

Page i

CHARGE COUPLED DEVICES,

SILICON, PHOTOSENSITIVE, AREA ARRAY,

IMAGE SENSOR, 286 LINES×382 PIXELS,

BASED ON TYPE TH7863A

ESCC Detail Specification No. 9610/001

ISSUE 1 October 2002

Document Custodian: European Space Agency - see https://escies.org

LEGAL DISCLAIMER AND COPYRIGHT

European Space Agency, Copyright © 2002. All rights reserved.

The European Space Agency disclaims any liability or responsibility, to any person or entity, with respect to any loss or damage caused, or alleged to be caused, directly or indirectly by the use and application of this ESCC publication.

This publication, without the prior permission of the European Space Ageny and provided that it is not used for a commercial purpose, may be:

- copied in whole in any medium without alteration or modification.
- copied in part, in any medium, provided that the ESCC document identification, comprising the ESCC symbol, document number and document issue, is removed.

european space agency agence spatiale européenne

Pages 1 to 52

CHARGE COUPLED DEVICES,

SILICON, PHOTOSENSITIVE, AREA ARRAY,

IMAGE SENSOR, 286 LINES × 382 PIXELS,

BASED ON TYPE TH7863A

ESA/SCC Detail Specification No. 9610/001

space components coordination group

		Appro	ved by
Issue/Rev.	Date	SCCG Chairman	ESA Director General or his Deputy
Issue 1	February 1994	To moment	t. tato
· · · · · · · · · · · · · · · · · · ·			

2

DOCUMENTATION CHANGE NOTICE

Rev. Letter	Rev. Date	Reference	CHANGE Item	Approved DCR No.

C		ESA/SCC Detail Specification No. 9610/001		PAGE ISSUE	3 1
		TABLE OF CONTENTS			Page
1.	GENERAL				5
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10	Scope Component Type Varia Maximum Ratings Parameter Derating Infe Physical Dimensions at Pin Assignment Timing Diagrams Functional Diagram Handling Precautions Input Protection Netwo	ormation nd Geometrical Characteristics			5 5 5 5 5 5 5 5 5 5 5 5 5
2.	APPLICABLE DOCUM	<u>NENTS</u>			22
3.	TERMS, DEFINITION	S, ABBREVIATIONS, SYMBOLS AND L	JNITS		22
4.	REQUIREMENTS				22
$\begin{array}{c} 4.1\\ 4.2\\ 4.2.1\\ 4.2.2\\ 4.2.3\\ 4.2.4\\ 4.2.5\\ 4.3\\ 4.3.1\\ 4.3.2\\ 4.3.3\\ 4.3.4\\ 4.4.1\\ 4.4.2\\ 4.4.3\\ 4.5\\ 4.5.1\\ 4.5.2\\ 4.5.3\\ 4.5.4\\ 4.6\\ 4.6.1\\ 0.1\\ 0.1\\ 0.1\\ 0.1\\ 0.1\\ 0.1\\ 0.1\\ 0$		al In-process Controls Production Tests cation Tests cation Tests coeptance Tests ents istics sh Number n optical Measurements optical Measurements at Reference Temp			22 22 22 23 23 23 23 23 23 23 23 23 23 2
4.6.1 4.6.2 4.6.3 4.7 4.7.1 4.7.2 4.7.3 4.7.4 4.7.5 4.8 4.8.1 4.8.2	Electrical and Electro- Circuits for Electrical a Burn-in Tests Parameter Drift Values Conditions for High Te Conditions for Power I Electrical Circuits for I Electrical Circuits for I Environmental and Environmental and Environmental and Electro-	optical Measurements at High and Low Te and Electro-optical Measurements emperature Reverse Bias Burn-in Burn-in High Temperature Reverse Bias Burn-in Power Burn-in	emperatures invironmental Tests	e Tests	25 25 25 25 25 25 25 25 43 43 43

	ESA/SCC Detail Specification No. 9610/001		PAGE ISSUE	4
--	--	--	---------------	---

		Page
4.8.3	Electrical and Electro-optical Measurements on Completion of Endurance Tests	43
4.8.4	Conditions for Operating Life Tests	43
4.8.5	Electrical Circuits for Operating Life Tests	43
4.8.6	Conditions for High Temperature Storage Test	43
4.9	Total Dose Irradiation Testing	43
4.9.1	Application	43
4.9.2	Bias Conditions	43
4.9.3	Electrical and Electro-optical Measurements	43
-11010		

TABLES

1(a)	Type Variant Summary Type Variant Detailed Information	6 47
1(b)	Maximum Ratings	6
1(c)	Format for individual Tables 1(a)	7
2	Electrical and Electro-optical Measurements at Reference Temperature	26
3	Electrical and Electro-optical Measurements at High and Low Temperatures	33
4	Parameter Drift Values	40
5(a)	Conditions for High Temperature Reverse Bias Burn-in	41
5(b)	Conditions for Power Burn-in and Operating Life Tests	41
6	Electrical and Electro-optical Measurements on Completion of Environmental Tests and at Intermediate Points and on Completion of Endurance Testing	44
7	Electrical and Electro-optical Measurements During and on Completion of Irradiation Testing	46

FIGURES

1	Parameter Derating Information	6
2	Physical Dimensions	11
2 3(a)	Pin Assignment	14
3(b)	Timing Diagrams	15
3(c)	Functional Diagram	21
3(d)	Input Protection Networks	21
4	Circuits for Electrical and Electro-optical Measurements	34
5(a)	Electrical Circuit for High Temperature Reverse Bias Burn-in	42
5(b)	Electrical Circuit for Power Burn-in and Operating Life Tests	42
6	Bias Conditions for Irradiation Testing	45
Ø	Dias conditions for inadiation resting	

APPENDICES (Applicable to specific Manufacturers only) None.

5

1. <u>GENERAL</u>

1.1 <u>SCOPE</u>

This specification details the ratings, physical, geometrical, electrical and electro-optical characteristics, test and inspection data for a silicon Photosensitive Area Array CCD Image Sensor, 286 Lines × 382 Pixels, based on Type TH7863A. It shall be read in conjunction with ESA/SCC Generic Specification No. 9020, the requirements of which are supplemented herein.

1.2 COMPONENT TYPE VARIANTS

A list of the type variants of the basic area array CCD image sensor specified herein, which are also covered by this specification, are given in "Table 1(a) - Type Variant Summary".

For each type variant, the full electro-optical, electrical and geometrical characteristics are given in individual "Tables 1(a) - Type Variant Detailed Information" at the end of this specification.

The contents of the individual Tables 1(a) shall be as shown in Table 1(c).

The specific characteristics shall be negotiated between the Manufacturer and the Orderer. The Manufacturer shall then apply to the ESA/SCC Secretariat for a type variant number for each individual basic area array CCD image sensor concerned, by sending a finalised Table 1(a) which shall also be copied to the Qualifying Space Agency (QSA).

For information concerning Variant 01, see ESA/SCC Generic Specification No. 9020, Para. 4.1.1.

1.3 MAXIMUM RATINGS

The maximum ratings, which shall not be exceeded at any time during use or storage, applicable to the components specified herein, are as scheduled in Table 1(b).

1.4 PARAMETER DERATING INFORMATION (FIGURE 1)

Not applicable.

1.5 PHYSICAL DIMENSIONS AND GEOMETRICAL CHARACTERISTICS

The physical dimensions and geometrical characteristics of the components specified herein are shown in Figures 2(a) and 2(b).

1.6 PIN ASSIGNMENT

As per Figure 3(a).

1.7 TIMING DIAGRAMS

As per Figure 3(b).

1.8 FUNCTIONAL DIAGRAM

As per Figure 3(c).

1.9 HANDLING PRECAUTIONS

The component is susceptible to damage by electro-static discharge. Therefore, suitable precautions shall be employed for protection during all phases of manufacture, testing, packaging, shipment and any handling.

These components are categorised as Class 1 with a Minimum Critical Path Failure Voltage of 400 Volts.

1.10 INPUT PROTECTION NETWORKS

Protection networks shall be incorporated into each input as shown in Figure 3(d).

TABLE 1(a) - TYPE VARIANT SUMMARY

VARIANT	REFERENCE TEMPERATURE (T _{ref} °C)	OPERATING TEMPERATURE RANGE (T _{op} °C)	TIMING DIAGRAM (FIGURE 3(b)) (TD)	SPECTRAL RANGE FOR WINDOW OPTICAL COATING WOC (nm)
01	+ 25 ± 3	-20 to +85	TD1	N/A
02	+ 35 ± 3	-20 to +85	TD2	450 to 900

NOTES

1. Full electrical and electro-optical characteristics are given in the individual Tables 1(a) at the end of this specification.

UNITS REMARKS **CHARACTERISTICS** SYMBOL MAXIMUM RATINGS No. -0.3 to +19 V Note 1 Range of applied voltages 1 _ V Note 2 -0.3 to +16 2 Range of applied voltages _ V 3 Range of applied voltages --5.0 to 0 Note 3 Input Current 200 mΑ -4 ΙN 5 **Device Dissipation** P_D Note 4 mW _ (Continuous) °C **Operating Temperature** Top Note 5 T_{amb} Note 6 6 Range °C -55 to +150 7 Storage Temperature T_{stg} _ Range +260 °C Note 7 8 Soldering Temperature T_{sol}

TABLE 1(b) - MAXIMUM RATINGS

NOTES

- 1. On pins 5, 15, 18 with respect to pins 1, 10.
- 2. On pins 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 19, 20 with respect to pins 1, 10.
- 3. On pins 1, 10, 17.
- 4. The maximum device dissipation is determined by $19V \times I_{DD(T_{op})}$ max. (mA) (see individual Tables 1(a)).
- 5. See Table 1(a).
- 6. Shall not exceed the Storage Temperature Range.
- 7. Duration 10 seconds maximum at a distance of not less than 3.0mm from the package and the same lead shall not be resoldered until 3.0 minutes have elapsed.

FIGURE 1 - PARAMETER DERATING INFORMATION

Not applicable.

TABLE 1(c) - FORMAT FOR INDIVIDUAL TABLES 1(a)

TABLE 1(a) - TYPE VARIANT DETAILED INFORMATION

TYPE VARIANT No.

No		LIMITS		IITS	UNITS	
No.	CHARACTERISTICS	STIVIBUL	MIN.	MAX.		REMARKS
1	Operating Temperature Range	Т _{ор}			°C	
2	Reference Temperature	T _{ref}			°C	
3	Flatness of Image Area	Р			μm	
4	Spectral Range for Optical Coating on Window	WOC			nm	Note 1
5	Timing Diagram	TD		_	-	Note 2
6	Power Supply Current 1	I _{DD1}			mA	Note 3
7	Power Supply Current 2	I _{DD2}			mA	Note 3
8	Power Supply Current 1 over T _{op}	I _{DD1} (T _{op})			mA	Note 3
9	DC Output Level	V _{Ref}			V	
10	Output Impedance	Z _S			Ω	Note 4
11	Saturation Voltage for the Image Area	V _{SAT}			mV	
12	Vertical Charge Transfer Inefficiency	VCTI			%	Note 5
13	Horizontal Charge Transfer Inefficiency	HCTI			%	Note 5
14	Average Dark Signal (Image Area)	VDS1			mV	Note 6
15	Average Dark Signal (Image Area + Storage Area)	VDS2			mV	Note 6
16	Average Dark Signal (Image Area + Storage Area) over T _{op}	VDS2(T _{op})			mV	Note 6
17	Dark Signal Non-uniformity, standard deviation $\boldsymbol{\sigma}$	DSNU(σ)			mV	Note 7
18	Number of Dark Signal Defects beyond a3 limit	Ndef3			-	Note 7

NOTES: See Page 10.

- -- -

TABLE 1(c) - FORMAT FOR INDIVIDUAL TABLES 1(a) (CONTINUED)

TABLE 1(a) - TYPE VARIANT DETAILED INFORMATION (CONTINUED)

TYPE VARIANT No.

				UNITS	REMARKS	
No.	CHARACTERISTICS	STINBUL	MIN.	MAX.		REMARKS
19	Number of Dark Signal Defects beyond a4 limit	Ndef4			-	Note 7
20	DSNU Limit for Ndef3	a3			mV	Note 7
21	DSNU Limit for Ndef4	a4			mV	Note 7
22	Responsivity	R			V/µJ/cm ²	Note 8
23	Responsivity over T _{op}	R(T _{op})			V/µJ/cm ²	
24	Photoresponse Non- uniformity, standard deviation σ	PRNU(σ)			%	Note 9
25	Number of PRNU Defects beyond a1 Limit	Ndef1			-	Note 9
26	Number of PRNU Defects beyond a2 Limit	Ndef2			-	Note 9
27	PRNU Limit for Ndef1	a1			%	Note 9
28	PRNU Limit for Ndef2	a2			%	Note 9
29	Spectral Responsivity in Optical Band B1	R(B1)			V/µJ/cm²	Note 10
30	Spectral Responsivity in Optical Band B2	R(B2)			V/µJ/cm²	Note 10
31	Spectral Responsivity in Optical Band B3	R(B3)			V/µJ/cm²	Note 10
32	Spectral Responsivity in Optical Band B4	R(B4)			V/µJ/cm²	Note 10
33	Spectral Responsivity in Optical Band B5	R(B5)			V/µJ/cm²	Note 10
34	Spectral Responsivity in Optical Band B6	R(B6)			V/µJ/cm²	Note 10
35	Spectral Responsivity in Optical Band B7	R(B7)			V/µJ/cm²	Note 10
36	Linearity Error	LE			%	Note 11

NOTES: See Page 10.

TABLE 1(c) - FORMAT FOR INDIVIDUAL TABLES 1(a) (CONTINUED)

TABLE 1(a) - TYPE VARIANT DETAILED INFORMATION (CONTINUED)

TYPE VARIANT No.

				1ITS		REMARKS
No.	CHARACTERISTICS	SYMBOL	MIN.	MAX.	UNITS	nelwanko
37	Temporal Noise	V _N			μV	Note 12
38	Offset Voltage	V _{Offset}			mV	
39	Amplitude of Reset Feedthrough	V _{Reset}			mV	
40	Reference Level Settling Time	^t D-Ref			ns	Note 13
41	Reference Level Duration	^t U-Ref			ns	Note 13
42	Reference Level Error Band	ΔU _{Ref}			mV	Note 13
43	Signal Level Settling Time	t _{D-Signal}			ns	Note 13
44	Signal Level Duration	t _{U-Signal}			ns	Note 13
45	Signal Level Error Band	ΔU_{Signal}			mV	Note 13
46	Electrode Capacitance	C∳P			pF	Note 14
47	Electrode Capacitance	C∲M			pF	Note 14
48	Electrode Capacitance	C¢L			pF	Note 14
49	Electrode Capacitance	C∳R			pF	Note 14
50	Electrode Capacitance with respect to another Clock	C∳Po			pF	Note_15
51	Electrode Capacitance with respect to another Clock	С∲Мо			pF	Note 15
52	Electrode Capacitance with respect to another Clock	C∳Lo			pF	Note 15
53	Charge to Voltage Conversion Factor	CVF			μV/e	Note 16

NOTES: See Page 10.

TABLE 1(c) - FORMAT FOR INDIVIDUAL TABLES 1(a) (CONTINUED)

NOTES

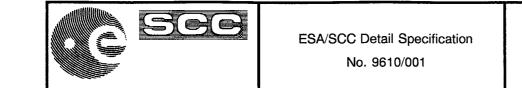
- 1. The reflectance for each side of the window shall be specified inside the spectral range for optical coating.
- 2. The timing diagram TD1 or TD2, as specified in Table 1(a), shall be used for all measurements.
- 3. I_{DD1} measurement shall be static, I_{DD2} measurement shall be dynamic, I_{DD1(T_{op})} measurement shall be static and all shall be specified in Table 1(a).
- 4. The values of R and C used for output impedance measurement shall be defined in Table 1(a).
- 5. The measurement is based on uniform illumination ESA/SCC Basic Specification No. 25000, Para. 6.12.2(a).
- 6. VDS1 is measured on the first lines or on the whole area if the integration time induces a negligible slope effect.

VDS2 is measured on the last lines.

- 7. The slope effect is removed.
- 8. The responsivity is measured under uniform illumination with BG38 optical filter.
- 9. Optical bands used for PRNU calculation shall be defined in Table 1(a).
- 10. The optical bands shall be specified in terms of centre wavelength and bandwidth at 50% of transmission peak.
- 11. The measurement is made under uniform illumination with a BG38 optical filter. The output signal range used for linearity error calculation shall be defined in Table 1(a).
- 12. The measurement is based on two successive acquisitions of the same row.
- 13. For output signal waveform measurements, the error bands for reference and signal levels are defined by ΔU_{Ref} and ΔU_{Signal} . Settling times can be referenced either to ϕR or $\phi L2$ edges (to be specified in Table 1(a)).
- 14. Boonton Bridge. Load voltage is typically DC = 10V

AC = 50mV, 1.0MHz

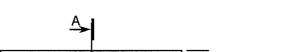
This parameter is measured by sampling on 3 devices per wafer lot but not on deliverable items.

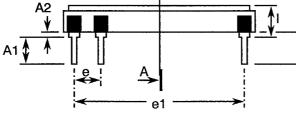

15. Standard capacitance bridge (1.0kHz).

This parameter is measured by sampling on 3 devices per wafer lot but not on deliverable items.

16. The CVF is measured by sampling on 5 devices per wafer lot, but not on deliverable devices.

<u>N.B.</u>


BG38 Optical Filter = Filter BP492/399 of DIN3140, thickness 2.0mm.



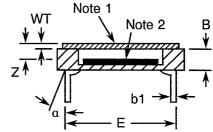
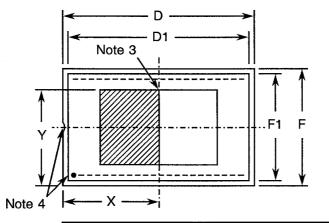
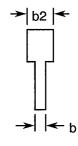
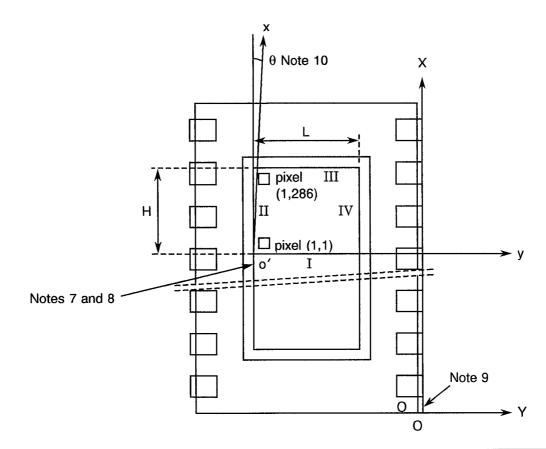

FIGURE 2 - PHYSICAL DIMENSIONS

FIGURE 2(a) - PHYSICAL DIMENSIONS


∏11



AA CROSS SECTION


PIN DETAIL

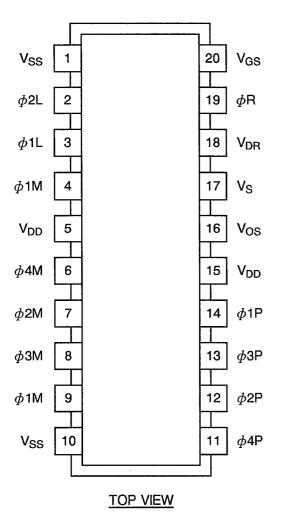
SYMBOL	MILLIM	ETRES	REMARKS
STWBUL	MIN	MAX	REMARKS
A1	2.50	3.90	
A2	1.00	-	
b	0.38	0.51	
b1	0.20	0.30	
b2	-	1.77	
В	2.55 T	/PICAL	Note 5
D	25.50	26.10	
D1	23.90	24.10	Note 5
е	2.54 T	PICAL	
e1	22.86 T	YPICAL	
E	15.24	15.87	
F	17.40	18.00	
F1	15.90	16.10	Note 5
1	-	5.58	
I1 ·	4.00	4.60	
WT	1.00	1.20	Note 5
Z	-	-	Note 6
α	-	15°	

FIGURE 2 - PHYSICAL DIMENSIONS (CONTINUED)

FIGURE 2(b) - GEOMETRICAL CHARACTERISTICS

No.	CHARACTERISTIC	ESA/SCC 9020 TEST METHOD	SYMBOL	LIM	ITS	UNIT	REMARKS	
NO.		PARA. 9.12 OR NOTE	OTWDOL	MIN.	MAX.	01411		
1	Flatness of Image Area		Ρ	Table 1(a) Item 3		μm	Note 11	
2 to 3	Position of the First Pixel		X Y	12800 13250	13000 13450	μm	Notes 11, 13, 14	
4	Image Plane Orientation		θ	- 0.5	+ 0.5	0	Notes 10, 12	
5	Optical Distance between Image Plane and Window		Z	1.54	1.94	mm	Note 12	
6	Parallelism between Image Plane and Window		TILT	- 100	+ 100	μm	Note 12	
7 to 8	Image Plane Dimensions		L W	8797 6589	8837 6629	μm	Notes 12, 13, 15	

NOTES: See Page 13.


FIGURE 2 - PHYSICAL DIMENSIONS (CONTINUED)

NOTES TO FIGURES 2(a) AND 2(b)

- 1. Window.
- 2. Photosensitive area.
- 3. First pixel of first line (X, Y, Z coordinates).
- 4. Index (notch or dot).
- 5. Measured by sampling during Material Incoming Inspection.
- 6. Optical distance between external face of window and photosensitive area.
- 7. I, II, III and IV = Aluminium edges.
- 8. x, o', y = Die referential.
- 9. X, O, Y = Case referential.
- 10. θ = Site angle (skew).
- 11. Measured on a 100% basis.
- 12. Measured by sampling on 5 devices per assembly lot.
- 13. Measured with aluminium edges as references.
- 14. The first useful pixel (1,1) is located at a distance:
 - $X + (23\mu m)$ from aluminium edge I.
 - $Y \frac{2}{3}(23\mu m)$ from aluminium edge II.
- 15. The pixels are square and the size of any pixel is equal to 23µm×23µm.

FIGURE 3(a) - PIN ASSIGNMENT

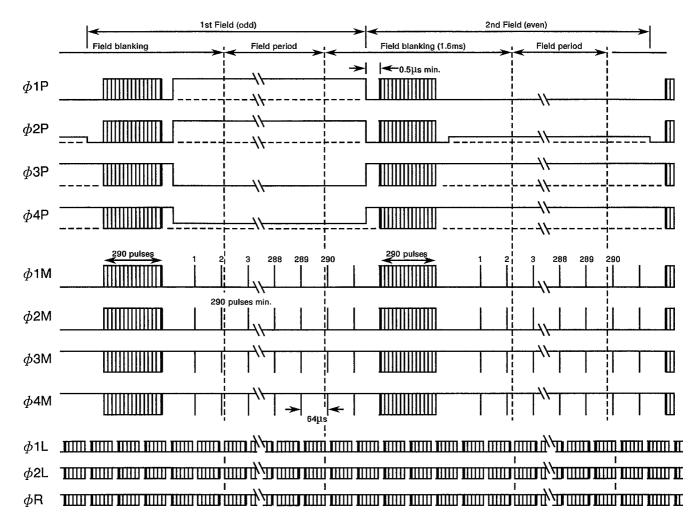
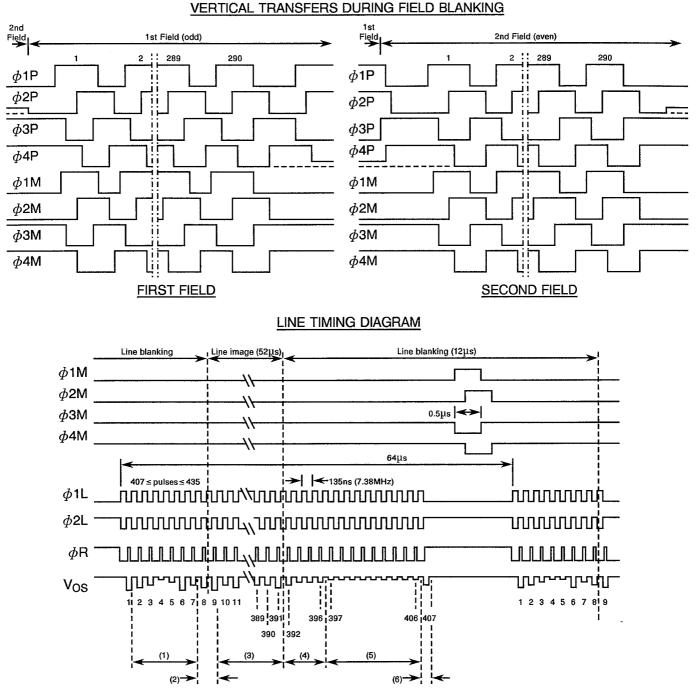

DESIGNATION	SYMBOL	PIN No.
Substrate Bias	V _{SS}	1-10
Readout Register Clocks	ϕ 1L, ϕ 2L	3-2
Memory-Zone Clocks	ϕ 1M $\rightarrow \phi$ 4M	(4,9)-7-8-6
Output Amplifier Drain Supply	V _{DD}	5-15
Image-Zone Clocks	ϕ 1P $\rightarrow \phi$ 4P	14-12-13-11
Video Output Signal	V _{OS}	16
Output Amplifier Source Bias	V _S	17
Reset Bias	V _{DR}	18
Reset Clock	ϕR	19
Register Output Gate Bias	V _{GS}	20

FIGURE 3(b) - TIMING DIAGRAM TD1

FRAME TIMING DIAGRAM



NOTES

1.	Repartition of lines:	First	:	shielded.
		2nd	:	partially shielded.
		3 to 288	:	useful lines.
		289	:	partially shielded.
		290	:	shielded.

FIGURE 3(b) - TIMING DIAGRAM TD1 (CONTINUED)

NOTES

The video line comprises:

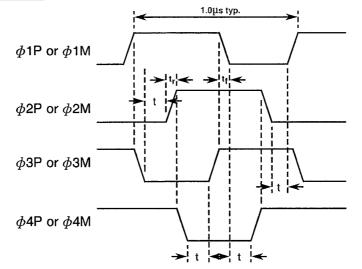
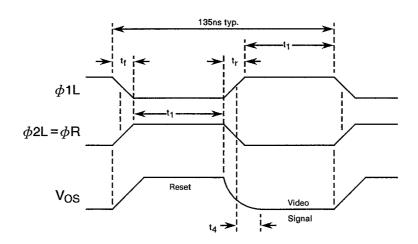

- 1. 7 inactive "pre-scan" elements = zero reference level.
- 2. 2 isolation elements (the second one is partially shielded).
- 3. 382 useful video pixels.
- 4. 5 isolation elements (the first one is partially shielded).
- 5. 10 dark reference elements (elements 397 to 406).
- 6. 1 isolation element.

FIGURE 3(b) - TIMING DIAGRAM TD1 (CONTINUED)

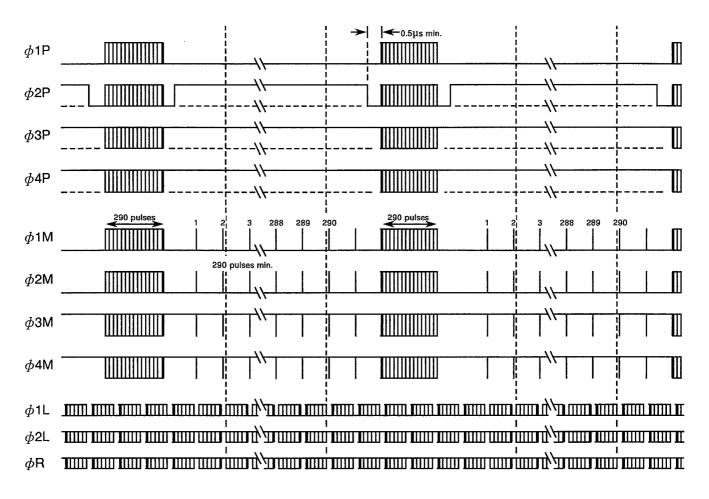
OUTPUT TIMING DIAGRAM FOR ϕ_P AND ϕ_M CLOCKS DURING TRANSFER


STANDARD CONFIGURATION

NOTES

- 1. $30ns \le t_r \le 80ns; 30ns \le t_f \le 80ns; t \ge 50ns.$
- 2. Crossover of complementary clocks (ϕ 1 and ϕ 3, ϕ 2 and ϕ 4) in the high state (above 90% of max. amplitude).

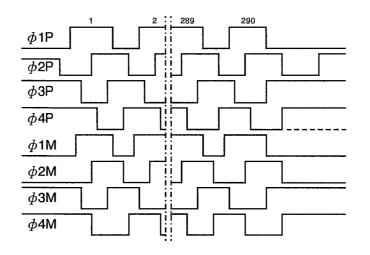
OUTPUT TIMING DIAGRAM FOR READOUT REGISTER AND RESET CLOCKS


NOTES

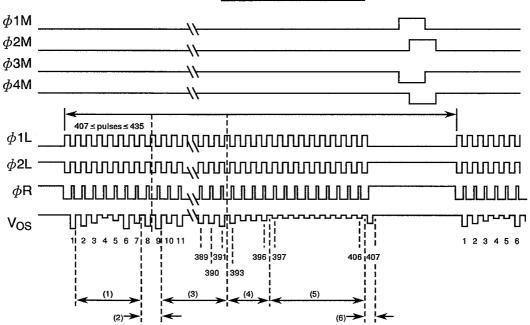
- 1. $10ns \le t_r \le 20ns; 10ns \le t_f \le 20ns; t_1 \ge 40ns; typical t_4 = 20ns.$
- 2. Crossover of complementary clocks (ϕ 1L and ϕ 2L) preferably 50% of their amplitude.

FIGURE 3(b) - TIMING DIAGRAM TD2

FRAME TIMING DIAGRAM


NOTES

1.	Repartition of lines:	First		shielded.
		2nd	:	partially shielded.
		3 to 288	:	useful lines.
		289	:	partially shielded.
		290	:	shielded.


FIGURE 3(b) - TIMING DIAGRAM TD2 (CONTINUED)

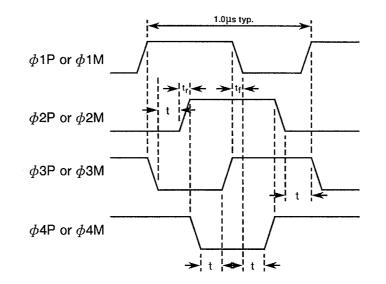
VERTICAL TRANSFERS TIMING DIAGRAM

NOTES

1. FI = 1.0MHz; FL = 4.0MHz; Typical Ti = 31ms.

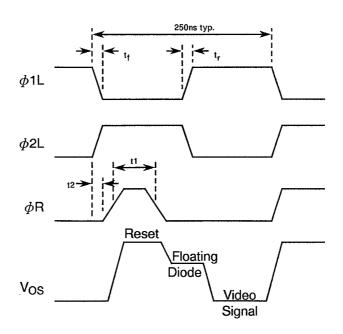
NOTES

The video line comprises:


- 1. 7 inactive "pre-scan" elements = zero reference level.
- 2. 2 isolation elements (the second one is partially shielded).
- 3. 382 useful video pixels.
- 4. 5 isolation elements (the first one is partially shielded).
- 5. 10 dark reference elements (elements 397 to 406).
- 6. 1 isolation element.

LINE TIMING DIAGRAM

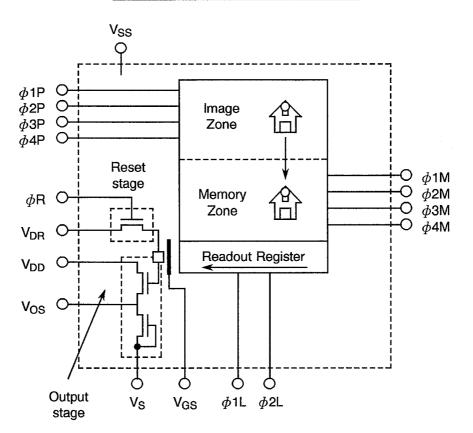
FIGURE 3(b) - TIMING DIAGRAM TD2 (CONTINUED)


OUTPUT TIMING DIAGRAM FOR ϕ_P AND ϕ_M CLOCKS DURING TRANSFER

NOTES

- 1. $30ns \le t_r \le 80ns$; $30ns \le t_f \le 80ns$; $t \ge 50ns$.
- 2. Crossover of complementary clocks (ϕ 1 and ϕ 3, ϕ 2 and ϕ 4) in the high state (above 90% of max. amplitude).

OUTPUT TIMING DIAGRAM FOR READOUT REGISTER AND RESET CLOCKS



NOTES

1. $10ns \le t_r \le 30ns; \ 10ns \le t_f \le 30ns; \ t_1 \ge 30ns; \ t_2 \ge 0ns.$

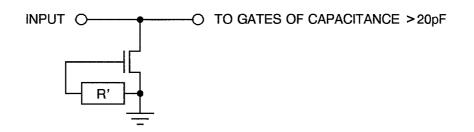


FIGURE 3(c) - FUNCTIONAL DIAGRAM

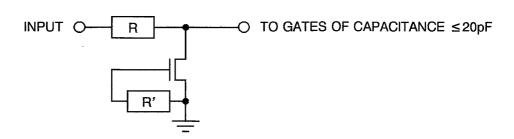


FIGURE 3(d) - INPUT PROTECTION NETWORKS

PINS 2-3-6-7-8-9-11-12-13-14-18

PINS 4-19-20

2. APPLICABLE DOCUMENTS

The following documents form part of this specification and shall be read in conjunction with it:-

- (a) ESA/SCC Generic Specification No. 9020 for Charge Coupled Devices, Silicon Photosensitive.
- (b) DIN3140, "MAβ-und Toleranzangaben für Optikeinzelteile; oberflächenbeschichtungen" (Inscription of dimensions and tolerances for optical components; indication for coatings).

3. TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS

For the purpose of this specification, the terms, definitions, abbreviations, symbols and units specified in ESA/SCC Basic Specification No. 21300 shall apply.

4. **REQUIREMENTS**

4.1 <u>GENERAL</u>

The complete requirements for procurement of the components specified herein are stated in this specification and ESA/SCC Generic Specification No. 9020 for Charge Coupled Devices. Deviations from the Generic Specification, applicable to this specification only, are listed in Para. 4.2.

Deviations from the applicable Generic Specification and this Detail Specification, formally agreed with specific Manufacturers on the basis that the alternative requirements are equivalent to the ESA/SCC requirements and do not affect the components' reliability, are listed in the appendices attached to this specification.

4.2 DEVIATIONS FROM GENERIC SPECIFICATION

4.2.1 Deviations from Special In-process Controls

- (a) Para. 5.2.2, Total Dose Irradiation Testing: Shall be performed during qualification and maintenance of qualification.
- (b) Para. 5.2.2, Total Dose Irradiation Testing: If specified in a Purchase Order, shall be performed during procurement on a lot acceptance basis at the total dose irradiation level specified in the Purchase Order.
- (c) CφPo, CφMo, CφLo, CφP, CφM, CφL and CφR are measured by sampling 3 devices per wafer lot, but not on deliverable devices.
- (d) CVF is measured by sampling 5 devices per wafer lot, but not on deliverable devices.

4.2.2 Deviations from Final Production Tests (Chart II)

- (a) Para. 9.8, the pressure during seal test shall not exceed 3kg/cm².
- (b) Para. 9.8.1, Leak Rate: 5×10^{-7} atm/cm³/sec.

4.2.3 Deviations from Burn-in Tests (Chart III)

- (a) Para. 7.1.1(a), "High Temperature Reverse Bias (H.T.R.B.)" test and subsequent electrical measurements related to this test shall not be performed.
- (b) Para. 9.8, the pressure during seal test shall not exceed 3kg/cm².
- (c) Para. 9.8.1, Leak Rate: 5×10^{-7} atm/cm³/sec.

4.2.4 Deviations from Qualification Tests (Chart IV)

- (a) Para. 9.8, the pressure during seal test shall not exceed 3kg/cm².
- (b) Para. 9.8.1, Leak Rate: 5×10^{-7} atm/cm³/sec.

4.2.5 Deviations from Lot Acceptance Tests (Chart V)

- (a) Para. 9.8, the pressure during seal test shall not exceed 3kg/cm².
- (b) Para. 9.8.1, Leak Rate: 5×10^{-7} atm/cm³/sec.

4.3 MECHANICAL REQUIREMENTS

4.3.1 Dimension Check

The dimensions of the components specified herein shall be checked. They shall conform to those shown in Figure 2(a).

4.3.2 <u>Geometrical Characteristics</u>

The geometrical characteristics of the components specified herein shall be checked. They shall conform to those shown in Figure 2(b).

4.3.3 Weight

The maximum weight of the components specified herein shall be 5.0 grammes.

4.3.4 <u>Terminal Strength</u>

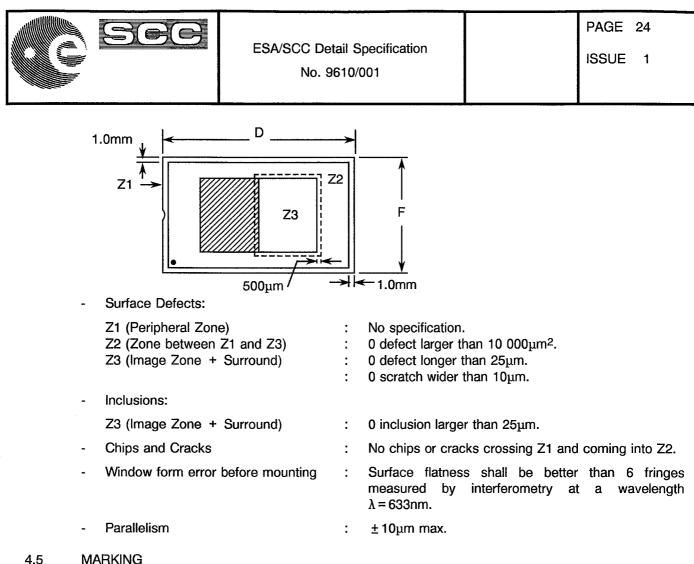
The requirements for terminal strength testing are specified in Section 9 of ESA/SCC Generic Specification No. 9020. The test conditions shall be as follows:

Applied Force: 1.0 ± 0.1 Newtons, 3 bends at $45(+5-0)^{\circ}$.

4.4 MATERIALS AND FINISHES

The materials and finishes shall be as specified herein. Where a definite material is not specified, a material which will enable the components specified herein to meet the performance requirements of this specification shall be used. Acceptance or approval of any constituent material does not guarantee acceptance of the finished product.

4.4.1 <u>Case</u>


The case shall be hermetically sealed and have a ceramic body and glass window. The flatness of the underside of package shall be better than 0.01mm/cm, measured between edges, across the complete surface.

4.4.2 Lead Material and Finish

For lead material shall be Type 'D' with Type '7' finish in accordance with the requirements of ESA/SCC Basic Specification No. 23500.

4.4.3 <u>Window</u>

Window material shall be ZKN7 glass. The optical quality of the window including coating, if required for both sides, shall be better than as defined in DIN3140.

MARKING

4.5.1 General

The marking of all components delivered to this specification shall be in accordance with the requirements of ESA/SCC Basic Specification No. 21700, and the following paragraphs. When the component is too small to accommodate all of the marking specified, as much as space permits shall be marked and the marking information, in full, shall accompany the component in its primary package.

The information to be marked and the order of precedence, shall be as follows:-

- (a) Lead Identification.
- (b) The SCC Component Number.
- (c) Traceability Information.

4.5.2 Lead Identification

An index shall be located at the top of the package in the position defined in Note 1 to Figure 2(a). The pin numbering must be read with the index on the left-hand side.

4.5.3 The SCC Component Number

Each component shall bear the SCC Component Number which shall be constituted and marked as follows: 961000101BE

Detail Specification Number Type Variant (see Table 1(a)) Testing Level (B or C, as applicable)			
Total Dose Irradiation Level (if applicable) ————————————————————————————————————	<u> </u>	-	

The Total Dose Irradiation Level designation shall be added for those devices for which a sample has been successfully tested to the level in question. For these devices, a code letter shall be added in accordance with the requirements of ESA/SCC Basic Specification No. 22900.

4.5.4 Traceability Information

Each component shall be marked in respect of traceability information in accordance with the requirements of ESA/SCC Basic Specification No. 21700.

4.6 ELECTRICAL AND ELECTRO-OPTICAL MEASUREMENTS

4.6.1 <u>Electrical and Electro-optical Measurements at Reference Temperature</u>

The parameters to be measured in respect of electrical and electro-optical characteristics are scheduled in Table 2. Unless otherwise specified, the measurements shall be performed at $T_{ref} \pm 3$ °C.

4.6.2 Electrical and Electro-optical Measurements at High and Low Temperatures

The parameters to be measured at high and low temperatures are scheduled in Table 3. Unless otherwise specified, the measurements shall be performed at -20(+5-0) and +85(+0-5) °C respectively.

4.6.3 Circuits for Electrical and Electro-optical Measurements

Circuits for use in performing electrical and electro-optical measurements listed in Tables 2 and 3 of this specification are shown in Figure 4.

4.7 BURN-IN TESTS

4.7.1 Parameter Drift Values

The parameter drift values applicable to H.T.R.B. and Power Burn-in are specified in Table 4 of this specification. Unless otherwise stated, measurements shall be performed at $T_{ref} \pm 3$ °C. The parameter drift values (Δ) applicable to the parameters scheduled, shall not be exceeded. In addition to these drift value requirements, the appropriate limit value specified for a given parameter in Table 2 shall not be exceeded.

4.7.2 Conditions for High Temperature Reverse Bias Burn-in

Not applicable.

4.7.3 Conditions for Power Burn-in

The requirements for power burn-in are specified in Section 7 of ESA/SCC Generic Specification No. 9020. The conditions for power burn-in shall be as specified in Table 5(b) of this specification.

4.7.4 Electrical Circuits for High Temperature Reverse Bias Burn-in

Not applicable.

4.7.5 <u>Electrical Circuits for Power Burn-in</u>

Circuits for use in performing the power burn-in test are shown in Figure 5(b) of this specification.

•·· ·

TABLE 2 - ELECTRICAL AND ELECTRO-OPTICAL MEASUREMENTS AT REFERENCE TEMPERATURE

No.	CHARACTERISTICS	SYMBOL	TEST METHOD	TEST	TEST CONDITIONS	LIM	IITS	UNIT
INO.	UTARAUTERISTIUS	STIVIDUL	ESA/SCC 25000	FIG.	(PINS UNDER TEST)	MIN	MAX	
1	Leakage Current on Input Gates	١Ľ	Para. 5.1	4(b)	V _{IH} = 15V Note 1	-	300	pА
2 to 15	Input Clamp Voltage (to V _{SS})	V _{IC}	-	4(c)	I _{IN} (Under Test) = − 500µA at V _{IN} ≤ − 3.5V V _{IN} (Remaining Pins) = 0V (Pins 2-3-4-6-7-8-9-11-12- 13-14-18-19-20)	- 1.5	-	V
16 to 29	Insulation Leakage Current between Pins (Input Current)	ΙE	Para. 5.2	4(d)	V _{IH} = 15V Note 1 (Pins 2-3-4-6-7-8-9-11-12- 13-14-18-19-20) (Pin 18) Note 2	-	10	nA
30	Power Supply Current 1	I _{DD1}	Para. 5.3	4(e)	STATIC $V_{DR} = \phi R$ (High Level) = Table 1(a) V_{IN} (Remaining Pins) = 0V $V_{OS} = Open$ $V_{DD} = Table 1(a)$ $V_{SS} = 0V$ (Pins 5 and 15)	Table 1(a) Item 6		mA
31	Power Supply Current 2	I _{DD2}	Para. 5.3	4(g)	DYNAMIC V _{IN} (Remaining Pins) = Figure 4(a) V _{DD} = 15.5V, V _{SS} = -2.0V (Pins 5 and 15)		e 1(a) n 7	mA
32	DC Output Level	V _{ref}	Para. 5.4	4(e)	STATIC $V_{DR} = 13.3V$ or Table 1(a) $\oint R$ (High Level) = 10V or Table 1(a) V_{IN} (Remaining Pins) = 0V $V_{OS} = Open$ $V_{DD} = 15.5V$ or Table 1(a) $V_{SS} = 0V$ or Table 1(a) (Pin 16)	Table 1(a) Item 9		V
33	Output Impedance	Z _S	Para. 6.1	4(f)	V _{IN} (Remaining Pins) = Figure 4(a) V _{OS} = Open V _{DD} = 15.5V, V _{SS} = -2.0V (Pin 16)		e 1(a) n 10	Ω

NOTES: See Page 32.

ISSUE 1

TABLE 2 - ELECTRICAL AND ELECTRO-OPTICAL MEASUREMENTS AT REFERENCE TEMPERATURE (CONT'D)

N		SYMBOL	TEST METHOD	TEST	TEST CONDITIONS	LIM	ITS	UNIT
No.	CHARACTERISTICS	STMBUL	ESA/SCC 25000	FIG.	(PINS UNDER TEST)	MIN	МАХ	UNIT
34	Saturation Voltage for the Image Area	V _{SAT}	Para. 6.7 Method (a)	4(g)	V _{IN} (Remaining Pins) = Figure 4(a) V _{OS} = Open V _{DD} = 15.5V, V _{SS} = -2.0V (Pin 16)	Table Item	9 1(a) 1 11	mV
35	Vertical Charge Transfer Inefficiency	VCTI	Para. 6.12	4(g)	V _{IN} (Remaining Pins) = Figure 4(a) V _{OS} = Open V _{DD} = 15.5V, V _{SS} = -2.0V (Pin 16)	Table 1(a) Item 12		%
36	Horizontal Charge Transfer Inefficiency	HCTI	Para. 6.12	4(g)	V _{IN} (Remaining Pins) = Figure 4(a) V _{OS} = Open V _{DD} = 15.5V, V _{SS} = -2.0V (Pin 16)	Table Item	e 1(a) n 13	%
37	Average Dark Signal (Image Area)	VDS1	Para. 6.20	4(g)	V _{IN} (Remaining Pins) = Figure 4(a) V _{OS} = Open V _{DD} = 15.5V, V _{SS} = -2.0V (Pin 16)	Table 1(a) Item 14		mV
38	Average Dark Signal (Image Area + Storage Area)	VDS2	Para. 6.20	4(g)	V _{IN} (Remaining Pins) = Figure 4(a) V _{OS} = Open V _{DD} = 15.5V, V _{SS} = -2.0V (Pin 16)	Table 1(a) Item 15		mV
39	Dark Signal Non- uniformity, standard deviation σ	DSNU(σ)	Para. 6.21	4(g)	V _{IN} (Remaining Pins) = Figure 4(a) V _{OS} = Open V _{DD} = 15.5V, V _{SS} = -2.0V (Pin 16)		e 1(a) n 17	mV
40	Number of Dark Signal Defects beyond a3 Limit	Ndef3	Para. 6.21	4(g)	V _{IN} (Remaining Pins) = Figure 4(a) V _{OS} = Open V _{DD} = 15.5V, V _{SS} = -2.0V (Pin 16)	Table 1(a) Item 18		-
41	Number of Dark Signal Defects beyond a4 Limit	Ndef4	Para. 6.21	4(g)	V _{IN} (Remaining Pins) = Figure 4(a) V _{OS} = Open V _{DD} = 15.5V, V _{SS} = -2.0V (Pin 16)		e 1(a) n 19	-

TABLE 2 - ELECTRICAL AND ELECTRO-OPTICAL MEASUREMENTS AT REFERENCE TEMPERATURE (CONT'D)

			1	JUNIT	27			
		0)44001	TEST METHOD	TEST	TEST CONDITIONS	LIM	ITS	
No.	CHARACTERISTICS	SYMBOL	ESA/SCC 25000	FIG.	(PINS UNDER TEST)	MIN	MAX	UNIT
42	DSNU Limit for Ndef3	а3	Para. 6.21	4(g)	V _{IN} (Remaining Pins) = Figure 4(a) V _{OS} = Open V _{DD} = 15.5V, V _{SS} = -2.0V (Pin 16)	Table 1(a) Item 20		mV
43	DSNU Limit for Ndef4	a4	Para. 6.21	4(g)	V _{IN} (Remaining Pins) = Figure 4(a) V _{OS} = Open V _{DD} = 15.5V, V _{SS} = -2.0V (Pin 16)	Table 1(a) Item 21		mV
44	Responsivity	R	Para. 6.17	4(g)	V _{IN} (Remaining Pins) = Figure 4(a) V _{OS} = Open V _{DD} = 15.5V, V _{SS} = -2.0V (Pin 16)	Table 1(a) Item 22		V/µJ/cm²
45	Photoresponse Non- uniformity, standard deviation σ	PRNU(σ)	Para. 6.14	4(g)	V _{IN} (Remaining Pins) = Figure 4(a) V _{OS} = Open V _{DD} = 15.5V, V _{SS} = -2.0V (Pin 16)	Table 1(a) Item 24		%
46	Number of PRNU Defects beyond a1 Limit	Ndef1	Para. 6.14	4(g)	V _{IN} (Remaining Pins) = Figure 4(a) V _{OS} = Open V _{DD} = 15.5V, V _{SS} = -2.0V (Pin 16)	Table 1(a) Item 25		-
47	Number of PRNU Defects beyond a2 Limit	Ndef2	Para. 6.14	4(g)	V _{IN} (Remaining Pins) = Figure 4(a) V _{OS} = Open V _{DD} = 15.5V, V _{SS} = - 2.0V (Pin 16)	Table 1(a) Item 26		-
48	PRNU Limit for Ndef1	a1	Para. 6.14	4(g)	V _{IN} (Remaining Pins) = Figure 4(a) V _{OS} = Open V _{DD} = 15.5V, V _{SS} = -2.0V (Pin 16)	Table 1(a) Item 27		%
49	PRNU Limit for Ndef2	a2	Para. 6.14	4(g)	V _{IN} (Remaining Pins) = Figure 4(a) V _{OS} = Open V _{DD} = 15.5V, V _{SS} = -2.0V (Pin 16)		9 1(a) n 28	%

PAGE 29

TABLE 2 - ELECTRICAL AND ELECTRO-OPTICAL MEASUREMENTS AT REFERENCE TEMPERATURE (CONT'D)

No	CHARACTERISTICS	SYMBOL	TEST METHOD	TEST	TEST CONDITIONS	LIM	ITS	UNIT
No.	CHARACTERISTICS	STNDUL	ESA/SCC 25000	FIG.	(PINS UNDER TEST)	MIN	MAX	
50	Spectral Responsivity in Optical Band B1	R(B1)	Para. 6.15	4(g)	V _{IN} (Remaining Pins) = Figure 4(a) V _{OS} = Open V _{DD} = 15.5V, V _{SS} = -2.0V (Pin 16)	Table 1(a) Item 29		V/µJ/cm²
51	Spectral Responsivity in Optical Band B2	R(B2)	Para. 6.15	4(g)	V _{IN} (Remaining Pins) = Figure 4(a) V _{OS} = Open V _{DD} = 15.5V, V _{SS} = -2.0V (Pin 16)	Table 1(a) Item 30		V/µJ/cm²
52	Spectral Responsivity in Optical Band B3	R(B3)	Para. 6.15	4(g)	V _{IN} (Remaining Pins) = Figure 4(a) V _{OS} = Open V _{DD} = 15.5V, V _{SS} = -2.0V (Pin 16)	Table Item	9 1(a) n 31	V/µJ/cm²
53	Spectral Responsivity in Optical Band B4	R(B4)	Para. 6.15	4(g)	V _{IN} (Remaining Pins) = Figure 4(a) V _{OS} = Open V _{DD} = 15.5V, V _{SS} = -2.0V (Pin 16)	Table 1(a) Item 32		V/µJ/cm²
54	Spectral Responsivity in Optical Band B5	R(B5)	Para. 6.15	4(g)	V _{IN} (Remaining Pins) = Figure 4(a) V _{OS} = Open V _{DD} = 15.5V, V _{SS} = -2.0V (Pin 16)	Table 1(a) Item 33		V/µJ/cm²
55	Spectral Responsivity in Optical Band B6	R(B6)	Para. 6.15	4(g)	V _{IN} (Remaining Pins) = Figure 4(a) V _{OS} = Open V _{DD} = 15.5V, V _{SS} = -2.0V (Pin 16)	Table 1(a) Item 34		V/µJ/cm²
56	Spectral Responsivity in Optical Band B7	R(B7)	Para. 6.15	4(g)	V _{IN} (Remaining Pins) = Figure 4(a) V _{OS} = Open V _{DD} = 15.5V, V _{SS} = -2.0V (Pin 16)	Table 1(a) Item 35		V/µJ/cm²
57	Linearity Error	LE	Para. 6.6	4(g)	V _{IN} (Remaining Pins) = Figure 4(a) V _{OS} = Open V _{DD} = 15.5V, V _{SS} = -2.0V (Pin 16)		ə 1(a) n 36	%

NOTES: See Page 32.

ESA/SCC Detail Specification

No. 9610/001

PAGE 30

TABLE 2 - ELECTRICAL AND ELECTRO-OPTICAL MEASUREMENTS AT REFERENCE TEMPERATURE (CONT'D)

			77		-1			
No.	CHARACTERISTICS	SYMBOL	TEST METHOD	TEST	TEST CONDITIONS	LIM	ITS	
NO.	CHARACTERISTICS	STIVIBUL	ESA/SCC 25000	FIG.	(PINS UNDER TEST)	MIN	MAX	UNIT
58	Temporal Noise	V _N	Para. 6.4	4(g)	V _{IN} (Remaining Pins) = Figure 4(a) V _{OS} = Open V _{DD} = 15.5V, V _{SS} = -2.0V (Pin 16)	Table 1(a) Item 37		μV
59	Offset Voltage	V _{Offset}	Para. 6.5	4(g)	V _{IN} (Remaining Pins) = Figure 4(a) V _{OS} = Open V _{DD} = 15.5V, V _{SS} = -2.0V (Pin 16)	Table 1(a) Item 38		mV
60	Amplitude of Reset Feedthrough	V _{Reset}	Para. 5.5	4(h)	V _{IN} (Remaining Pins) = Figure 4(a) V _{DD} = 15.5V, V _{SS} = -2.0V (Pin 16)	Table 1(a) Item 39		mV
61	Reference Level Settling Time	t _{D-Ref}	Para. 6.3	4(h)	V _{IN} (Remaining Pins) = Figure 4(a) V _{DD} = 15.5V, V _{SS} = -2.0V (Pin 16)	Table 1(a) Item 40		ns
62	Reference Level Duration	t _{U-Ref}	Para. 6.3	4(h)	V _{IN} (Remaining Pins) = Figure 4(a) V _{DD} = 15.5V, V _{SS} = -2.0V (Pin 16)	Table Iterr		ns
63	Reference Level Error Band	ΔU _{Ref}	Para. 6.3	4(h)	V _{IN} (Remaining Pins) = Figure 4(a) V _{DD} = 15.5V, V _{SS} = -2.0V (Pin 16)	Table 1(a) Item 42		mV
64	Signal Level Settling Time	t _{D-Signal}	Para. 6.3	4(h)	V _{IN} (Remaining Pins) = Figure 4(a) V _{DD} = 15.5V, V _{SS} = -2.0V (Pin 16)	Table 1(a) Item 43		ns
65	Signal Level Duration	t _{U-Signal}	Para. 6.3	4(h)	V _{IN} (Remaining Pins) = Figure 4(a) V _{DD} = 15.5V, V _{SS} = -2.0V (Pin 16)	Table Iterr	e 1(a) e 44	ns

NOTES: See Page 32.

PAGE 31

ISSUE 1

TABLE 2 - ELECTRICAL AND ELECTRO-OPTICAL MEASUREMENTS AT REFERENCE TEMPERATURE (CONT'D)

Na		SYMBOL	TEST METHOD	TEST	TEST CONDITIONS	LIM	ITS	UNIT
No.	CHARACTERISTICS	STMBUL	ESA/SCC 25000	FIG.	(PINS UNDER TEST)	MIN	MAX	UNIT
66	Signal Level Error Band	ΔU _{Signal}	Para. 6.3	4(h)	V _{IN} (Remaining Pins) = Figure 4(a) V _{DD} = 15.5V, V _{SS} = -2.0V (Pin 16)	Table 1(a) Item 45		mV
67 to 70	Electrode Capacitance	C∳P	Para. 6.2	4(i)	V_{DR} = 13.3V or Table 1(a) V_{IN} (Not Under Test) = 15V or Table 1(a) Load Voltage = 10V plus 50mV, 1.0MHz or Table 1(a) (Pins 11-12-13-14)	Table 1(a) Item 46		pF
71 to 74	Electrode Capacitance	C∲M	Para. 6.2	4(i)	V_{DR} = 13.3V or Table 1(a) V_{IN} (Not Under Test) = 15V or Table 1(a) Load Voltage = 10V plus 50mV, 1.0MHz or Table 1(a) (Pins 6-7-8-9)	Table 1(a) Item 47		pF
75 to 76	Electrode Capacitance	C∳L	Para. 6.2	4(i)	V_{DR} = 13.3V or Table 1(a) V_{IN} (Not Under Test) = 15V or Table 1(a) Load Voltage = 10V plus 50mV, 1.0MHz or Table 1(a) (Pins 2-3)	Table 1(a) Item 48		pF
77	Electrode Capacitance	C∳R	Para. 6.2	4(i)	V _{DR} = 13.3V or Table 1(a) V _{IN} (Not Under Test) = 15V or Table 1(a) Load Voltage = 10V plus 50mV, 1.0MHz or Table 1(a) (Pin 19)	Table 1(a) Item 49		pF
78 to 81	Electrode Capacitance	C∳Po	Para. 6.3	4(j)	V_{DR} = 13.3V or Table 1(a) V_{IN} (Not Under Test) = Open Load Voltage = 10V plus 50mV, 1.0MHz or Table 1(a) (Pins 11-12-13-14)		9 1(a) 1 50	pF

NOTES: See Page 32.

TABLE 2 - ELECTRICAL AND ELECTRO-OPTICAL MEASUREMENTS AT REFERENCE TEMPERATURE (CONT'D)

No.	CHARACTERISTICS	SYMBOL	TEST METHOD	TEST		LIMITS		UNIT
110.		OTWDOL	ESA/SCC 25000	FIG.	(PINS UNDER TEST)	MIN	MAX	UNIT
82 to 85	Electrode Capacitance	C∲Mo	Para. 6.3	4(j)	V_{DR} = 13.3V or Table 1(a) V_{IN} (Not Under Test) = Open Load Voltage = 10V plus 50mV, 1.0MHz or Table 1(a) (Pins 6-7-8-9)	Table Item	e 1(a) 1 51	pF
86 to 88	Electrode Capacitance	C∳Lo	Para. 6.3	4(j)	V_{DR} = 13.3V or Table 1(a) V_{IN} (Not Under Test) = Open Load Voltage = 10V plus 50mV, 1.0MHz or Table 1(a) (Pins 2-3)	Table Item	9 1(a) 1 52	pF
89	Charge to Voltage Conversion Factor	CVF	Para. 6.18	4(g)	V _{IN} (Remaining Pins) = Figure 4(a) V _{OS} = Open V _{DD} = 15.5V, V _{SS} = -2.0V (Pin 16)	Table Item	e 1(a) i 53	µV⁄e

 $\frac{\text{NOTES}}{1. \quad \text{T}_{\text{amb}}} = +25 \pm 3 \text{ °C}.$

2. See Note 1 of Figure 4(d).

•·· ·

TABLE 3 - ELECTRICAL AND ELECTRO-OPTICAL MEASUREMENTS AT HIGH AND LOW TEMPERATURES

No.	CHARACTERISTICS	SYMBOL	TEST METHOD ESA/SCC 25000	TEST FIG.	TEST CONDITIONS	LIMITS		UNIT
					(PINS UNDER TEST)	MIN	MAX	UNIT
1	Leakage Current on Input Gates over T _{op}	١Ľ	Para. 5.1	4(b)	V _{IH} = 15V Note 1	-	1.0	μA
16 to 29	Insulation Leakage Current between Pins (Input Current)	Ι _Ε	Para. 5.2	4(d)	V _{IH} = 15V (Pins 2-3-4-6-7-8-9-11- 12-13-14-19-20) (Pin 18) Note 2	-	1.0	μA
30	Power Supply Current 1 over T _{op}	I _{DD1} (T _{op})	Para. 5.3	4(e)	$\begin{array}{l} \text{STATIC} \\ \text{V}_{\text{DR}} = \phi \text{R} \text{ (High Level)} = \\ \text{Table 1(a)} \\ \text{V}_{\text{IN}} \text{ (Remaining Pins)} \\ = 0 \text{V} \\ \text{V}_{\text{OS}} = \text{Open} \\ \text{V}_{\text{DD}} = \text{Table 1(a)} \\ \text{V}_{\text{SS}} = 0 \text{V} \\ \text{(Pins 5 and 15)} \end{array}$	Table 1(a) Item 8		mA
38	Average Dark Signal (Image Area + Storage Area) over T _{op}	VDS2 (T _{op})	Para. 6.20	4(g)	Timing Diagram TD1	Table 1(a) Item 16		mV
44	Responsivity over T _{op}	R (T _{op})	Para. 6.17	4(g)	Timing Diagram TD1 Uniform illumination BG38 optical filter	Table 1(a) Item 23		V/µJ/cm²

NOTES

1. Measurements performed on 100% basis go-no-go.

2. See Note 1 of Figure 4(d).

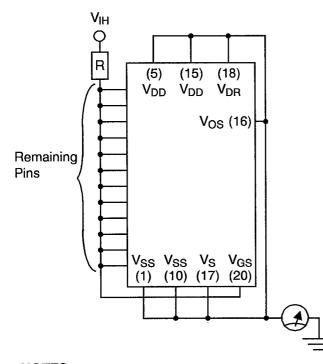
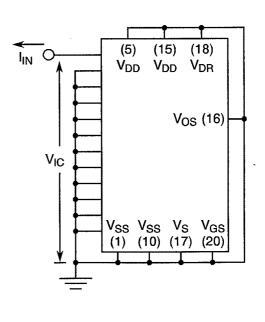


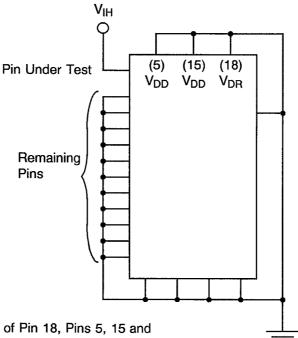
FIGURE 4 - CIRCUITS FOR ELECTRICAL AND ELECTRO-OPTICAL MEASUREMENTS


FIGURE 4(a) - BIASING VOLTAGE LEVELS

PARAMETER	SYMBOL	CONDITIONS	UNIT
Output Amplifier Drain Supply	V _{DD}	15.5 (+0.5-0.5)	V
Reset Bias	V _{DR}	13.3 (+0.2-0.3)	V
Register Output Gate Bias	V _{GS}	2.5 (+0.5-0.5)	V
Output Amplifier Gate Bias	V _S	0 (+0-2.0)	V
Substrate Bias	V _{SS}	-2.0 (+2.0-0)	V
Image Zone Clocks during Integration Period	ϕ 1P low ϕ 2P, ϕ 3P, ϕ 4P high	0.3 (+0.2-0.3) 10 (+1.0-1.0)	V
Image Zone Clocks during Transfer Period	${\displaystyle \mathop{\Phi}\limits^{}}{ m P}$ low ${\displaystyle \mathop{\Phi}\limits^{}}{ m P}$ high	0.3 (+0.2-0.3) 10 (+1.0-1.0)	V
Memory Zone Clocks, Output Register Clocks and Reset Clock	φΜ, φL, φR low φΜ, φL, φR high	0.3 (+0.2-0.3) 10 (+1.0-1.0)	V

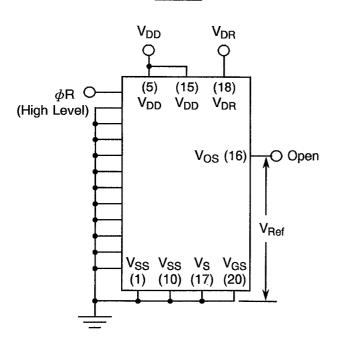
FIGURE 4(b) - LEAKAGE CURRENT ON INPUT GATES

FIGURE 4(c) - INPUT CLAMP VOLTAGE



<u>NOTES</u> 1. R = 1.0MΩ.


FIGURE 4 - CIRCUITS FOR ELECTRICAL AND ELECTRO-OPTICAL MEASUREMENTS (CONTINUED)


FIGURE 4(d) - INSULATION LEAKAGE CURRENT BETWEEN PINS

NOTES

1. For the measurement of Pin 18, Pins 5, 15 and 16 must be open.

STATIC

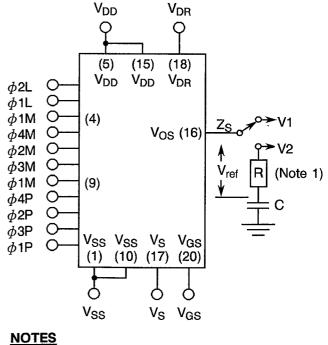
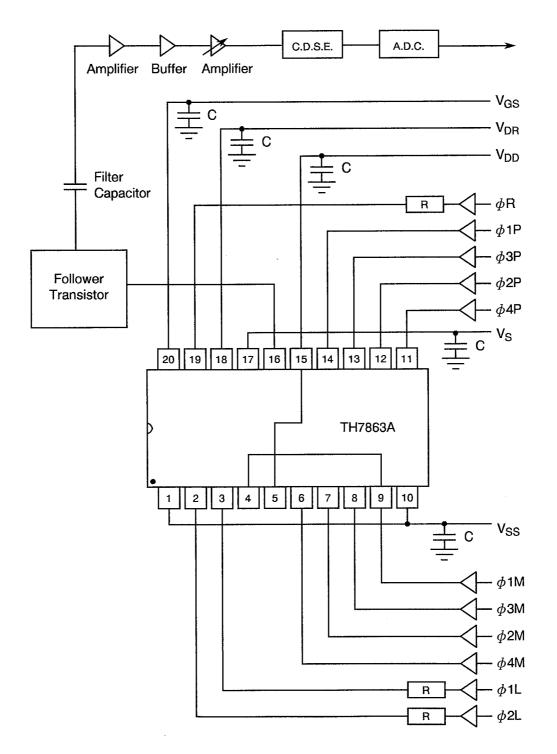
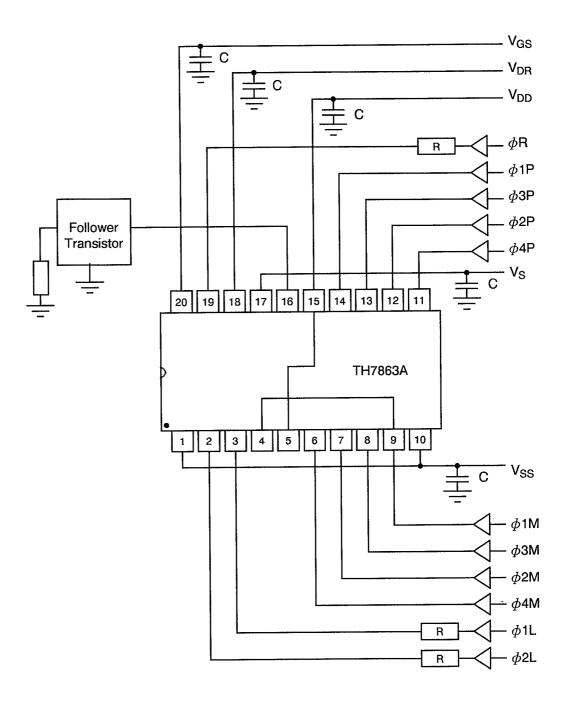



FIGURE 4(f) - OUTPUT IMPEDANCE

1. See individual Tables 1(a).

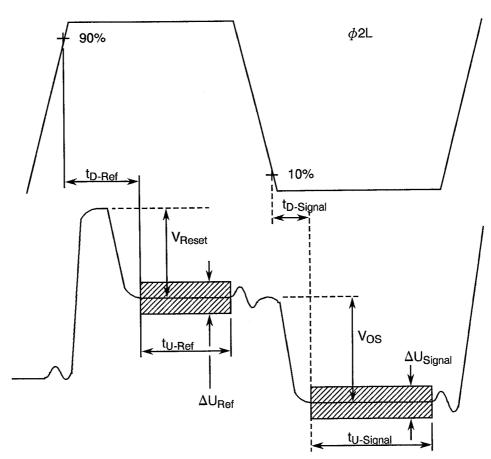
FIGURE 4(g) - DRIVING CIRCUIT

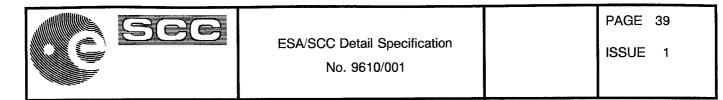


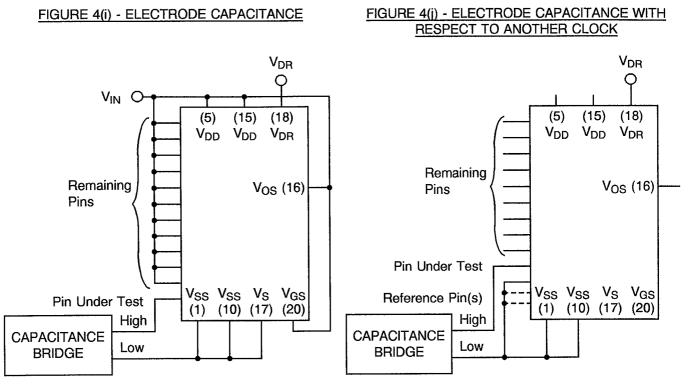
NOTES

- 1. R = Serial resistors to be adjusted to obtain a rise time compatible with the appropriate timing diagram.
- 2. C = Decoupling capacitors to be adjusted to adequately decouple.
- 3. For TD1: FI = 1.0MHz, FL = 7.4MHz.
- 4. For TD2: FI = 1.0MHz, FL = FP = 4.0MHz.




FIGURE 4(h) - VIDEO SIGNAL


NOTES


- 1. R = Serial resistors to be adjusted to obtain a rise time compatible with the appropriate timing diagram.
- 2. C = Decoupling capacitors to be adjusted to adequately decouple.
- 3. For TD1: FI = 1.0MHz, FL = 7.4MHz.
- 4. For TD2: FI = 1.0MHz, FL = FP = 4.0MHz.

OUTPUT WAVEFORM FEATURES

NOTES

1. Pins 4 and 9 must be connected together when either is measured.

MEASUREMENT	Сф	Po	Cφ	Мо	C∳Lo		
MEASUREMENT	Ref. Pin	Test Pin	Ref. Pin	Test Pin	Ref. Pin	Test Pin	
M1	11, 12, 13	14	6, 7, 8	9	2	3	
M2	11, 13, 14	12	6, 8, 9	7	3	2	
M3		11, 12, 13, 14	-	6, 7, 8, 9	-	2, 3	
M4	12, 14	11, 13	7, 9	6, 8	-	-	

TABLE FOR FIGURE 4(j)

NOT

NOTES
1.
$$C\phi Po \text{ or } C\phi Mo \text{ max.} = MAX \begin{bmatrix} \frac{1}{2} & (M1 + M2 - M4) & \frac{1}{2} & (M4 - \frac{M3}{2}) \end{bmatrix}$$

 $C\phi Lo = \frac{1}{2} & (M1 + M2 - M3).$

-.. .

TABLE 4 - PARAMETER DRIFT VALUES

No.	CHARACTERISTICS	SYMBOL	SPEC. AND/OR TEST METHOD	TEST CONDITIONS	CHANGE LIMITS (Δ)	UNIT
1	Leakage Current on Input Gates	١Ļ	As per Table 2	As per Table 2	±50 or (1) ±100	pA %
16 to 29	Insulation Leakage Current between Pins (Input Current)	ΙE	As per Table 2	As per Table 2	±1.0 or (1) ±100	nA %
30	Power Supply Current 1	I _{DD1}	As per Table 2	As per Table 2	± 10	%
31	Power Supply Current 2	I _{DD2}	As per Table 2	As per Table 2	<u>+</u> 10	%
37	Average Dark Signal (Image Area)	VDS1	As per Table 2	As per Table 2	± 30	%
38	Average Dark Signal (Image Area + Storage Area)	VDS2	As per Table 2	As per Table 2	±30	%

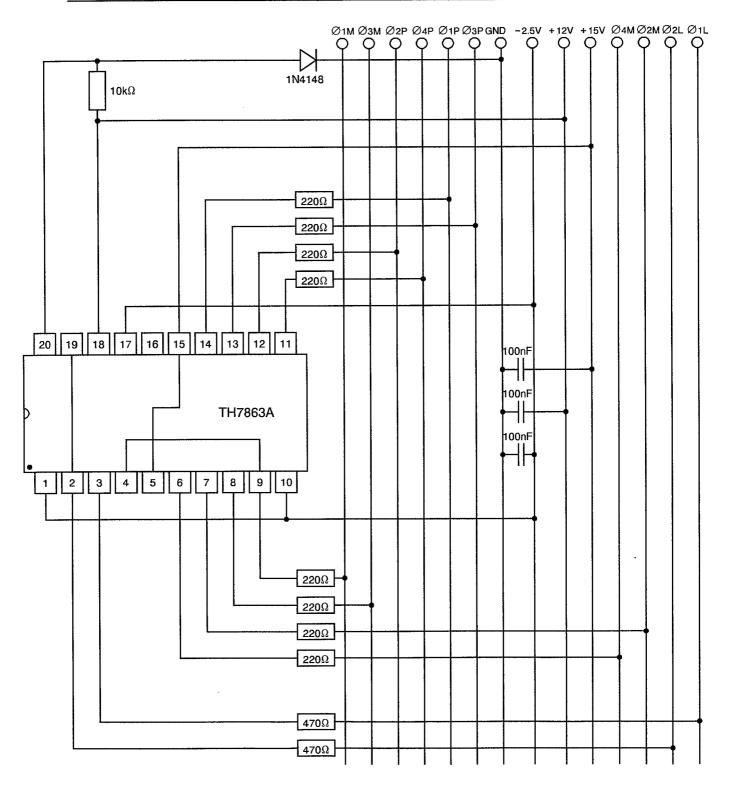
NOTES 1. Whichever is the greater, referred to the initial value.

TABLE 5(a) - CONDITIONS FOR HIGH TEMPERATURE REVERSE BIAS BURN-IN

Not applicable.

TABLE 5(b) - CONDITIONS FOR POWER BURN-IN AND OPERATING LIFE TESTS

No.	CHARACTER	STICS	SYMBOL	CONDITIONS	UNIT
1	Ambient Temperature	T _{amb}	+ 125(+ 0 - 5)	°C	
2	Output Amplifier Drain Supply	(Pins 5-15)	V _{DD}	15	v
3	Reset Bias	(Pin 18)	V _{DR}	13	V
4	Register Output Gate Bias	(Pin 20)	V _{GS}	0.6	V
5	Output Amplifier Gate Bias	V _S	-2.5	V	
6	Substrate Bias	(Pins 1-10)	V _{SS}	-2.5	v
7	Image Zone Clocks	(Pins 11-12-13-14)	φP	High 11 Low 0.3	Vac
8	Memory Zone Clocks	(Pins 4-6-7-8-9)	ϕ M	High 11 Low 0.3	Vac
9	Output Register Clocks	(Pins 2-3)	φL	High 11 Low 0.3	Vac
10	Reset Clock (Pin 19)		φR	High 11 Low 0.3	Vac
11	Image Zone to Memory Zone an Output Register Frequency	Fı	125k	Hz	
12	Output Register and Reset Frequence	Jency	FL	1.0M	Hz



-...

FIGURE 5(a) - ELECTRICAL CIRCUIT FOR HIGH TEMPERATURE REVERSE BIAS BURN-IN

Not applicable.

FIGURE 5(b) - ELECTRICAL CIRCUIT FOR POWER BURN-IN AND OPERATING LIFE TESTS

4.8 <u>ENVIRONMENTAL AND ENDURANCE TESTS (CHARTS IV AND V OF ESA/SCC GENERIC</u> SPECIFICATION NO. 19020)

4.8.1 Electrical and Electro-optical Measurements on Completion of Environmental Tests

The parameters to be measured on completion of environmental tests are scheduled in Table 6. Unless otherwise stated, the measurements shall be performed at $T_{ref} \pm 3$ °C.

4.8.2 Electrical and Electro-optical Measurements at Intermediate Points during Endurance Tests

The parameters to be measured at intermediate points during endurance tests are scheduled in Table 6 of this specification. Unless otherwise stated, the measurements shall be performed at $T_{ref} \pm 3$ °C.

4.8.3 Electrical and Electro-optical Measurements on Completion of Endurance Tests

The parameters to be measured on completion of endurance testing are scheduled in Table 6 of this specification. Unless otherwise stated, the measurements shall be performed at $T_{ref} \pm 3$ °C.

4.8.4 Conditions for Operating Life Tests

The requirements for operating life testing are specified in Section 9 of ESA/SCC Generic Specification No. 9020. The conditions for operating life testing shall be as specified in Table 5(b) of this specification.

4.8.5 <u>Electrical Circuits for Operating Life Tests</u>

Circuits for use in performing the operating life tests are shown in Figure 5(b) of this specification.

4.8.6 Conditions for High Temperature Storage Test

The requirements for the high temperature storage test are specified in ESA/SCC Generic Specification No. 9020. The temperature to be applied shall be the maximum storage temperature specified in Table 1(b) of this specification.

4.9 TOTAL DOSE IRRADIATION TESTING

4.9.1 Application

If specified in Para. 4.2.1 of this specification, total dose irradiation testing shall be performed in accordance with the requirements of ESA/SCC Basic Specification No. 22900.

4.9.2 Bias Conditions

Continuous bias shall be applied during irradiation testing as shown in Figure 6 of this specification.

4.9.3 Electrical and Electro-optical Measurements

For all Variants, the parameters to be measured prior to irradiation exposure are I_L in accordance with Table 2 and those parameters scheduled in the individual Table 1(a) for Variant 01, with the Conditions and Limits as specified in the individual Table 1(a) for the Variant in question. Only devices which meet these requirements shall be included in the test sample.

The parameters to be measured during and on completion of irradiation testing are scheduled in Table 7 of this specification.

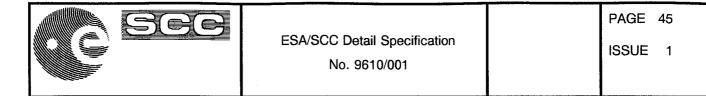
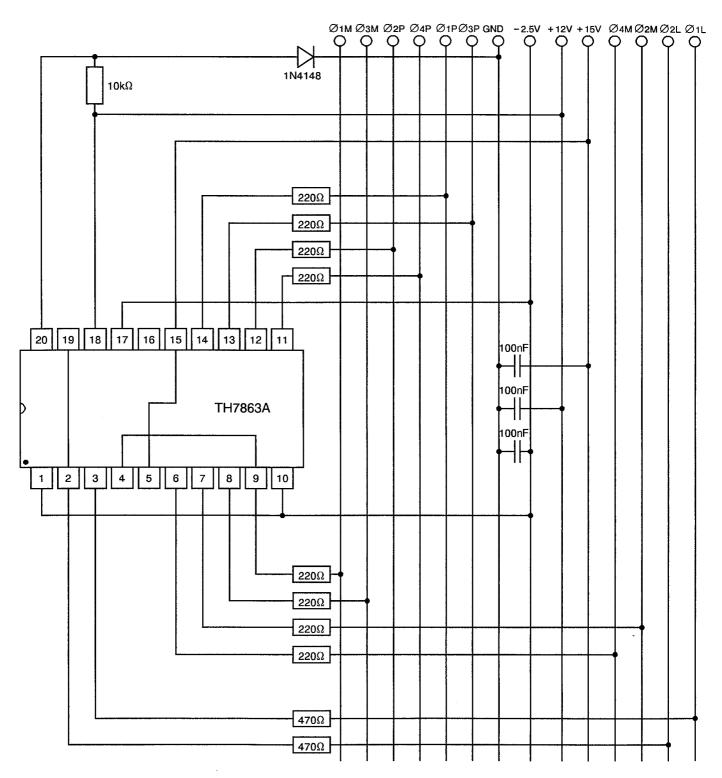


TABLE 6 - ELECTRICAL AND ELECTRO-OPTICAL MEASUREMENTS ON COMPLETION OF ENVIRONMENTAL TESTS AND AT INTERMEDIATE POINTS AND ON COMPLETION OF ENDURANCE TESTING


No.	CHARACTERISTICS	SYMBOL	SPEC. AND/OR	TEST	CHANGE LIMITS	ABSC	LUTE	UNIT
INO.	CHARACTERISTICS	STIMBOL	TEST METHOD	CONDITIONS	(Δ)	MIN.	MAX.	
1	Leakage Current on Input Gates	١Ļ	As per Table 2	As per Table 2	±50 or (1) ±100	-	300	рА %
16 to 29	Insulation Leakage Current between Pins (Input Current)	ΙE	As per Table 2	As per Table 2	± 1.0 or (1) ± 100	-		nA %
30	Power Supply Current 1	I _{DD1}	As per Table 2	As per Table 2	±10	-	-	%
31	Power Supply Current 2	I _{DD2}	As per Table 2	As per Table 2	± 10	-		%
34	Saturation Voltage for the Image Area	V _{SAT}	As per Table 2	As per Table 2	± 15	-	-	%
37	Average Dark Signal (Image Area)	VDS1	As per Table 2	As per Table 2	± 30	-	w	%
38	Average Dark Signal (Image Area + Storage Area)	VDS2	As per Table 2	As per Table 2	± 30	-	-	%
39	Dark Signal Non- uniformity, standard deviation σ	DSNU(σ)	As per Table 2	As per Table 2	-	As per	Table 2	mV
40	Number of DSNU Defects beyond a3 Limit	Ndef3	As per Table 2	As per Table 2	-	As per	Table 2	-
41	Number of DSNU Defects beyond a4 Limit	Ndef4	As per Table 2	As per Table 2	-	As per	Table 2	-
44	Responsivity	R	As per Table 2	As per Table 2	±5.0	-	:	%
45	Photoresponse Non- uniformity, standard deviation σ	PRNU(σ)	As per Table 2	As per Table 2	-	As per	Table 2	%
46	Number of PRNU Defects beyond a1 Limit	Ndef1	As per Table 2	As per Table 2	-	As per	Table 2	-
47	Number of PRNU Defects beyond a2 Limit	Ndef2	As per Table 2	As per Table 2	-	As per	Table 2	-

NOTES

1. Whichever is the greater, referred to the initial value.

FIGURE 6 - BIAS CONDITIONS FOR IRRADIATION TESTING

TABLE 7 - ELECTRICAL AND ELECTRO-OPTICAL MEASUREMENTS DURING AND ON COMPLETION OF IRRADIATION TESTING

No.	CHARACTERISTICS	SYMBOL	SPEC. AND/OR TEST METHOD	TEST CONDITIONS	ABSOL. (MAX) t0 (1)	ABSOL. (MAX) t1 (1)	ABSOL. (MAX) t2 (1)	UNIT
1	Leakage Current on Input Gates	١Ľ	As per Table 2	As per Table 2	300	300	300	рА
31	Power Supply Current 1	I _{DD1}	As per Table 2	As per Table 2	13 -	- ± 15	- ± 15	mA %
37	Average Dark Signal (Image Area)	VDS1	As per Table 2	ti = 10s T _{amb} = - 20°C Timing Diagram TD2 (Note 3)	30	120	400	mV
90	Average Dark Signal (Storage Area)	VDS3	-	ti = 180ms T _{amb} = - 20°C Timing Diagram TD2 Notes 3 and 4	1.0	10	30	mV

NOTES

- 1. t0 = Initial Measurements, t1 = Measurements during and on completion of Irradiation Testing, t2 = Measurements after annealing, (see ESA/SCC Basic Specification No. 22900, Figure II).
- 2. Whichever is the greater, referred to the initial value.
- 3. Measurements are performed at -20°C in order to separate image area and storage area dark signal contributions at t0, t1, t2 steps.
- 4. This parameter is derived as a difference in measurements between VDS2 and VDS1.

TABLE 1(a) - TYPE VARIANT DETAILED INFORMATION

No.	CHARACTERISTICS	SYMBOL	LIM	ITS	UNITS	REMARKS
NO.	CHARACTERIS 1103	STMBOL	MIN.	MAX.	UNITS	nlimanno
1	Operating Temperature Range	Т _{ор}	- 20	+ 85	°C	
2	Reference Temperature	T _{ref}	+ 22	+ 28	°C	
3	Flatness of Image Area	Р	-	10	μm	At + 25 ± 3 °C
4	Spectral Range for Optical Coating on Window	WOC	N	/Α	nm	
5	Timing Diagram	TD	TD1 (Fig	ure 3(b))	-	
6	Power Supply Current 1	I _{DD1}	-	10	mA	Static V _{DD} = 15V V _{DR} = ϕ R = 10V
7	Power Supply Current 2	I _{DD2}	N	Ά	mA	Dynamic
8	Power Supply Current 1 over T _{op}	I _{DD1} (T _{op})	-	13	mA	Static V _{DD} = 15V V _{DR} = ϕ R = 10V
9	DC Output Level	V _{Ref}	N	/A	V	
10	Output Impedance	Z _S	N	/Α	Ω	
11	Saturation Voltage for the Image Area	V _{SAT}	900	-	mV	
12	Vertical Charge Transfer Inefficiency	VCTI	-	7.0	%	
13	Horizontal Charge Transfer Inefficiency	HCTI	-	5.0	%	
14	Average Dark Signal (Image Area)	VDS1	-	4.0	mV	ti = 20ms
15	Average Dark Signal (Image Area + Storage Area)	VDS2	-	8.0	mV	ti = 20ms
16	Average Dark Signal (Image Area + Storage Area) over T _{OP}	VDS2(T _{op})	-	220	mV	Timing diagram TD1
17	Dark Signal Non-uniformity, standard deviation $\boldsymbol{\sigma}$	DSNU(σ)	-	0.5	mV	Slope effect removed
18	Number of Dark Signal Defects beyond a3 limit	Ndef3	-	0	-	Slope effect removed

TABLE 1(a) - TYPE VARIANT DETAILED INFORMATION (CONTINUED)

			LIN	IITS		
No.	CHARACTERISTICS	SYMBOL	MIN.	MAX.	UNITS	REMARKS
19	Number of Dark Signal Defects beyond a4 limit	Ndef4	N	/A	-	
20	DSNU Limit for Ndef3	a3	-	2.0	mV	Slope effect removed
21	DSNU Limit for Ndef4	a4	N	/A	mV	
22	Responsivity	R	7.0	-	V/µJ/cm²	BG38 optical filter
23	Responsivity over T _{op}	R(T _{op})	6.0	-	V/µJ/cm ²	BG38 optical filter
24	Photoresponse Non- uniformity, standard deviation σ	PRNU(σ)	-	2.5	%	BG38 optical filter
25	Number of PRNU defects beyond a1 limit	Ndef1	-	10	-	BG38 optical filter
26	Number of PRNU defects beyond a2 limit	Ndef2	-	0	-	BG38 optical filter
27	PRNU limit for Ndef1	a1	- 20	-	%	BG38 optical filter
28	PRNU limit for Ndef2	a2	- 30	+ 15	%	BG38 optical filter Black defects (dips) area max. = 2 pixels
29	Spectral Responsivity in Optical Band B1	R(B1)	Ν	/A	V/µJ/cm²	
30	Spectral Responsivity in Optical Band B2	R(B2)	N	/A	V/µJ/cm²	
31	Spectral Responsivity in Optical Band B3	R(B3)	N	/A	V/µJ/cm²	
32	Spectral Responsivity in Optical Band B4	R(B4)	N	/A	V/µJ/cm ²	
33	Spectral Responsivity in Optical Band B5	R(B5)	N/A		V/µJ/cm ²	
34	Spectral Responsivity in Optical Band B6	R(B6)	N/A		V/µJ/cm²	
35	Spectral Responsivity in Optical Band B7	R(B7)	N/A		V/µJ/cm²	
36	Linearity Error	LE	N/A		%	
37	Temporal Noise	V _N	N/A		μV	
38	Offset Voltage	V _{Offset}	N/A		mV	

TABLE 1(a) - TYPE VARIANT DETAILED INFORMATION (CONTINUED)

			LIMITS			
No.	CHARACTERISTICS	SYMBOL	MIN.	MAX.	UNITS	REMARKS
39	Amplitude of Reset Feedthrough	V _{Reset}	N	/A	mV	
40	Reference Level Settling Time	t _{D-Ref}	Ν	/A	ns	
41	Reference Level Duration	t _{U-Ref}	N	/A	ns	
42	Reference Level Error Band	ΔU _{Ref}	N	/A	mV	
43	Signal Level Settling Time	t _{D-Signal}	N/A		ns	
44	Signal Level Duration	t∪-Signal	N/A		ns	
45	Signal Level Error Band	ΔU_{Signal}	N	/A	mV	
46	Electrode Capacitance	C∳P	N	/A	pF	
47	Electrode Capacitance	C∲M	N	/A	pF	
48	Electrode Capacitance	C¢L	N	/A	pF	
49	Electrode Capacitance	C∳R	N	/A	рF	
50	Electrode Capacitance with respect to another Clock	С∳Ро	N/A		pF	
51	Electrode Capacitance with respect to another Clock	С∲Мо	N/A		pF	
52	Electrode Capacitance with respect to another Clock	C∳Lo	N/A		pF	-
53	Charge to Voltage Conversion Factor	CVF	N/A		μV/e	

<u>-</u>.. .

TABLE 1(a) - TYPE VARIANT DETAILED INFORMATION

No.	CHARACTERISTICS	SYMBOL	LIM	IITS	UNITS	REMARKS
NO.	UTANAUTENISTIUS	STMBOL	MIN.	MAX.	UNITS	neivianno
1	Operating Temperature Range	Т _{ор}	- 20	+ 85	°C	
2	Reference Temperature	T _{ref}	+ 32	+ 38	°C	
3	Flatness of Image Area	Р	-	10	μm	At +25±3 °C
4	Spectral Range for Optical Coating on Window	WOC	450	900	nm	Reflectance <1.0% for each side
5	Timing Diagram	TD	TD2 (Fig	ure 3(b))	-	
6	Power Supply Current 1	I _{DD1}	-	10	mA	Static V _{DD} = 15V V _{DR} = ϕ R = 10V
7	Power Supply Current 2	I _{DD2}		10	mA	Dynamic
8	Power Supply Current 1 over T _{op}	I _{DD1} (T _{op})	-	13	mA	Static V _{DD} = 15V V _{DR} = ϕ R = 10V
9	DC Output Level	V _{Ref}	10	13	V	
10	Output Impedance	Z _S	-	500	Ω	R = 1000Ω C = 200nF
11	Saturation Voltage for the Image Area	V _{SAT}	900	-	mV	
12	Vertical Charge Transfer Inefficiency	VCTI	-	7.0	%	
13	Horizontal Charge Transfer Inefficiency	HCTI	-	5.0	%	
14	Average Dark Signal (Image Area)	VDS1	-	270	mV	ti = 1.0s
15	Average Dark Signal (Image Area + Storage Area)	VDS2	-	270	mV	ti = 1.0s
16	Average Dark Signal (Image Area + Storage Area) over T _{op}	VDS2(T _{op})	-	220	, mV	Timing diagram TD1
17	Dark Signal Non-uniformity, standard deviation $\boldsymbol{\sigma}$	DSNU(σ)	-	17	mV	ti = 1.0s
18	Number of Dark Signal Defects beyond a3 limit	Ndef3	-	10	-	ti = 1.0s

-.. .

TABLE 1(a) - TYPE VARIANT DETAILED INFORMATION (CONTINUED)

			LIM	IITS	UNITS	
No.	CHARACTERISTICS	SYMBOL	MIN.	MAX.	UNITS	REMARKS
19	Number of Dark Signal Defects beyond a4 limit	Ndef4	-	0	-	ti = 1.0s
20	DSNU Limit for Ndef3	a3	-	68	mV	ti = 1.0s
21	DSNU Limit for Ndef4	a4	-	95	mV	ti = 1.0s
22	Responsivity	R	7.0	-	V/µJ/cm ²	BG38 optical filter
23	Responsivity over T _{op}	R(T _{op})	6.0	-	V/µJ/cm²	BG38 optical filter Timing diagram TD1
24	Photoresponse Non- uniformity, standard deviation σ	PRNU(σ)	-	2.5	%	B5, B6 optical filters
25	Number of PRNU defects beyond a1 limit	Ndef1	-	10	-	B5, B6 optical filters
26	Number of PRNU defects beyond a2 limit	Ndef2	-	0	-	B5, B6 optical filters
27	PRNU limit for Ndef1	a1	- 10	+ 10	%	B5, B6 optical filters
28	PRNU limit for Ndef2	a2	- 20	+ 20	%	B5, B6 optical filters
29	Spectral Responsivity in Optical Band B1	R(B1)	N	/A	V/µJ/cm²	
30	Spectral Responsivity in Optical Band B2	R(B2)	6.3	-	V/µJ/cm²	517/81 nm
31	Spectral Responsivity in Optical Band B3	R(B3)	10	-	V/µJ/cm²	610/98 nm
32	Spectral Responsivity in Optical Band B4	R(B4)	12.2	-	V/µJ/cm²	703/94 nm
33	Spectral Responsivity in Optical band B5	R(B5)	10.9	-	V/µJ/cm²	827/98 nm
34	Spectral Responsivity in Optical band B6	R(B6)	7.0	-	V/µJ/cm²	900/105 nm
35	Spectral Responsivity in Optical band B7	R(B7)	N/A		V/µJ/cm²	
36	Linearity Error	LE	-	3.0	%	Signal amplitude = 45 to 850mV
37	Temporal Noise	V _N	-	200	μV	

TABLE 1(a) - TYPE VARIANT DETAILED INFORMATION (CONTINUED)

No.		CHARACTERISTICS SYMBOL		IITS	UNITS	REMARKS
NO.	UTANAU TENIS TIUS	STNIDUL	MIN.	MAX.	UNITS	
38	Offset Voltage	V _{Offset}	-	15	mV	
39	Amplitude of Reset Feedthrough	V _{Reset}	-	250	mV	
40	Reference Level Settling Time	^t D-Ref	-	70	ns	ϕ 2L rising edge (90%) = reference
41	Reference Level Duration	^t U-Ref	45	-	ns	
42	Reference Level Error Band	ΔU_{Ref}	-	9.0	mV	
43	Signal Level Settling Time	^t D-Signal	-	40	ns	
44	Signal Level Duration	t _{U-Signal}	60	-	ns	V _{OS} = 400mV
45	Signal Level Error Band	ΔU _{Signal}	-	9.0	mV	V _{OS} = 400mV
46	Electrode Capacitance	C∳P	-	2000	pF	$T_{amb} = +25 \pm 3 \text{ °C}$
47	Electrode Capacitance	C∲M	-	2000	pF	$T_{amb} = +25 \pm 3 $ °C
48	Electrode Capacitance	CφL	-	200	pF	$T_{amb} = +25 \pm 3 $ °C
49	Electrode Capacitance	C∳R	-	10	pF	$T_{amb} = +25 \pm 3 $ °C
50	Electrode Capacitance with respect to another Clock	C∳Po	-	2000	pF	T _{amb} = +25 ±3 °C
51	Electrode Capacitance with respect to another Clock	С∲Мо	-	2000	pF	T _{amb} = +25 ±3 °C
52	Electrode Capacitance with respect to another Clock	C∳Lo	-	200	pF	T _{amb} = +25±3 °C
53	Charge to Voltage Conversion Factor	CVF	1.7	2.2	μV/e	5 devices/lot (not deliverable devices)