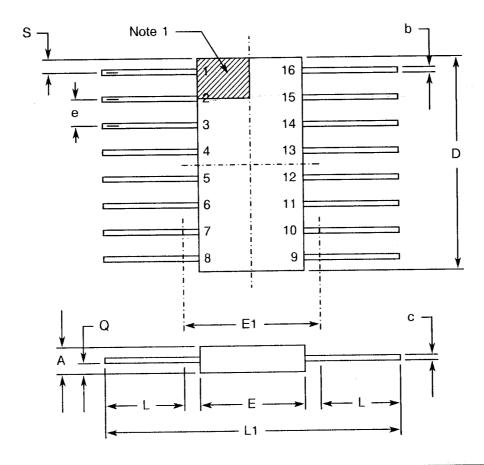

PAGE

ISSUE

FIGURE 2 - PHYSICAL DIMENSIONS

FIGURE 2(a) - DUAL-IN-LINE PACKAGE, 16-PIN

0)/4/50/	MILLIMETRES		NOTES
SYMBOL	MIN	MAX	NOTES
А	-	5.08	
ь	0.39	0.50	8
b1	1.40	1.65	8
С	0.21	0.38	8
D	19.05	19.95	4
E	6.10	7.49	4
E1	7.62 TYPICAL		
е	2.54 TY	PICAL	6, 9
L	3.18	4.31	8
Q	0.51	1.01	3
S	0.40	1.10	7
α	0°	15°	10



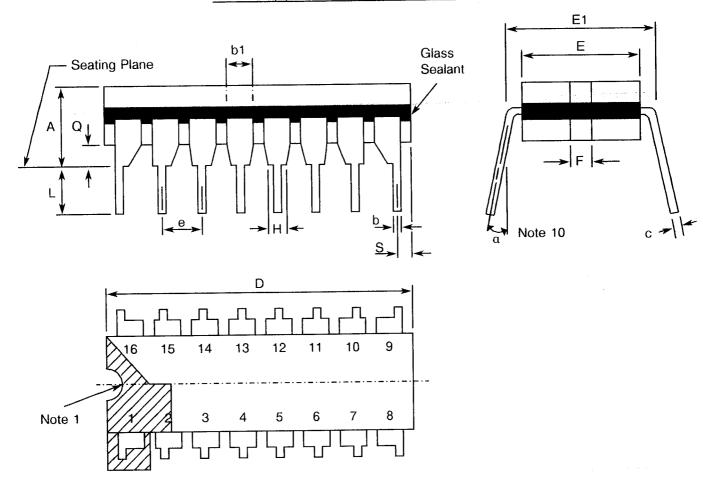
PAGE

ISSUE 1

FIGURE 2 - PHYSICAL DIMENSIONS (CONTINUED)

FIGURE 2(b) - FLAT PACKAGE, 16-PIN

OVALDOL	MILLIMETRES		NOTES
SYMBOL	MIN	MAX	140120
Α	1.27	2.03	
b	0.38	0.56	8
С	0.08	0.23	8
D	9.42	10.16	4
E	6.27	7.24	
E1	7.00 TYPICAL		4
e	1.27 T	YPICAL	5, 9
L	7.87	8.89	8
L1	23.88	24.38	<u></u>
Q	0.51	1.02	2
S.	0.25	0.64	7



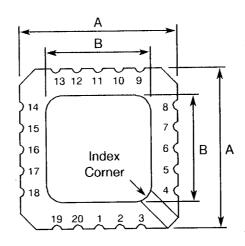
PAGE 10

ISSUE 1

FIGURE 2 - PHYSICAL DIMENSIONS (CONTINUED)

FIGURE 2(c) - DUAL-IN-LINE PACKAGE, 16-PIN

OVAADOL	MILLIMETRES		NOTES
SYMBOL.	MIN	MAX	NOTES
Α	-	5.08	
b	0.38	0.66	. 8
b1	-	1.78	8
С	0.20	0.44	8
D	19.18	19.94	4
E	6.22	7.62	4
E1	7.37	8.13	
е	2.54 TY	/PICAL	6, 9
F	1.27 T\	/PICAL	
ј н	0.76	-	
L	3.30	5.08	8
Q	0.51	-	3
S	0.38	1.27	7
α	0°	15°	10



PAGE 11

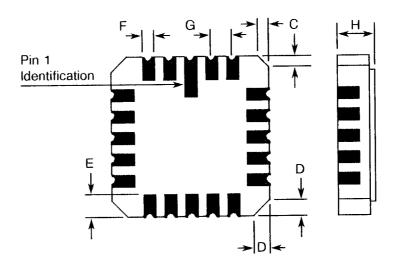

ISSUE 1

FIGURE 2 - PHYSICAL DIMENSIONS (CONTINUED)

FIGURE 2(d) - SQUARE CHIP CARRIER PACKAGE, 20-TERMINAL

20 TERMINAL

SYMBOL	MILLIMETRES		NOTES
STINIBUL	MIN	MAX	110120
Α	8.69	9.09	
В	7.80	9.09	
С	0.25	0.51	11
D	0.89	1.14	12
E	1.14	1.40	8
F.	0.56	0.71	8
G	1.27 TYPICAL		5, 9
н	1.63	2.54	

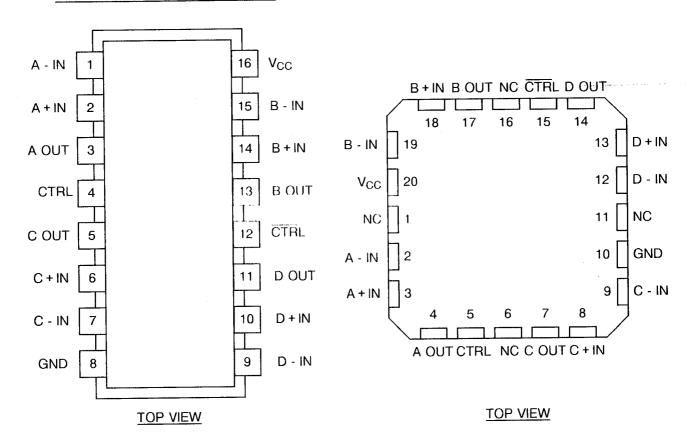
PAGE 12

ISSUE 1

FIGURE 2 - PHYSICAL DIMENSIONS (CONTINUED)

NOTES TO FIGURES 2(a) TO 2(d) INCLUSIVE

- 1. Index area; a notch or dot shall be located adjacent to Pin 1 and shall be within the shaded area shown. For chip carrier packages the index shall be as defined in Figure 2(d).
- 2. Dimension Q shall be measured at the point of exit of the lead from the body.
- 3. The dimension shall be measured from the seating plane to the base plane.
- 4. This dimension allows for off-centre lids, meniscus and glass overrun.
- 5. The true position pin or terminal spacing is 1.27mm between centrelines. Each pin or terminal centreline shall be located within ±0.13mm of its true longitudinal position relative to Pins 1 and the highest pin number.
- 6. The true position pin spacing is 2.54mm between centrelines. Each pin centreline shall be located within ±0.25mm of its true longitudinal position relative to Pins 1 and the highest pin number.
- 7. Applies to all 4 corners.
- 8. All leads or terminals.
- 9. 14 spaces for flat and dual-in-line packages.16 spaces for chip carrier packages.
- 10. Lead centre when α is 0°.
- 11. Index corner only 2 dimensions.
- 12. 3 non-index corners 6 dimensions.


PAGE 13

ISSUE

FIGURE 3(a) - PIN ASSIGNMENT

DUAL-IN-LINE AND FLAT PACKAGE

CHIP CARRIER PACKAGE

FLAT PACKAGE AND DUAL-IN-LINE TO CHIP CARRIER PIN ASSIGNMENT

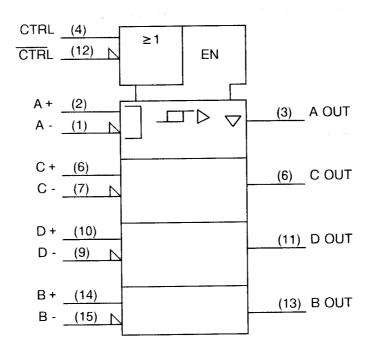
FLAT PACKAGE AND 16 10 13 **DUAL-IN-LINE PIN OUTS** 15 17 18 19 20 10 12 13 14 9 CHIP CARRIER PIN OUTS 7 8

FIGURE 3(b) - TRUTH TABLE (EACH RECEIVER)

DIFFERENTIAL	ENABLES		OUTPUT
INPUT	CTRL	CTRL	001101
V _{ID} ≥V _{TH}	H X	X L	H H
V _{TL} ≤V _{ID} ≤V _{TH}	H X	X L	? ?
V _{ID} ≤V _{TL}	H X	X L	L
X	L	Н	Z

NOTES

- 1. Logic Level Definitions: L = Low Level, H = High Level, X = Irrelevant, Z = High Impedance,
- 2. V_{ID} = Differential Input Voltage, V_{TH} = Input Threshold Voltage High, V_{TL} = Input Threshold Voltage


PAGE 14

ISSUE 1

FIGURE 3(c) - CIRCUIT SCHEMATIC

Not applicable.

FIGURE 3(d) - FUNCTIONAL DIAGRAM

PAGE 15

ISSUE 1

2. APPLICABLE DOCUMENTS

The following documents form part of this specification and shall be read in conjunction with it:-

- (a) ESA/SCC Generic Specification No. 9000 for Integrated Circuits.
- (b) MIL-STD-883, Test Methods and Procedures for Micro-electronics.

3. TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS

For the purpose of this specification, the terms, definitions, abbreviations, symbols and units specified in ESA/SCC Basic Specification No. 21300 shall apply. In addition, the following symbols are used:-

I_{CC} = Supply Current.

I_{OZH} = Off-State Output Current, High Level Applied.

I_{OZL} = Off-State Output Current, Low Level Applied.

I_{OS} = Output Short Circuit Current.V_{IC} = Enable Clamp Voltage.

V_{OLT} = Output Threshold Low Level Voltage.

V_{OHT} = Output Threshold High Level Voltage.

4. REQUIREMENTS

4.1 GENERAL

The complete requirements for procurement of the integrated circuits specified herein shall be as stated in this specification and ESA/SCC Generic Specification No. 9000 for Integrated Circuits. Deviations from the Generic Specification, applicable to this specification only, are listed in Para. 4.2.

Deviations from the applicable Generic Specification and this Detail Specification, formally agreed with specific Manufacturers on the basis that the alternative requirements are equivalent to the ESA/SCC requirements and do not affect the components' reliability, are listed in the appendices attached to this specification.

4.2 DEVIATIONS FROM GENERIC SPECIFICATION

4.2.1 Deviations from Special In-process Controls

None.

4.2.2 Deviations from Final Production Tests (Chart II)

None.

4.2.3 Deviations from Burn-in Tests (Chart III)

(a) Para. 7.1.1(a), High Temperature Reverse Bias test and subsequent electrical measurements related to this test shall be omitted.

4.2.4 Deviations from Qualification Tests (Chart IV)

None.

4.2.5 Deviations from Lot Acceptance Tests (Chart V)

None.

PAGE 16

ISSUE

4.3 <u>MECHANICAL REQUIREMENTS</u>

4.3.1 Dimension Check

The dimensions of the integrated circuits specified herein shall be checked. They shall conform to those shown in Figure 2.

4.3.2 Weight

The maximum weight of the integrated circuits specified herein shall be 2.2 grammes for the dual-in-line package, 0.7 grammes for the flat package and 0.6 grammes for the chip carrier package.

4.4 MATERIALS AND FINISHES

The materials and finishes shall be as specified herein. Where a definite material is not specified, a material which will enable the integrated circuits specified herein to meet the performance requirements of this specification shall be used. Acceptance or approval of any constituent material does not guarantee acceptance of the finished product.

4.4.1 Case

The case shall be hermetically sealed and have a metal body with hard glass seals or a ceramic body and the lids shall be welded, brazed, preform-soldered or glass frit-sealed.

4.4.2 Lead Material and Finish

For dual-in-line and flat packages, the material shall be Type 'G' with Type '4' finish in accordance with the requirements of ESA/SCC Basic Specification No. 23500. For chip carrier packages, the finish shall be Type '4' or Type '7' in accordance with the requirements of ESA/SCC Basic Specification No. 23500. (See Table 1(a) for Type Variants).

4.5 MARKING

4.5.1 General

The marking of all components delivered to this specification shall be in accordance with the requirements of ESA/SCC Basic Specification No. 21700. Each component shall be marked in respect of:-

- (a) Lead Identification.
- (b) The SCC Component Number.
- (c) Traceability Information.

4.5.2 Lead Identification

For dual-in-line and flat packages, an index shall be located at the top of the package in the position defined in Note 1 to Figure 2 or, alternatively, a tab may be used to identify Pin No. 1. The pin numbering must be read with the index or tab on the left-hand side. For chip carrier packages, the index shall be as defined by Figure 2(d).

PAGE 17

ISSUE

4.5.3 The SCC Component Number

Each component shall bear the SCC Component Number which shall be constituted and marked as follows:

Detail Specification Number

Type Variant (see Table 1(a))

Testing Level (B or C, as applicable)

4.5.4 <u>Traceability Information</u>

Each component shall be marked in respect of traceability information in accordance with the requirements of ESA/SCC Basic Specification No. 21700.

4.6 <u>ELECTRICAL MEASUREMENTS</u>

4.6.1 <u>Electrical Measurements at Room Temperature</u>

The parameters to be measured in respect of electrical characteristics are scheduled in Table 2. Unless otherwise specified, the measurements shall be performed at T_{amb} = +22 ± 3 °C.

4.6.2 Electrical Measurements at High and Low Temperatures

The parameters to be measured at high and low temperatures are scheduled in Table 3. The measurements shall be performed at T_{amb} = +125(+0-5) °C and -55(+5-0) °C respectively.

4.6.3 Circuits for Electrical Measurements

Circuits for use in performing electrical measurements listed in Tables 2 and 3 of this specification are shown in Figure 4.

4.7 BURN-IN TESTS

4.7.1 Parameter Drift Values

The parameter drift values applicable to burn-in are specified in Table 4 of this specification. Unless otherwise stated, measurements shall be performed at T_{amb} = +22±3 °C. The parameter drift values (Δ) applicable to the parameters scheduled, shall not be exceeded. In addition to these drift value requirements, the appropriate limit value specified for a given parameter in Table 2 shall not be exceeded.

4.7.2. Conditions for H.T.R.B. Burn-in

Not applicable.

4.7.3 Conditions for Power Burn-in

The requirements for power burn-in are specified in Section 7 of ESA/SCC Generic Specification No. 9000. The conditions for power burn-in shall be as specified in Table 5 of this specification.

4.7.4 Electrical Circuit for H.T.R.B. Burn-in

Not applicable.

4.7.5 Electrical Circuit for Power Burn-in

A circuit for use in performing the power burn-in tests is shown in Figure 5 of this specification.

PAGE 18

ISSUE 1

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - d.c. PARAMETERS

		0.4450)	TEST METHOD	TEST	TEST CONDITIONS (PINS UNDER TEST	LIM	IITS	UNIT
No.	CHARACTERISTICS	SYMBOL	MIL-STD 883	FIG.	D/F = DIP AND FP C = CCP)	MIN	MAX	ONT
1 to 16	Functional Test	-	<u>-</u>	4(a)	V _{CC} = 5.0V Verify Truth Table with Load. Note 1	-		-
17	Supply Current	lcc	3005	4(b)	$V_{CC} = 5.5V$ $V_{IN(+)} = 0V$, $V_{IN(-)} = 0V$ VCTRL = 0V, $VCTRL = 2.7V(Pin D/F 16)(Pin C 20)$	-	70	mA
18 to 19	Enable Current High Level 1	I _{ENH1}	3010	4(c)	$V_{CC} = 5.5V$ $VCTRL = \overline{VCTRL} = 2.7V$ (Pins D/F 4-12) (Pins C 5-15)	-	20	μА
20 to 21	Enable Current High Level 2	I _{ENH2}	3010	4(c)	V _{CC} = 5.5V VCTRL = VCTRL = 5.5V (Pins D/F 4-12) (Pins C 5-15)	•	100	μА
22 to 23	Enable Current Low Level	I _{ENL}	3009	4(c)	$V_{CC} = 5.5V$ $VCTRL = \overline{VCTRL} = 0.4V$ (Pins D/F 4-12) (Pins C 5-15)	-	-360	μА
24 to 27	Negative Input Current 1	- I _{IN1}	3010	4(d)	$V_{CC} = 5.5V$ $V_{IN(+)} = -10V$, $V_{IN(-)} = 15V$ (Pins D/F 1-7-9-15) (Pins C 2-9-12-19)	÷	2.3	mA
28 to 31	Negative Input Current 2	- I _{IN2}	3010	4(d)	$V_{CC} = 5.5V$ $V_{IN(+)} = 15V$, $V_{IN(-)} = 15V$ (Pins D/F 1-7-9-15) (Pins C 2-9-12-19)	-	2.3	mA
32 to 35	Positive Input Current 1	+ I _{IN1}	3010	4(d)	$V_{CC} = 5.5V$ $V_{IN(+)} = 15V$, $V_{IN(-)} = -10V$ (Pins D/F 2-6-10-14) (Pins C 3-8-13-18)	-	2.3	mA
36 to 39	Positive Input Current 2	+ I _{IN2}	3010	4(d)	$V_{CC} = 5.5V$ $V_{IN(+)} = 15V$, $V_{IN(-)} = 15V$ (Pins D/F 2-6-10-14) (Pins C 3-8-13-18)	-	2.3	mA
40 to 43	Input Current 1	I _{IN1}	3010	4(d)	$V_{CC} = 5.5V$ $V_{IN(+)} = 10V$, $V_{IN(-)} = -15V$ All other $V_{IN(-)}$ pins = 0V (Pins D/F 1-7-9-15) (Pins C 2-9-12-19)	-	-2.8	mA

PAGE 19

ISSUE 1

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - d.c. PARAMETERS (CONT'D)

			TEST METHOD	TEST	TEST CONDITIONS (PINS UNDER TEST	LIM	ITS	UNIT
No.	CHARACTERISTICS	SYMBOL	MIL-STD 883	FIG.	D/F = DIP AND FP C = CCP)	MIN	MAX	UNIT
44 to 47	Input Current 2	I _{IN2}	3010	4(e)	$V_{CC} = 5.5V$ $V_{IN(+)} = -15V$, $V_{IN(-)} = -15V$ All other $V_{IN(-)}$ pins = 0V (Pins D/F 1-7-9-15) (Pins C 2-9-12-19)	-	-2.8	mA
48 to 51	Input Current 3	I _{IN3}	3010	4(e)	$V_{CC} = 5.5V$ $V_{IN(+)} = -15V$, $V_{IN(-)} = 10V$ All other $V_{IN(+)}$ pins = 0V (Pins D/F 2-6-10-14) (Pins C 3-8-13-18)	-	- 2.8	mA
52 to 55	Input Current 4	l _{IN4}	3010	4(e)	V_{CC} = 5.5V $V_{IN(+)}$ = -15V, $V_{IN(-)}$ = -15V All other $V_{IN(+)}$ pins = 0V (Pins D/F 2-6-10-14) (Pins C 3-8-13-18)	-	-2.8	mA
56 to 59	Off-State Output Current (Low Level Applied)	l _{OZL}	3006	4(f)	V_{CC} = 5.5V, V_{OUT} = 0.4V $V_{IN(+)}$ = 1.0V, $V_{IN(-)}$ = 0V VCTRL = 0.8V, VCTRL = 2.0V (Pins D/F 3-5-11-13) (Pins C 4-7-14-17)	<u>-</u>	-20	μА
60 to 63	Off-State Output Current (High Level Applied)	I _{OZH}	3006	4(f)	V_{CC} = 5.5V, V_{OUT} = 2.4V $V_{IN(+)}$ = 0V, $V_{IN(-)}$ = 1.0V VCTRL = 0.8V, VCTRL = 2.0V (Pins D/F 3-5-11-13) (Pins C 4-7-14-17)		20	μΑ
64 to 67	Output Voltage Low Level 1	V _{OL1}	3007	4(g)	V_{CC} = 4.5V, I_{OUT} = 4.0mA $V_{IN(+)}$ = -8.0V, $V_{IN(-)}$ = -7.0V VCTRL = 2.0V, \overline{VCTRL} = 0.8V (Pins D/F 3-5-11-13) (Pins C 4-7-14-17)	-	0.4	V
68 to 71	Output Voltage Low Level 2	V _{OL2}	3007	4(g)	$V_{CC} = 4.5V$, $I_{OUT} = 4.0mA$ $V_{IN(+)} = 0V$, $V_{IN(-)} = 1.0V$ VCTRL = 2.0V, $VCTRL = 0.8V(Pins D/F 3-5-11-13)(Pins C 4-7-14-17)$	-	0.4	V
72 to 75	Output Voltage Low Level 3	V _{OL3}	3007	4(g)	V_{CC} = 4.5V, I_{OUT} = 4.0mA $V_{IN(+)}$ = 7.0V, $V_{IN(-)}$ = 8.0V VCTRL = 2.0V, VCTRL = 0.8V (Pins D/F 3-5-11-13) (Pins C 4-7-14-17)	-	0.4	V

PAGE 20

ISSUE 1

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - d.c. PARAMETERS (CONT'D)

			TEST METHOD	TEST	TEST CONDITIONS (PINS UNDER TEST	LIM	ITS	UNIT
No.	CHARACTERISTICS	SYMBOL	MIL-STD 883	FIG.	D/F = DIP AND FP C = CCP)	MIN	MAX	UNIT
76 to 79	Output Voltage Low Level 4	V _{OL4}	3007	4(g)	V_{CC} = 4.5V, I_{OUT} = 8.0mA $V_{IN(+)}$ = -8.0V, $V_{IN(-)}$ = -7.0V VCTRL = 2.0V, VCTRL = 0.8V (Pins D/F 3-5-11-13) (Pins C 4-7-14-17)	-	0.45	V
80 to 83	Output Voltage Low Level 5	V _{OL5}	3007	4(g)	V_{CC} = 4.5V, I_{OUT} = 8.0mA $V_{IN(+)}$ = 0V, $V_{IN(-)}$ = 1.0V VCTRL = 2.0V, VCTRL = 0.8V (Pins D/F 3-5-11-13) (Pins C 4-7-14-17)	-	0.45	V
84 to 87	Output Voltage Low Level 6	V _{OL6}	3007	4(g)	$V_{CC} = 4.5V$, $I_{OUT} = 8.0$ mA $V_{IN(+)} = 7.0V$, $V_{IN(-)} = 8.0V$ VCTRL = 2.0V, $VCTRL = 0.8V(Pins D/F 3-5-11-13)(Pins C 4-7-14-17)$	-	0.45	V
88 to 91	Output Voltage High Level 1	V _{OH1}	3006	4(g)	V_{CC} = 4.5V, I_{OUT} = -440 μ A $V_{IN(+)}$ = -7.0V, $V_{IN(-)}$ = -8.0V VCTRL = 2.0V, VCTRL = 0.8V (Pins D/F 3-5-11-13) (Pins C 4-7-14-17)	2.5	-	>
92 to 95	Output Voltage High Level 2	V _{OH2}	3006	4(g)	V_{CC} = 4.5V, I_{OUT} = -440 μ A $V_{IN(+)}$ = 1.0V, $V_{IN(-)}$ = 0V VCTRL = 2.0V, VCTRL = 0.8V (Pins D/F 3-5-11-13) (Pins C 4-7-14-17)	2.5	<u>-</u>	V
96 to 99	Output Voltage High Level 3	V _{ОНЗ}	3006	4(g)	V_{CC} = 4.5V, I_{OUT} = -440µA $V_{IN(+)}$ = 8.0V, $V_{IN(-)}$ = 7.0V VCTRL = 2.0V, VCTRL = 0.8V (Pins D/F 3-5-11-13) (Pins C 4-7-14-17)	2.5	-	V
100 to 103	Output Threshold Voltage Low Level 1	V _{OLT1}	-	4(g)	V_{CC} = 4.5V, I_{OUT} = 8.0mA $V_{IN(+)}$ = -6.9V, $V_{IN(-)}$ = -6.7V VCTRL = 2.0V, VCTRL = 0.8V (Pins D/F 3-5-11-13) (Pins C 4-7-14-17)	-	0.45	V
104 to 107	Output Threshold Voltage Low Level 2	V _{OLT2}	-	4(g)	V_{CC} = 4.5V, I_{OUT} = 8.0mA $V_{IN(+)}$ = 6.7V, $V_{IN(-)}$ = 6.9V VCTRL = 2.0V, VCTRL = 0.8V (Pins D/F 3-5-11-13) (Pins C 4-7-14-17)	-	0.45	V

PAGE 21

ISSUE 1

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - d.c. PARAMETERS (CONT'D)

			TEST METHOD	TEST	TEST CONDITIONS (PINS UNDER TEST	LIM	ITS	UNIT
No.	CHARACTERISTICS	SYMBOL.	MIL-STD 883	FIG.	D/F = DIP AND FP C = CCP)	MIN	MAX	UNIT
108 to 111	Output Threshold Voltage High Level 1	V _{OHT1}		4(g)	$\begin{split} &V_{CC} = 4.5 \text{V, } I_{OUT} = -440 \mu \text{A} \\ &V_{IN(+)} = -6.7 \text{V, } V_{IN(-)} = -6.9 \text{V} \\ &VCTRL = 2.0 \text{V, } VCTRL = 0.8 \text{V} \\ &(\text{Pins D/F 3-5-11-13}) \\ &(\text{Pins C 4-7-14-17}) \end{split}$	2.5	<u></u>	V
112 to 115	Output Threshold Voltage High Level 2	V _{ОНТ2}	-	4(g)	V_{CC} = 4.5V, I_{OUT} = -440 μ A $V_{IN(+)}$ = 6.9V, $V_{IN(-)}$ = 6.7V VCTRL = 2.0V, VCTRL = 0.8V (Pins D/F 3-5-11-13) (Pins C 4-7-14-17)	2.5	-	V
116 to 119	Output Short Circuit Current 1	l _{OS1}	3011	4(h)	V_{CC} = 5.5V, V_{OUT} = 0V $V_{IN(+)}$ = 1.0V, $V_{IN(-)}$ = 0V Note 2 VCTRL = VCTRL = 2.0V (Pins D/F 3-5-11-13) (Pins C 4-7-14-17)	- 15	- 85	mA
120 to 123	Output Short Circuit Current 2	I _{OS2}	3011	4(h)	V_{CC} = 5.5V, V_{OUT} = 0V $V_{IN(+)}$ = 1.0V, $V_{IN(-)}$ = 0V VCTRL = 2.0V, VCTRL = 0.8V Note 2 (Pins D/F 3-5-11-13) (Pins C 4-7-14-17)	– 15	- 85	mA
124	Enable Clamp Voltage 1	V _{IC1}	-	4(i)	ICTRL = - 18mA, V _{CC} = 4.5V (Pin D/F 4) (Pin C 5)	- 1.5	-	٧
125	Enable Clamp Voltage 2	V _{IC2}	-	4(i)	ICTRL = - 18mA, V _{CC} = 4.5V (Pin D/F 12) (Pin C 15)	- 1.5	-	٧

PAGE 22

ISSUE 1

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - a.c. PARAMETERS

			TEST METHOD	TEST	TEST CONDITIONS (PINS UNDER TEST	LIM	ITS	UNIT
No.	CHARACTERISTICS	SYMBOL	MIL-STD 883	FIG.	D/F = DIP AND FP C = CCP) (NOTE 3)	MIN	MAX	OINI I
126 to 129	Propagation Delay Low to High 1	t _{PLH1}	3004	4(j)	$V_{IN(+)} = 1.5V$ VCTRL = VCTRL = 2.0V Switches = 00 (Note 4). $V_{IN(-)} = PI2$, $V_{OUT} = PO2$ (Pins D/F 3-5-11-13) (Pins C 4-7-14-17)	-	30	ns
130 to 133	Propagation Delay Low to High 2	tp _{LH2}	3004	4(j)	$V_{IN(-)}$ = 1.5V VCTRL = VCTRL = 2.0V Switches = 00 (Note 4) $V_{IN(+)}$ = PI1, V_{OUT} = PO1 (Pins D/F 3-5-11-13) (Pins C 4-7-14-17)	-	30	ns
134 to 137	Propagation Delay High to Low 1	[†] PHL1	3004	4(j)	$V_{IN(-)} = 1.5V$ VCTRL = VCTRL = 2.0V Switches = 00 (Note 4) $V_{IN(+)} = PI1$, $V_{OUT} = PO1$ (Pins D/F 3-5-11-13) (Pins C 4-7-14-17)	-	30	ns
138 to 141	Propagation Delay High to Low 2	tPHL2	3004	4(j)	$V_{IN(+)} = 1.5V$ VCTRL = VCTRL = 2.0V Switches = 00 (Note 4) $V_{IN(-)} = PI2, V_{OUT} = PO2$ (Pins D/F 3-5-11-13) (Pins C 4-7-14-17)	-	30	ns
142 to 145	Output Disable Time from Low Level 1	t _{PLZ1}	3003	4(j)	$V_{IN(+)} = -1.5 V$, $V_{IN(-)} = 0 V$ VCTRL = PI4, $VCTRL = 2.0 VSwitches = 11$ (Note 4) $V_{OUT} = PO3$ (Pins D/F 3-5-11-13) (Pins C 4-7-14-17)	-	35	ns
146 to 149	Output Enable Time to Low Level 1	t _{PZL1}	3003	4(j)	$V_{IN(+)} = -1.5 V, V_{IN(-)} = 0 V$ VCTRL = PI4, VCTRL = 2.0 V Switches = 10 (Note 4) $V_{OUT} = PO6$ (Pins D/F 3-5-11-13) (Pins C 4-7-14-17)	-	22	ns
150 to 153	from High Level 1	^t PHZ1	3003	4(j)	$V_{IN(+)}$ = 1.5V, $V_{IN(-)}$ = 0V VCTRL = PI4, VCTRL = 2.0V Switches = 11 (Note 4) V_{OUT} = PO4 (Pins D/F 3-5-11-13) (Pins C 4-7-14-17)	-	30	ns

PAGE 23

ISSUE 1

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - a.c. PARAMETERS (CONT'D)

		0.44501	TEST METHOD	TEST	TEST CONDITIONS (PINS UNDER TEST	LIM	ITS	UNIT
No.	CHARACTERISTICS	SYMBOL	MIL-STD 883	FIG.	D/F = DIP AND FP C = CCP) (NOTE 3)	MIN	MAX	UNIT
154 to 157	Output Enable Time to High Level 1	[™] tPZH1	3003	4(j)	$V_{IN(+)} = 1.5V$, $V_{IN(-)} = 0V$ VCTRL = PI4, VCTRL = 2.0V Switches = 01 (Note 4) $V_{OUT} = PO5$ (Pins D/F 3-5-11-13) (Pins C 4-7-14-17)	-	22	ns
158 to 161	from Low Level 2	t _{PLZ2}	3003	4(j)	$V_{IN(+)} = -1.5V$, $V_{IN(-)} = 0V$ VCTRL = 0V, VCTRL = PI3 Switches = 11 (Note 4) $V_{OUT} = PO3$ (Pins D/F 3-5-11-13) (Pins C 4-7-14-17)	-	35	ns
162 to 165	to Low Level 2	t _{PZL2}	3003	4(j)	$V_{IN(+)} = -1.5 V$, $V_{IN(-)} = 0 V$ VCTRL = 0 V, $VCTRL = PI3Switches = 10 (Note 4)V_{OUT} = PO6(Pins D/F 3-5-11-13)(Pins C 4-7-14-17)$	-	22	ns
166 to 169	from High Level 2	t _{PHZ2}	3003	4(j)	$V_{IN(+)} = 1.5V, V_{IN(-)} = 0V$ VCTRL = 0V, VCTRL = PI3 Switches = 11 (Note 4) $V_{OUT} = PO4$ (Pins D/F 3-5-11-13) (Pins C 4-7-14-17)	-	30	ns
170 to 173	to High Level 2	[†] PZH2	3003	4(j)	$V_{IN(+)} = 1.5V, V_{IN(-)} = 0V$ VCTRL = 0V, VCTRL = PI3 Switches = 01 (Note 4) $V_{OUT} = PO5$ (Pins D/F 3-5-11-13) (Pins C 4-7-14-17)	-	22	ns

NOTES

- 1. Go-no-go test with $V_{IL} \le 0.5V$, $2.5V \le V_{IH} \le 3.0V$. 1.3V < Trip point < 1.6V. $50\mu A < I_L < 300\mu A$.
- 2. Only one output may be shorted at a time and only for 1 second maximum.
- 3. $V_{CC} = 5.0V$.
- 4. Switches SW1 and SW2 operating status, 0 = Open, 1 = Closed.

PAGE 24

ISSUE 1

TABLE 3 - ELECTRICAL MEASUREMENTS AT HIGH AND LOW TEMPERATURES

			TEST METHOD	TEST	TEST CONDITIONS (PINS UNDER TEST	LIM	ITS	UNIT
No.	CHARACTERISTICS	SYMBOL	MIL-STD 883	FIG.	D/F = DIP AND FP C = CCP)	MIN	MAX	UNIT
1 to 16	Functional Test	-	-	4(a)	V _{CC} = 5.0V Verify Truth Table with Load. Note 1	<u>-</u>	-	<u>-</u>
17	Supply Current	lcc	3005	4(b)	$V_{CC} = 5.5V$ $V_{IN(+)} = 0V$, $V_{\underline{IN(-)}} = 0V$ VCTRL = 0V, $VCTRL = 2.7V(Pin D/F 16)(Pin C 20)$	<u>-</u>	70	mA
18 to 19	Enable Current High Level 1	I _{ENH1}	3010	4(c)	V _{CC} = 5.5 <u>V</u> VCTRL = VCTRL = 2.7V (Pins D/F 4-12) (Pins C 5-15)	-	20	μΑ
20 to 21	Enable Current High Level 2	I _{ENH2}	3010	4(c)	V _{CC} = 5.5 <u>V</u> VCTRL = VCTRL = 5.5V (Pins D/F 4-12) (Pins C 5-15)	-	100	μА
22 to 23	Enable Current Low Level	I _{ENL}	3009	4(c)	$V_{CC} = 5.5V$ $VCTRL = \overline{VCTRL} = 0.4V$ (Pins D/F 4-12) (Pins C 5-15)	-	- 360	μΑ
24 to 27	Negative Input Current 1	- I _{IN1}	3010	4(d)	$V_{CC} = 5.5V$ $V_{IN(+)} = -10V$, $V_{IN(-)} = 15V$ (Pins D/F 1-7-9-15) (Pins C 2-9-12-19)	-	2.3	mA
28 to 31	Negative Input Current 2	- I _{IN2}	3010	4(d)	$V_{CC} = 5.5V$ $V_{IN(+)} = 15V$, $V_{IN(-)} = 15V$ (Pins D/F 1-7-9-15) (Pins C 2-9-12-19)	-	2.3	mA
32 to 35	Positive Input Current 1	+ I _{IN1}	3010	4(d)	$V_{CC} = 5.5V$ $V_{IN(+)} = 15V$, $V_{IN(-)} = -10V$ (Pins D/F 2-6-10-14) (Pins C 3-8-13-18)	-	2.3	mA
36 to 39	Positive Input Current 2	+ l _{IN2}	3010	4(d)	$V_{CC} = 5.5V$ $V_{IN(+)} = 15V$, $V_{IN(-)} = 15V$ (Pins D/F 2-6-10-14) (Pins C 3-8-13-18)	-	2.3	mA
40 to 43	Input Current 1	I _{IN1}	3010	4(d)	$V_{CC} = 5.5V$ $V_{IN(+)} = 10V$, $V_{IN(-)} = -15V$ All other $V_{IN(-)}$ pins = 0V (Pins D/F 1-7-9-15) (Pins C 2-9-12-19)	-	- 2.8	mA

PAGE 25

ISSUE 1

TABLE 3 - ELECTRICAL MEASUREMENTS AT HIGH AND LOW TEMPERATURES (CONT'D)

			TEST METHOD	TEST	TEST CONDITIONS (PINS UNDER TEST	LIM	ITS	UNIT
No.	CHARACTERISTICS	SYMBOL	MIL-STD 883	FIG.	D/F = DIP AND FP C = CCP)	MIN	MAX	UNIT
44 to 47	Input Current 2	I _{IN2}	3010	4(e)	$V_{CC} = 5.5V$ $V_{IN(+)} = -15V$, $V_{IN(-)} = -15V$ All other $V_{IN(-)}$ pins = 0V (Pins D/F 1-7-9-15) (Pins C 2-9-12-19)	•	-2.8	mA
48 to 51	Input Current 3	I _{IN3}	3010	4(e)	V_{CC} = 5.5V $V_{IN(+)}$ = -15V, $V_{IN(-)}$ = 10V All other $V_{IN(+)}$ pins = 0V (Pins D/F 2-6-10-14) (Pins C 3-8-13-18)	-	-2.8	mA
52 to 55	Input Current 4	l _{IN4}	3010	4(e)	V_{CC} = 5.5V $V_{IN(+)}$ = -15V, $V_{IN(-)}$ = -15V All other $V_{IN(+)}$ pins = 0V (Pins D/F 2-6-10-14) (Pins C 3-8-13-18)		-2.8	mA
56 to 59	Off-State Output Current (Low Level Applied)	lozL	3006	4(f)	V_{CC} = 5.5V, V_{OUT} = 0.4V $V_{IN(+)}$ = 1.0V, $V_{IN(-)}$ = 0V VCTRL = 0.8V, VCTRL = 2.0V (Pins D/F 3-5-11-13) (Pins C 4-7-14-17)	-	- 20	μА
60 to 63	Off-State Output Current (High Level Applied)	ЮZН	3006	4(f)	V_{CC} = 5.5V, V_{OUT} = 2.4V $V_{IN(+)}$ = 0V, $V_{IN(-)}$ = 1.0V VCTRL = 0.8V, VCTRL = 2.0V (Pins D/F 3-5-11-13) (Pins C 4-7-14-17)	-	20	μΑ
64 to 67	Output Voltage Low Level 1	V _{OL1}	3007	4(g)	V_{CC} = 4.5V, I_{OUT} = 4.0mA $V_{IN(+)}$ = -8.0V, $V_{IN(-)}$ = -7.0V VCTRL = 2.0V, \overline{VCTRL} = 0.8V (Pins D/F 3-5-11-13) (Pins C 4-7-14-17)	_	0.4	٧
68 to 71	Output Voltage Low Level 2	V _{OL2}	3007	4(g)	V_{CC} = 4.5V, I_{OUT} = 4.0mA $V_{IN(+)}$ = 0V, $V_{IN(-)}$ = 1.0V VCTRL = 2.0V, VCTRL = 0.8V (Pins D/F 3-5-11-13) (Pins C 4-7-14-17)	-	0.4	V
72 to 75	Output Voltage Low Level 3	V _{OL3}	3007	4(g)	V_{CC} = 4.5V, I_{OUT} = 4.0mA $V_{IN(+)}$ = 7.0V, $V_{IN(-)}$ = 8.0V VCTRL = 2.0V, VCTRL = 0.8V (Pins D/F 3-5-11-13) (Pins C 4-7-14-17)	-	0.4	V

PAGE 26

ISSUE 1

TABLE 3 - ELECTRICAL MEASUREMENTS AT HIGH AND LOW TEMPERATURES (CONT'D)

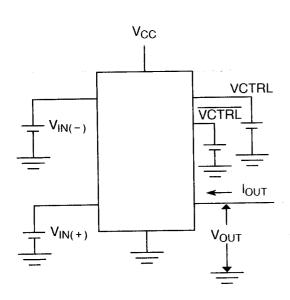
No.	CHARACTERISTICS	SYMBOL	TEST METHOD	TEST	TEST CONDITIONS (PINS UNDER TEST	LIM	IITS	UNIT
110.	OTALIAOTENISTICS	STVIBOL	MIL-STD 883	FIG.	D/F = DIP AND FP C = CCP)	MIN	MAX	OIVII
76 to 79	Output Voltage Low Level 4	V _{OL4}	3007	4(g)	V_{CC} = 4.5V, I_{OUT} = 8.0mA $V_{IN(+)}$ = -8.0V, $V_{IN(-)}$ = -7.0V VCTRL = 2.0V, VCTRL = 0.8V (Pins D/F 3-5-11-13) (Pins C 4-7-14-17)	- 	0.45	V
80 to 83	Output Voltage Low Level 5	V _{OL5}	3007	4(g)	V_{CC} = 4.5V, I_{OUT} = 8.0mA $V_{IN(+)}$ = 0V, $V_{IN(-)}$ = 1.0V VCTRL = 2.0V, VCTRL = 0.8V (Pins D/F 3-5-11-13) (Pins C 4-7-14-17)	-	0.45	V
84 to 87	Output Voltage Low Level 6	V _{OL6}	3007	4(g)	V_{CC} = 4.5V, I_{OUT} = 8.0mA $V_{IN(+)}$ = 7.0V, $V_{\underline{IN(-)}}$ = 8.0V VCTRL = 2.0V, VCTRL = 0.8V (Pins D/F 3-5-11-13) (Pins C 4-7-14-17)	-	0.45	>
88 to 91	Output Voltage High Level 1	V _{OH1}	3006	4(g)	V_{CC} = 4.5V, I_{OUT} = -440 μ A $V_{IN(+)}$ = -7.0V, $V_{IN(-)}$ = -8.0V VCTRL = 2.0V, \overline{VCTRL} = 0.8V (Pins D/F 3-5-11-13) (Pins C 4-7-14-17)	2.5	-	V
92 to 95	Output Voltage High Level 2	V _{OH2}	3006	4(g)	V_{CC} = 4.5V, I_{OUT} = - 440 μ A $V_{IN(+)}$ = 1.0V, $V_{\underline{IN(-)}}$ = 0V VCTRL = 2.0V, VCTRL = 0.8V (Pins D/F 3-5-11-13) (Pins C 4-7-14-17)	2.5	1	٧
96 to 99	Output Voltage High Level 3	V _{OH3}	3006	4(g)	V_{CC} = 4.5V, I_{OUT} = -440 μ A $V_{IN(+)}$ = 8.0V, $V_{\underline{IN(-)}}$ = 7.0V VCTRL = 2.0V, VCTRL = 0.8V (Pins D/F 3-5-11-13) (Pins C 4-7-14-17)	2.5	-	٧
100 to 103	Output Threshold Voltage Low Level 1	V _{OLT1}	-	4(g)	V_{CC} = 4.5V, I_{OUT} = 8.0mA $V_{IN(+)}$ = -6.9V, $V_{IN(-)}$ = -6.7V VCTRL = 2.0V, VCTRL = 0.8V (Pins D/F 3-5-11-13) (Pins C 4-7-14-17)	-	0.45	V
104 to 107	Output Threshold Voltage Low Level 2	V _{OLT2}	-	4(g)	V_{CC} = 4.5V, I_{OUT} = 8.0mA $V_{IN(+)}$ = 6.7V, $V_{\underline{IN(-)}}$ = 6.9V VCTRL = 2.0V, VCTRL = 0.8V (Pins D/F 3-5-11-13) (Pins C 4-7-14-17)	-	0.45	V

PAGE 27

ISSUE 1

TABLE 3 - ELECTRICAL MEASUREMENTS AT HIGH AND LOW TEMPERATURES (CONT'D)

	OUADA OTEDIOTION	CVANDOL	TEST METHOD	TEST	TEST CONDITIONS (PINS UNDER TEST	LIM	ITS	UNIT
No.	CHARACTERISTICS	SYMBOL	MIL-STD 883	FIG.	D/F = DIP AND FP C = CCP)	MIN	мах	Orari
108 to 111	Output Threshold Voltage High Level 1	V _{OHT1}	-	4(g)	$\begin{split} &V_{CC}=4.5\text{V},\ I_{OUT}=-440\mu\text{A}\\ &V_{IN(+)}=-6.7\text{V},\ \underline{V_{IN(-)}}=-6.9\text{V}\\ &V\text{CTRL}=2.0\text{V},\ V\text{CTRL}=0.8\text{V}\\ &(\text{Pins D/F 3-5-11-13})\\ &(\text{Pins C 4-7-14-17}) \end{split}$	2.5	-	V
112 to 115	Output Threshold Voltage High Level 2	V _{OHT2}	-	4(g)	$\begin{split} &V_{CC}=4.5\text{V, I}_{OUT}=-440\mu\text{A}\\ &V_{IN(+)}=6.9\text{V, V}_{\underline{IN(-)}}=6.7\text{V}\\ &V\text{CTRL}=2.0\text{V, VCTRL}=0.8\text{V}\\ &(\text{Pins D/F 3-5-11-13})\\ &(\text{Pins C 4-7-14-17}) \end{split}$	2.5	-	V
116 to 119	Output Short Circuit Current 1	l _{OS1}	3011	4(h)	V_{CC} = 5.5V, V_{OUT} = 0V $V_{IN(+)}$ = 1.0V, $V_{IN(-)}$ = 0V VCTRL = VCTRL = 2.0V Note 2 (Pins D/F 3-5-11-13) (Pins C 4-7-14-17)	– 15	- 85	mA
120 to 123	Output Short Circuit Current 2	I _{OS2}	3011	4(h)	V_{CC} = 5.5V, V_{OUT} = 0V $V_{IN(+)}$ = 1.0V, $V_{IN(-)}$ = 0V VCTRL = 2.0V, VCTRL = 0.8V Note 2 (Pins D/F 3-5-11-13) (Pins C 4-7-14-17)	- 15	- 85	mA
124	Enable Clamp Voltage 1	V _{IC1}	-	4(i)	ICTRL = - 18mA, V _{CC} = 4.5V (Pin D/F 4) (Pin C 5)	- 1.5	<u>-</u>	V
125	Enable Clamp Voltage 2	V _{IC2}	-	4(i)	ICTRL = - 18mA, V _{CC} = 4.5V (Pin D/F 12) (Pin C 15)	- 1.5	-	V



PAGE 28

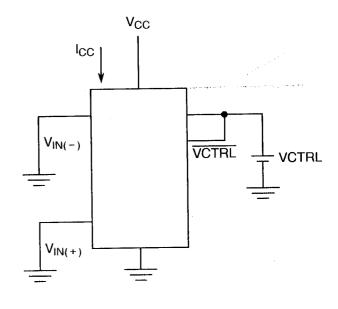
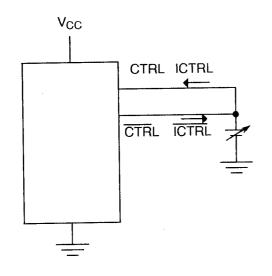

ISSUE 1

FIGURE 4 - CIRCUITS FOR ELECTRICAL MEASUREMENTS


FIGURE 4(a) - FUNCTIONAL TEST

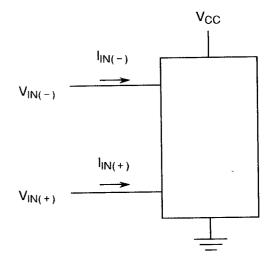

FIGURE 4(b) - SUPPLY CURRENT

FIGURE 4(c) - ENABLE CURRENT

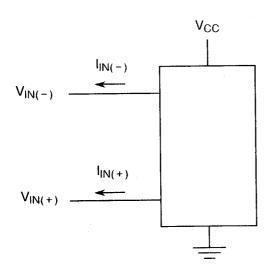
FIGURE 4(d) - INPUT CURRENT

NOTES

1. Each input to be tested separately.

NOTES

1. Each input to be tested separately.


PAGE 29

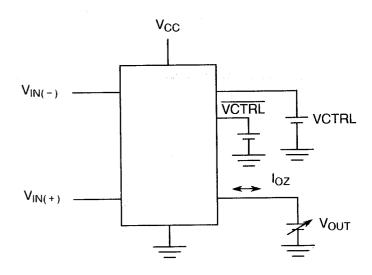
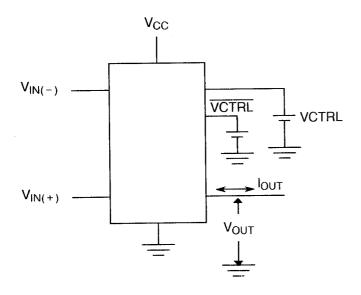

ISSUE 1

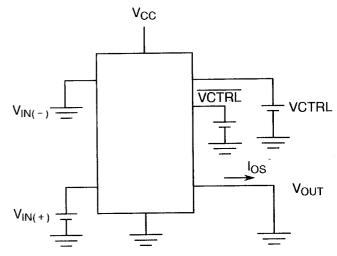
FIGURE 4 - CIRCUITS FOR ELECTRICAL MEASUREMENTS (CONTINUED)

FIGURE 4(e) - INPUT CURRENT

FIGURE 4(f) - OFF-STATE OUTPUT CURRENT

NOTES


1. Each input to be tested separately.


NOTES

1. Each output to be tested separately.

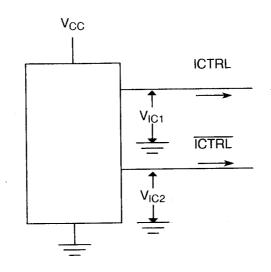
FIGURE 4(g) - OUTPUT LOW LEVEL/ HIGH LEVEL/THRESHOLD VOLTAGE

FIGURE 4(h) - OUTPUT SHORT CIRCUIT CURRENT

NOTES

1. Each output to be tested separately.

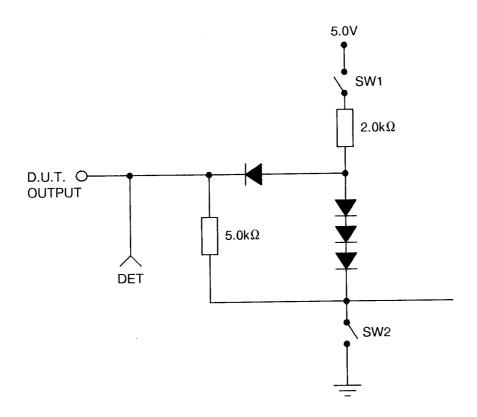
NOTES


1. Each output to be tested separately.

PAGE 30

ISSUE 1

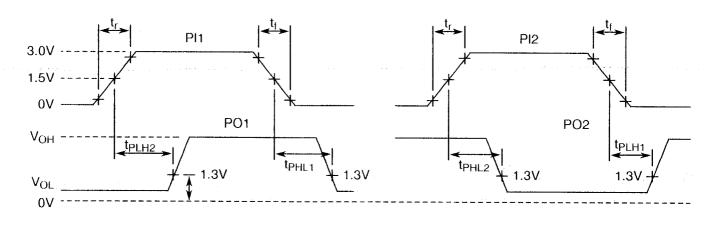
FIGURE 4 - CIRCUITS FOR ELECTRICAL MEASUREMENTS (CONTINUED)


FIGURE 4(i) - ENABLE CLAMP VOLTAGE

NOTES

1. Each input to be tested separately.

FIGURE 4(j) - PROPAGATION DELAY


PAGE 31

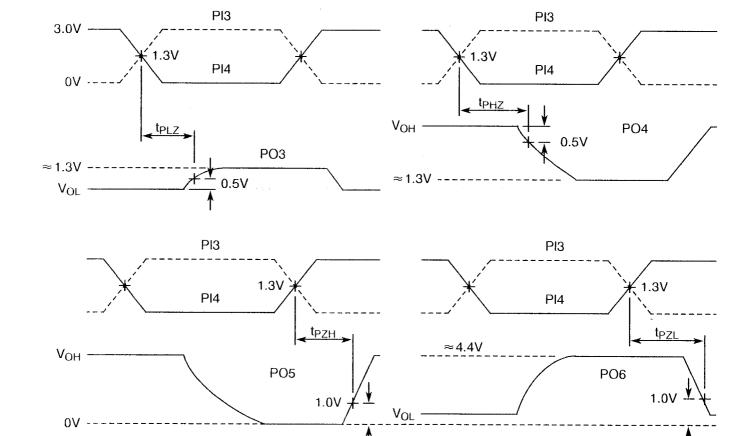

ISSUE 1

FIGURE 4 - CIRCUITS FOR ELECTRICAL MEASUREMENTS (CONTINUED)

FIGURE 4(j) - PROPAGATION DELAY (CONT'D)

VOLTAGE WAVEFORMS

NOTES

- 1. Input Waveform (all inputs): f = 1.0 MHz, Duty Cycle = 50%, $t_r = t_f = 5.0 ns$ between 10% to 90%.
- 2. For Input/Output Conditions, see Table 2.

PAGE 32

ISSUE 1

TABLE 4 - PARAMETER DRIFT VALUES

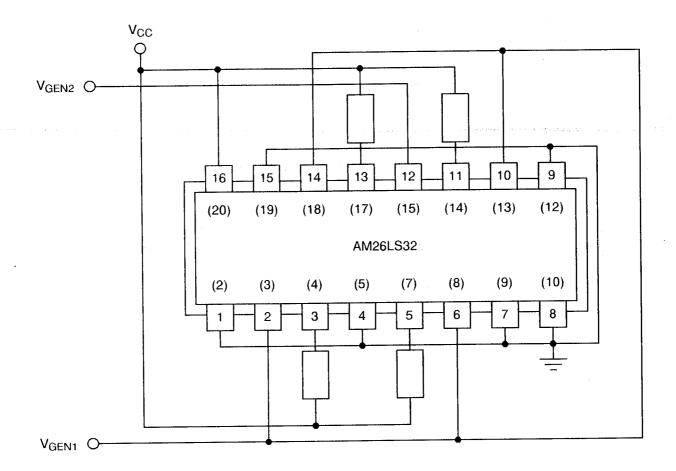
No.	CHARACTERISTICS	SYMBOL	SPEC. AND/OR TEST METHOD	TEST CONDITIONS	CHANGE LIMITS (Δ)	UNIT
17	Supply Current	loc	As per Table 2	As per Table 2	± 5.0	mA
20 to 21	Enable Current High Level 2	JENH2.	As per Table 2	As per Table 2	± 10	μА
22 to 23	Enable Current Low Level	I _{ENL}	As per Table 2	As per Table 2	±36	μА
24 to 27	Negative Input Current 1	- I _{IN1}	As per Table 2	As per Table 2	± 200	μА
32 to 35	Positive Input Current 1	+ I _{IN1}	As per Table 2	As per Table 2	± 200	μА
40 to 43	Input Current 1	l _{IN1}	As per Table 2	As per Table 2	± 200	μΑ
44 to 47	Input Current 2	l _{IN2}	As per Table 2	As per Table 2	± 200	μА
76 to 79	Output Voltage Low Level 4	V _{OL4}	As per Table 2	As per Table 2	± 45	mV
84 to 87	Output Voltage Low Level 6	V _{OL6}	As per Table 2	As per Table 2	± 45	mV
88 to 91	Output Voltage High Level 1	V _{OH1}	As per Table 2	As per Table 2	± 250	mV
96 to 99	Output Voltage High Level 3	V _{OH3}	As per Table 2	As per Table 2	± 250	mV

PAGE 33

ISSUE 1

TABLE 5 - CONDITIONS FOR POWER BURN-IN AND OPERATING LIFE TESTS

No.	CHARACTERISTICS	SYMBOL	CONDITION	- UNIT
1	Ambient Temperature	T _{amb}	+ 125(+ 0 - 5)	°C
2	Outputs - (Pins D/F 3-5-11-13) - (Pins C 4-7-14-17)	V _{OUT}	V _{CC}	V
3	Inputs - (Pins D/F 2-6-10-14) - (Pins C 3-8-13-18)	~ · · V _{IN} ··· *	V _{GEN1}	Vac
4	Input - (Pin D/F 12) - (Pin C 15)	V _{IN}	V _{GEN2} (Note 1)	Vac
5	Inputs - (Pins D/F 1-4-7-9-15) - (Pins C 2-5-9-12-19)	V _{IN}	GND	٧
6	Pulse Voltage	V _{GEN1}	(-2.5 to -1.0) to (+1.0 to +2.5)	Vac
7	Pulse Voltage	$V_{\rm GEN2}$	0 to 3.0	Vac
8	Pulse Frequency Square Wave	f _{GEN1} f _{GEN2}	100k 50k 50% Duty Cycle $t_r = t_f \le 10$ ns	Hz
9	Positive Supply Voltage (Pin D/F 16) (Pin C 20)	V _{CC}	5.5(+ 0 – 0.5)	V
10	Negative Supply Voltage (Pin D/F 8) (Pin C 10)	GND	0	V


- NOTES

 1. Triggered by V_{GEN1}.
- 2. Output Load = $1.0k\Omega$

PAGE 34

ISSUE 1

FIGURE 5 - ELECTRICAL CIRCUIT FOR POWER BURN-IN AND OPERATING LIFE TESTS

NOTES

1. Pin numbers in parenthesis are for the chip carrier package.

PAGE 35

ISSUE

4.8 <u>ENVIRONMENTAL AND ENDURANCE TESTS (CHARTS IV AND V OF ESA/SCC GENERIC SPECIFICATION NO. 9000)</u>

4.8.1 Electrical Measurements on Completion of Environmental Tests

The parameters to be measured on completion of environmental tests are scheduled in Table 6. Unless otherwise stated, the measurements shall be performed at T_{amb} = +22±3 °C.

4.8.2 <u>Electrical Measurements at Intermediate Points during Endurance Tests</u>

The parameters to be measured at intermediate points during endurance tests are as scheduled in Table 6 of this specification. Unless otherwise stated, the measurements shall be performed at $T_{amb} = +22 \pm 3$ °C.

4.8.3 <u>Electrical Measurements on Completion of Endurance Tests</u>

The parameters to be measured on completion of endurance testing are as scheduled in Table 6 of this specification. Unless otherwise stated, the measurements shall be performed at T_{amb} = +22 ± 3 °C.

4.8.4 Conditions for Operating Life Tests

The requirements for operating life testing are specified in Section 9 of ESA/SCC Generic Specification No. 9000. The conditions for operating life testing shall be as specified in Table 5 of this specification.

4.8.5 Electrical Circuits for Operating Life Tests

Circuits for use in performing the operating life tests are shown in Figure 5 of this specification.

4.8.6 Conditions for High Temperature Storage Test

The requirements for the high temperature storage test are specified in ESA/SCC Generic Specification No. 9000. The temperature to be applied shall be the maximum storage temperature specified in Table 1(b) of this specification.

PAGE 36

ISSUE 1

TABLE 6 - ELECTRICAL MEASUREMENTS ON COMPLETION OF ENVIRONMENTAL TESTS AND AT INTERMEDIATE POINTS AND ON COMPLETION OF ENDURANCE TESTING

No.	CHARACTERISTICS	SYMBOL	SPEC. AND/OR TEST METHOD	TEST CONDITIONS	CHANGE LIMITS (Δ)	ABSOLUTE		UNIT
						MIN.	MAX.	UNIT
1	Functional Test	-	As per Table 2	As per Table 2	-	-	-	-
to 16								
17	Supply Current	lcc	As per Table 2	As per Table 2	± 5.0	-	70	mA
20 to 21	Enable Current High Level 2	l _{ENH2}	As per Table 2	As per Table 2	± 10		100	μА
22 to 23	Enable Current Low Level	I _{ENL}	As per Table 2	As per Table 2	±36	. .	-360	μА
24 to 27	Negative Input Current 1	- I _{IN1}	As per Table 2	As per Table 2	± 0.2	-	2.3	mA
32 to 35	Positive Input Current 1	+ l _{IN1}	As per Table 2	As per Table 2	± 0.2	-	2.3	mA
40 to 43	Input Current 1	l _{IN1}	As per Table 2	As per Table 2	± 0.2	- -	-2.8	mA
44 to 47	Input Current 2	l _{IN2}	As per Table 2	As per Table 2	± 0.2	-	-2.8	mA
56 to 59	Off-State Output Current (Low Level Applied)	lozL	As per Table 2	As per Table 2	-	<u>-</u>	- 20	μA
60 to 63	Off-State Output Current (High Level Applied)	l _{OZH}	As per Table 2	As per Table 2	-	-	20	μА
76 to 79	Output Voltage Low Level 4	V _{OL4}	As per Table 2	As per Table 2	± 45	<u>-</u>	450	mV
84 to 87	Output Voltage Low Level 6	V _{OL6}	As per Table 2	As per Table 2	± 45	_	450	mV
88 to 91	Output Voltage High Level 1	V _{OH1}	As per Table 2	As per Table 2	± 0.25	2.5	-	V
96 to 99	Output Voltage High Level 3	V _{OH3}	As per Table 2	As per Table 2	± 0.25	2.5	-	V