

Page i

INTEGRATED CIRCUITS, SILICON MONOLITHIC, REGULATING PULSE WIDTH MODULATOR, BASED ON TYPE SG1525A

ESCC Detail Specification No. 9108/011

ISSUE 1 October 2002

ESCC Detail Specification

PAGE	ii
ISSUE	1

LEGAL DISCLAIMER AND COPYRIGHT

European Space Agency, Copyright © 2002. All rights reserved.

The European Space Agency disclaims any liability or responsibility, to any person or entity, with respect to any loss or damage caused, or allleged to be caused, directly or indirectly by the use and application of this ESCC publication.

This publication, without the prior permission of the European Space Ageny and provided that it is not used for a commercial purpose, may be:

- copied in whole in any medium without alteration or modification.
- copied in part, in any medium, provided that the ESCC document identification, comprising the ESCC symbol, document number and document issue, is removed.

european space agency agence spatiale européenne

Pages 1 to 41

INTEGRATED CIRCUITS, SILICON MONOLITHIC, REGULATING PULSE WIDTH MODULATOR, BASED ON TYPE SG1525A

ESA/SCC Detail Specification No. 9108/011

space components coordination group

		Approved by			
Issue/Rev.	Date	SCCG Chairman	ESA Director General or his Deputy		
Issue 1	March 1994	Tommers	Later		
Revision 'A'	June 1995	Tommens	Hoom		
			<u> </u>		

Rev. 'A'

PAGE 2

ISSUE 1

DOCUMENTATION CHANGE NOTICE

Rev. Letter	Rev. Date	Reference	CHANGE Item	Approved DCR No.
'A'	June '95	P1. Cover page P2. DCN P8. Figure 2 P22. Table 2 P30. Table 3		None None 221256 23710 23710

PAGE 3

ISSUE 1

TABLE OF CONTENTS

		<u>Page</u>
1.	GENERAL	5
4 4	Conn	5
1.1	Scope	5
1.2	Component Type Variants	
1.3	Maximum Ratings	5
1.4	Parameter Derating Information	5
1.5	Physical Dimensions	5
1.6	Pin Assignment	5
1.7	Truth Table	5
1.8	Functional Diagram	5
2.	APPLICABLE DOCUMENTS	12
3.	TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS	12
4.	REQUIREMENTS	12
4.1	General	12
4.2	Deviations from Generic Specification	13
4.2.1	Deviations from Special In-process Controls	13
4.2.2	Deviations from Final Production Tests	13
4.2.3	Deviations from Burn-in Tests	13
4.2.4	Deviations from Qualification, Environmental and Endurance Tests	13
4.2.5	Deviations from Lot Acceptance Tests	13
4.3	Mechanical Requirements	13
4.3.1	Dimension Check	13
4.3.2	Weight	13
4.4	Materials and Finishes	13
4.4.1	Case	13
4.4.2	Lead Material and Finish	13
4.5	Marking	14
4.5.1	General	14
4.5.2	Lead Identification	14
4.5.3	The SCC Component Number	14
4.5.4	Traceability Information	14
4.6	Electrical Measurements	14
4.6.1	Electrical Measurements at Room Temperature	14
4.6.2	Electrical Measurements at High and Low Temperatures	14
4.6.3	Circuits for Electrical Measurements	14
4.7	Burn-In Tests	15
4.7.1	Parameter Drift Values	15
4.7.2	Conditions for H.T.R.B. Burn-In	15
4.7.3	Conditions for Power Burn-in	15
4.7.4	Electrical Circuit for H.T.R.B. Burn-In	15
4.7.5	Electrical Circuit for Power Burn-in	15
4.8	Environmental and Endurance Tests	39
4.8.1	Electrical Measurements on Completion of Environmental Tests	39
4.8.2	Electrical Measurements at Intermediate Points during Endurance Tests	39
4.8.3	Electrical Measurements on Completion of Endurance Tests	39
4.8.4	Conditions for Operating Life Test	39
4.8.5	Electrical Circuits for Operating Life Test	39
4.8.6	Conditions for High Temperature Storage Test	39
4.9	Total Dose Irradiation Testing	40
	-	

PAGE 4

		Page
TABLE	<u>'S</u>	
1(a)	Type Variants	6
1(b)	Maximum Ratings	6
2	Electrical Measurements at Room Temperature, d.c. Parameters	16
	Electrical Measurements at Room Temperature, a.c. Parameters	22
3	Electrical Measurements at High and Low Temperatures, d.c. Parameters	24
	Electrical Measurements at High and Low Temperatures, a.c. Parameters	30
4	Parameter Drift Values	38
5	Conditions for Power Burn-in and Operating Life Tests	38
6	Electrical Measurements on Completion of Environmental Tests and at Intermediate Points and on Completion of Endurance Testing	41
FIGUR	<u>ES</u>	
1	Parameter Derating Information	7
2	Physical Dimensions	8
3(a)	Pin Assignment	10
3(b)	Truth Table	N/A
3(c)	Circuit Schematic	N/A
3(d)	Functional Diagram	11
4	Circuits for Electrical Measurements	32
5	Flectrical Circuit for Power Burn-in and Operating Life Tests	39

APPENDICES (Applicable to specific Manufacturers only)

None.

PAGE

5

ISSUE 1

1. GENERAL

1.1 SCOPE

This specification details the ratings, physical and electrical characteristics, test and inspection data for a silicon monolithic, Regulating Pulse Width Modulator based on Type SG1525A. It shall be read in conjunction with ESA/SCC Generic Specification No. 9000, the requirements of which are supplemented herein.

1.2 COMPONENT TYPE VARIANTS

Variants of the basic type integrated circuits specified herein, which are also covered by this specification, are given in Table 1(a).

1.3 MAXIMUM RATINGS

The maximum ratings, which shall not be exceeded at any time during use or storage, applicable to the integrated circuits specified herein, are as scheduled in Table 1(b).

1.4 PARAMETER DERATING INFORMATION

The parameter derating information for the integrated circuits specified herein is shown in Figure 1.

1.5 PHYSICAL DIMENSIONS

The physical dimensions of the integrated circuits specified herein are shown in Figure 2.

1.6 PIN ASSIGNMENT

As per Figure 3(a).

1.7 TRUTH TABLE (FIGURE 3(b))

Not applicable.

1.8 CIRCUIT SCHEMATIC (FIGURE 3(c))

Not applicable.

1.9 FUNCTIONAL DIAGRAM

As per Figure 3(d).

PAGE 6

TABLE 1(a) - TYPE VARIANTS

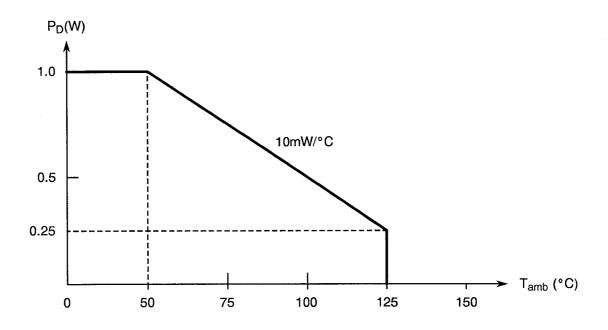
VARIANT	CASE	FIGURE	LEAD MATERIAL AND FINISH
03	D.I.L.	2	G2 or G8
04	D.I.L.	2	G4

TABLE 1(b) - MAXIMUM RATINGS

No.	CHARACTERISTICS	SYMBOL	MAXIMUM RATING	UNIT	REMARKS
1	Supply Voltage	+V _{IN}	40	V	-
2	Collector Supply Voltage	V _{CC}	40	V	-
3	Logic Inputs	V_{log}	-0.3 to +5.5	٧	-
4	Analog Inputs	V _{an}	-0.3 to +V _{IN}	V	-
5	Output Current (Source or Sink)	± lout	500	mA	-
6	Reference Output Current	I _{REF}	50	mA	-
7	Oscillator Charging Current	losc	5.0	mA	-
8	Device Dissipation	P_{D}	1.0	W	Note 1
9	Operating Temperature Range	T _{op}	- 55 to + 125	°C	T _{amb}
10	Storage Temperature Range	T _{stg}	- 65 to + 150	°C	-
11	Soldering Temperature	T _{sol}	+ 300	°C	Note 2
12	Junction Temperature	TJ	+ 150	°C	-
13	Thermal Resistance: Junction to Ambient Junction to Case	R _{TH(J-A)} R _{TH(J-C)}	100 60	°C/W	. -

NOTES

- 1. At T_{amb} = +50°C. For derating at T_{amb} > +50°C, see Figure 1.
- 2. Duration 10 seconds maximum at a distance of not less than 1.5mm from the device body, and the same lead shall not be resoldered until 3 minutes have elapsed.



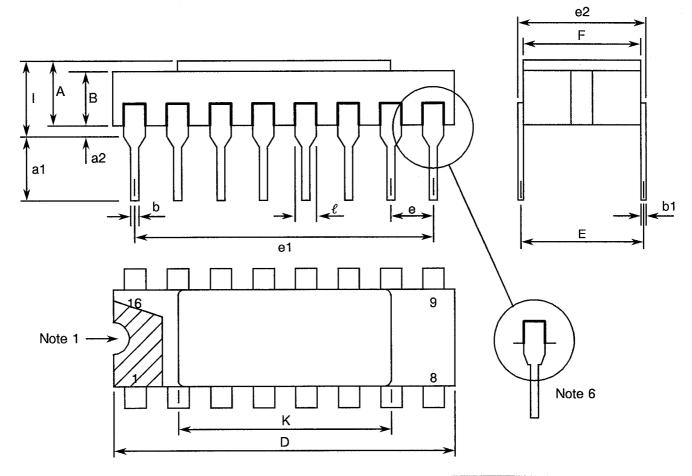
PAGE

ISSUE 1

7

FIGURE 1 - PARAMETER DERATING INFORMATION

Rated Power Versus Temperature



Rev. 'A'

PAGE 8 ISSUE 1

FIGURE 2 - PHYSICAL DIMENSIONS

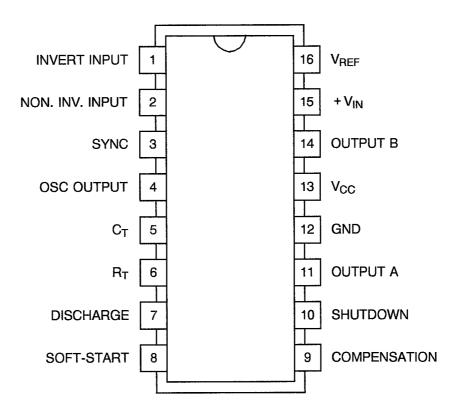
DUAL-IN-LINE PACKAGE, 16-PIN

eVMPOL	MILLIM	NOTES	
SYMBOL	MIN	MAX	NOTES
Α	2.10	2.71	
a1	3.00	3.70	
a2	0.63	1.14	2
В	1.82	2.39	
b	0.40	0.50	3
b1	0.20	0.30	3
D	20.06	20.58	
E	7.36	7.87	
е	2.54 T	YPICAL	4, 5
e1	17.65	17.90	
e2	7.62	8.12	
F	7.29	7.70	
l	-	3.83	
K	10.90	12.10	
ℓ	1.14	1.50	3

PAGE

ISSUE 1

FIGURE 2 - PHYSICAL DIMENSIONS (CONTINUED)


NOTES TO FIGURE 2

- 1. Index area: a notch, letter or dot shall be located adjacent to Pin 1 and shall be within the shaded area shown.
- 2. The dimension shall be measured from the seating plane to the base plane.
- 3. All leads or terminals.
- 4. The true position pin spacing is 2.54mm between centrelines. Each pin centreline shall be located within ± 0.25mm of its true longitudinal position relative to Pin 1 and the highest pin number.
- 5. 14 spaces.
- 6. For all pins, either pin shape may be supplied.

PAGE 10

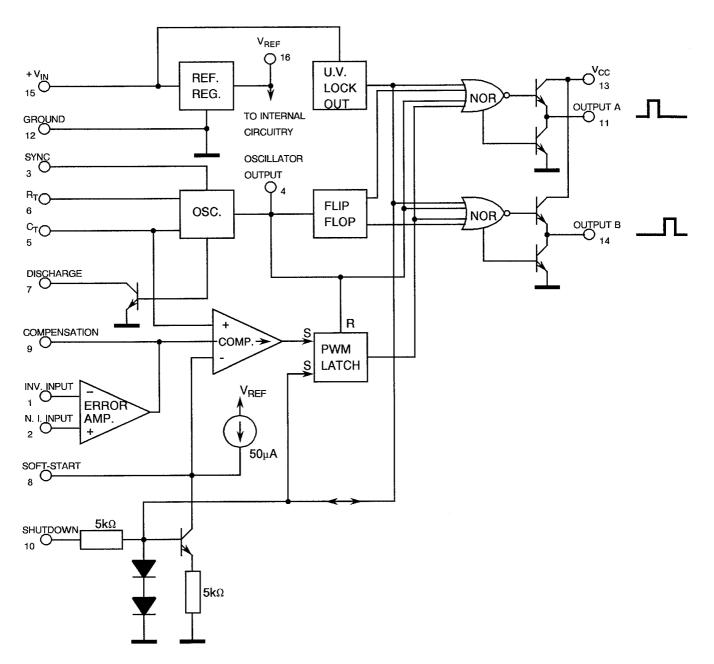
ISSUE 1

FIGURE 3(a) - PIN ASSIGNMENT

FIGURE 3(b) - TRUTH TABLE

Not applicable.

FIGURE 3(c) - CIRCUIT SCHEMATIC


Not applicable.

PAGE 11

ISSUE 1

FIGURE 3(d) - FUNCTIONAL DIAGRAM

PAGE 12

ISSUE 1

2. APPLICABLE DOCUMENTS

The following documents form part of this specification and shall be read in conjunction with it:-

- (a) ESA/SCC Generic Specification No. 9000 for Integrated Circuits.
- (b) MIL-STD-883, Test Methods and Procedures for Micro-electronics.

3. TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS

For the purpose of this specification, the terms, definitions, abbreviations, symbols and units specified in ESA/SCC Basic Specification No. 21300 shall apply. In addition, the following symbols are used:

V_{REF} = Reference Output Voltage

 $\begin{array}{lll} I_{CC} & = & Supply Current \\ K_{line} & = & Line Regulation \\ K_{load} & = & Load Regulation \\ I_{OS} & = & Short Circuit Current \\ V_{STAB} & = & Voltage Stability \\ P_{W} & = & Clock Width \end{array}$

 f_{max} = Maximum Frequency f_{min} = Minimum Frequency

MXPKCT = Input Threshold Maximum Frequency MNPKCT = Input Threshold Zero Duty Cycle

T_{SYNC} = Synchronous Threshold I_{SYNC} = Synchronous Input Current MINDC = Minimum Duty Cycle MAXDC = Maximum Duty Cycle

I_M = Current Mirror S_{SC} = Softstart Current

 S_{SV} = Softstart Low Level Voltage = Shutdown Input Current lıs = Collector Leakage Current **ICL SDTHS** Shutdown Threshold Voltage = Under Voltage Lockout U_{VL} = Input Offset Voltage V_{IO} = Input Bias Current $I_{\rm IB}$ = Input Offset Current 10

PSRR = Power Supply Rejection Ratio
A_{VS} = DC Open Loop Voltage Gain
CMRR = Common Mode Rejection Ratio

4. **REQUIREMENTS**

4.1 GENERAL

The complete requirements for procurement of the integrated circuits specified herein are stated in this specification and ESA/SCC Generic Specification No. 9000 for Integrated Circuits. Deviations from the Generic Specification, applicable to this specification only, are listed in Para. 4.2.

Deviations from the applicable Generic Specification and this Detail Specification, formally agreed with specific Manufacturers on the basis that the alternative requirements are equivalent to the ESA/SCC requirements and do not affect the components' reliability, are listed in the appendices attached to this specification.

PAGE 13

ISSUE 1

4.2 DEVIATIONS FROM GENERIC SPECIFICATION

4.2.1 Deviations from Special In-process Controls

None.

4.2.2 Deviations from Final Production Tests (Chart II)

None.

4.2.3 Deviations from Burn-in Tests (Chart III)

(a) Para. 7.1.1(a), "High Temperature Reverse Bias (H.T.R.B.)" tests and subsequent electrical measurements related to this test shall be omitted.

4.2.4 Deviations from Qualification Tests (Chart IV)

None.

4.2.5 Deviations from Lot Acceptance Tests (Chart V)

None.

4.3 MECHANICAL REQUIREMENTS

4.3.1 <u>Dimension Check</u>

The dimensions of the integrated circuits specified herein shall be checked. They shall conform to those shown in Figure 2.

4.3.2 Weight

The maximum weight of the integrated circuits specified herein shall be 2.2 grammes.

4.4 MATERIALS AND FINISHES

The materials and finishes shall be as specified herein. Where a definite material is not specified, a material which will enable the integrated circuits specified herein to meet the performance requirements of this specification shall be used. Acceptance or approval of any constituent material does not guarantee acceptance of the finished product.

4.4.1 <u>Case</u>

The case shall be hermetically sealed and have a ceramic body and the lids shall be preform-soldered.

4.4.2 Lead Material and Finish

The material shall be Type 'G' with either Type '2 or 8' or Type '4' finish in accordance with the requirements of ESA/SCC Basic Specification No. 23500. (See Table 1(a) for Type Variants).

PAGE 14

ISSUE 1

0400044000

4.5 MARKING

4.5.1 General

The marking of all components delivered to this specification shall be in accordance with the requirements of ESA/SCC Basic Specification No. 21700. Each component shall be marked in respect of:-

- (a) Lead Identification.
- (b) The SCC Component Number.
- (c) Traceability Information.

4.5.2 Lead Identification

An index shall be located at the top of the package in the position as defined in Note 1 to Figure 2, or alternatively, a tab may be used to identify Pin No. 1. The pin numbering must be read with the index or tab on the left-hand side.

4.5.3 The SCC Component Number

Each component shall bear the SCC Component Number which shall be constituted and marked as follows:

Detail Specification Number	9108011038
Type Variant (see Table 1(a))	
Testing Level (B or C, as applicable)	

4.5.4 Traceability Information

Each component shall be marked in respect of traceability information in accordance with the requirements of ESA/SCC Basic Specification No. 21700.

4.6 ELECTRICAL MEASUREMENTS

4.6.1 Electrical Measurements at Room Temperature

The parameters to be measured in respect of electrical characteristics are scheduled in Table 2. Unless otherwise specified, the measurements shall be performed at T_{amb} = +25 ±3 °C.

4.6.2 Electrical Measurements at High and Low Temperatures

The parameters to be measured at high and low temperatures are scheduled in Table 3. The measurements shall be performed at $T_{amb} = +125(+0.5)$ °C and -55(+5.0) °C respectively.

4.6.3 Circuits for Electrical Measurements

Circuits for use in performing electrical measurements listed in Tables 2 and 3 of this specification are shown in Figure 4.

PAGE 15

ISSUE 1

4.7 BURN-IN TESTS

4.7.1 Parameter Drift Values

The parameter drift values applicable to Power Burn-in are specified in Table 4 of this specification. Unless otherwise stated, measurements shall be performed at T_{amb} = +25 ±3 °C. The parameter drift values (Δ) applicable to the parameters scheduled, shall not be exceeded. In addition to these drift value requirements, the appropriate limit value specified for a given parameter in Table 2 shall not be exceeded.

4.7.2 Conditions for H.T.R.B. Burn-in

Not applicable.

4.7.3 Conditions for Power Burn-in

The requirements for power burn-in are specified in Section 7 of ESA/SCC Generic Specification No. 9000. The conditions for power burn-in shall be as specified in Table 5 of this specification.

4.7.4 Electrical Circuit for H.T.R.B. Burn-in

Not applicable.

4.7.5 Electrical Circuit for Power Burn-in

A circuit for use in performing power burn-in tests are shown in Figure 5 of this specification.

PAGE 16

ISSUE 1

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - d.c. PARAMETERS

No	CHADACTEDISTICS	SYMBOL	TEST METHOD	TEST	TEST CONDITIONS	LIM	ITS	UNIT
No.	CHARACTERISTICS	STIVIBUL	MIL-STD 883	FIG.	(PINS UNDER TEST)	MIN	MAX	UNIT
1	Reference Output Voltage	V _{REF}	-	4(a)	V_{IN} (Pins 1,2,9) = 2.5V V_{IN} (Pins 3,10,12) = GND + V_{IN} (Pin 15) = 20V C = 470pF I_{REF} = 20mA (Pin 16)	5.05	5.15	V
2	Line Regulation Voltage (ΔV _{REF})	K _{line}	-	4(a)	V_{IN} (Pins 1,2,9) = 2.5V V_{IN} (Pins 3,10,12) = GND + V_{IN} (Pin 15) = 8.0 to 35V C = 470pF I_{REF} = 20mA (Pin 16)	1	±20	mV
3	Load Regulation Voltage (ΔV _{REF})	K _{load}	-	4(a)	V_{IN} (Pins 1,2,9) = 2.5V V_{IN} (Pins 3,10,12) = GND + V_{IN} (Pin 15) = 20V C = 470pF I_{REF} = 0 to 20mA (Pin 16)	- 50	-	mV
4	Short Circuit Current	los	-	4(a)	V_{IN} (Pins 1,2,9) = 2.5V V_{IN} (Pins 3,10,12) = GND + V_{IN} (Pin 15) = 20V C = 470pF V_{REF} (Pin 16) = GND (Note 1) (Pin 16)	-	100	mA
5	Input Offset Voltage	V _{IO}	4001	4(b)	V_{IN} (Pin 2) = 2.5V V_{IN} (Pins 3,10,12) = GND + V_{IN} (Pin 15) = 20V C1 = 100nF, C2 = 10nF R1 = 3.6k Ω , R2 = 10k Ω (Pins 1 to 2)	-5.0	5.0	mV
6	Input (Minus) Bias Current	I _{-IB}	4001	4(c)	$\begin{aligned} &V_{IN} \text{ (Pin 1) = 2.5V} \\ &V_{IN} \text{ (Pins 3,10,12) = GND} \\ &+V_{IN} \text{ (Pin 15) = 20V} \\ &C1 = 100\text{nF}, C2 = 10\text{nF} \\ &R1 = 3.6\text{k}\Omega, R2 = 10\text{k}\Omega \\ &\text{(Pin 1)} \end{aligned}$	-	10	μA
7	Input (Plus) Bias Current	I _{+IB}	4001	4(d)	$\begin{aligned} &V_{IN} \text{ (Pin 2) = 2.5V} \\ &V_{IN} \text{ (Pins 3,10,12) = GND} \\ &+V_{IN} \text{ (Pin 15) = 20V} \\ &C1 = 100\text{nF}, C2 = 10\text{nF} \\ &R1 = 3.6\text{k}\Omega, R2 = 10\text{k}\Omega \\ &\text{(Pin 2)} \end{aligned}$		10	μA

PAGE 17

ISSUE 1

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - d.c. PARAMETERS (CONT'D)

No.	CHARACTERISTICS	SYMBOL	TEST METHOD	TEST	TEST CONDITIONS	LIM	ITS	UNIT
NO.	CHARACTERISTICS	STMBOL	MIL-STD 883	FIG.	(PINS UNDER TEST)	MIN	MAX	CIVIT
8	Input Offset Current	l _{IO}	4001	1	I _{-IB} - I _{+IB}	-1.0	1.0	μА
9	DC Open Loop Voltage Gain	Avs	4004	4(e)	V_{IN} (Pins 2,3,10,12) = GND + V_{IN} (Pin 15) = 20V C = 100nF R1 = 3.6k Ω , R2 = 1.0M Ω V _{OUT} (Pin 9) = 1.4 to 3.4V (Pins 1 to 2)	60	-	dΒ
10	Output Voltage Low Level	V _{OL}	4004	4(f)	V _{IN} (Pin 1) = 2.5V V _{IN} (Pins 2,3,10,12) = GND + V _{IN} (Pin 15) = 20V C = 100nF (Pin 9)	•	0.5	V
11	Output Voltage High Level	V _{OH}	4004	4(f)	V _{IN} (Pin 2) = 2.5V V _{IN} (Pins 1,3,10,12) = GND + V _{IN} (Pin 15) = 20V C = 100nF (Pin 9)	3.8	-	V
12	Common Mode Rejection Ratio	CMRR	4003	4(g)	V_{IN} (Pins 1,2) = 1.5V to 5.2V V_{IN} (Pins 3,10,12) = GND + V_{IN} (Pin 15) = 20V C = 100nF R = 3.6k Ω (Pins 1 to 2)	60	-	dB
13	Power Supply Rejection Ratio	PSRR	4003	4(h)	V_{IN} (Pins 1,2,9) = 2.5V V_{IN} (Pins 3,10,12) = GND + V_{IN} (Pin 15) = 8.0 to 35V C = 100nF R = 3.6k Ω	50		dB
14	Input Threshold Max. Duty Cycle	MXPKCT	-	4(i)	V_{IN} (Pins 1,2,9) = 2.5V V_{IN} (Pins 3,10,12) = GND + V_{IN} (Pin 15) = 20V V_{IN} (Pin 6) = (Pin 16) C = 100nF (Pin 5)	-	3.6	V

PAGE 18

ISSUE 1

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - d.c. PARAMETERS (CONT'D)

No	CHARACTERISTICS	SYMBOL	TEST METHOD	TEST	TEST CONDITIONS	LIM	ITS	UNIT
No.	CHARACTERISTICS	STIVIBOL	MIL-STD 883	FIG.	(PINS UNDER TEST)	MIN	MAX	OINIT
15	Input Threshold Zero Duty Cycle	MNPKCT	•	4(i)	V_{IN} (Pins 1,2,9) = 2.5V V_{IN} (Pins 3,10,12) = GND + V_{IN} (Pin 15) = 20V V_{IN} (Pin 6) = (Pin 16) C = 100nF (Pin 5)	0.68	1.2	٧
16	Softstart Current	S _{SC}	-	4(j)	V_{IN} (Pins 1,2,9) = 2.5V V_{IN} (Pins 3,10,12) = GND + V_{IN} (Pin 15) = 20V V_{IN} (Pin 5) = 0V V_{IN} (Pin 8) = 0V (Pin 8)	- 25	- 80	μА
17	Softstart Low Level	S _{SV}	•	4(k)	V_{IN} (Pins 1,2,9) = 2.5V V_{IN} (Pins 3,12) = GND + V_{IN} (Pin 15) = 20V V_{IN} (Pin 5) = 0V V_{IN} (Pin 10) = 2.5V (Pin 8)	-	0.7	V
18	Shutdown Input Current	lıs	-	4(k)	V_{IN} (Pins 1,2,9) = 2.5V V_{IN} (Pins 3,12) = GND + V_{IN} (Pin 15) = 20V V_{IN} (Pin 5) = 0V V_{IN} (Pin 10) = 2.5V (Pin 10)	-	1.0	mA
19	Shutdown Threshold Voltage A	SDTHSA	-	4(1)	$V_{IN} \text{ (Pins 1,2)} = 2.5V$ $V_{IN} \text{ (Pins 3,12)} = \text{GND}$ $V_{IN} \text{ (Pin 5)} = 0V$ $V_{IN} \text{ (Pin 6)} = \text{(Pin 16)}$ $+ V_{IN} \text{ (Pin 15)} = 20V$ $= \text{(Pin 13)}$ $V_{IN} \text{ (Pin 9)} = 6.0V$ $V_{IN} \text{ (Pin 10)} = 0 \text{ to } 1.5V$ (Pin 10)	0.6	1.0	V
20	Shutdown Threshold Voltage B	SDTHSB	-	4(I)	$\begin{aligned} &V_{IN} \; (\text{Pins 1,2}) = 2.5 V \\ &V_{IN} \; (\text{Pins 3,12}) = \text{GND} \\ &V_{IN} \; (\text{Pin 5}) = 0 V \\ &V_{IN} \; (\text{Pin 6}) = (\text{Pin 16}) \\ &+ V_{IN} \; (\text{Pin 15}) = 20 V \\ &= (\text{Pin 13}) \\ &V_{IN} \; (\text{Pin 9}) = 6.0 V \\ &V_{IN} \; (\text{Pin 10}) = 0 \; \text{to 1.5 V} \\ &(\text{Pin 10}) \end{aligned}$	0.6	1.0	V

PAGE 19

ISSUE 1

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - d.c. PARAMETERS (CONT'D)

No	CHARACTERISTICS	SYMBOL	TEST METHOD	TEST	TEST CONDITIONS	LIM	ITS	UNIT
No.	CHARACTERISTICS	STIVIBUL	MIL-STD 883	FIG.	(PINS UNDER TEST)	MIN	MAX	UNIT
21	Output Voltage Low Level A1	V _{OLA1}	-	4(m)	V_{IN} (Pins 1,2) = 2.5V V_{IN} (Pins 3,10,12) = GND I_{OUT} (Pin 11) = 20mA + V_{IN} (Pin 15) = 20V = (Pin 13) C = 100nF V_{IN} (Pin 6) = (Pin 16) V_{IN} (Pin 9) = 0V (Pin 11)	0.01	0.4	V
22	Output Voltage Low Level A2	V _{OLA2}	-	4(m)	V_{IN} (Pins 1,2) = 2.5V V_{IN} (Pins 3,10,12) = GND I_{OUT} (Pin 11) = 100mA + V_{IN} (Pin 15) = 20V = (Pin 13) C = 100nF V_{IN} (Pin 6) = (Pin 16) V_{IN} (Pin 9) = 0V (Pin 11)	•	2.0	V
23	Output Voltage Low Level B1	V _{OLB1}	-	4(m)	V_{IN} (Pins 1,2) = 2.5V V_{IN} (Pins 3,10,12) = GND I_{OUT} (Pin 14) = 20mA + V_{IN} (Pin 15) = 20V = (Pin 13) C = 100nF V_{IN} (Pin 6) = (Pin 16) V_{IN} (Pin 9) = 0V (Pin 14)	0.01	0.4	V
24	Output Voltage Low Level B2	V _{OLB2}	-	4(m)	V_{IN} (Pins 1,2) = 2.5V V_{IN} (Pins 3,10,12) = GND I_{OUT} (Pin 14) = 100mA + V_{IN} (Pin 15) = 20V = (Pin 13) C = 100nF V_{IN} (Pin 6) = (Pin 16) V_{IN} (Pin 9) = 0V (Pin 14)	-	2.0	V
25	Output Voltage High Level A1	V _{OHA1}	-	4(n)	V_{IN} (Pins 1,2) = 2.5V V_{IN} (Pins 3,10,12) = GND V_{IN} (Pin 5) = 0V I_{OUT} (Pin 11) = -20mA + V_{IN} (Pin 15) = 20V = (Pin 13) V_{IN} (Pin 6) = (Pin 16) V_{IN} (Pin 9) = 6.0V (Pin 11)	18	-	V

PAGE 20

ISSUE 1

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - d.c. PARAMETERS (CONT'D)

	OUADA OTEDIOTIO	0)(1470)	TEST METHOD	TEST	TEST CONDITIONS	LIM	ITS	LAUT
No.	CHARACTERISTICS	SYMBOL	MIL-STD 883	FIG.	(PINS UNDER TEST)	MIN	MAX	UNIT
26	Output Voltage High Level A2	V _{OHA2}	-	4(n)	V_{IN} (Pins 1,2) = 2.5V V_{IN} (Pins 3,10,12) = GND V_{IN} (Pin 5) = 0V. I_{OUT} (Pin 11) = -100mA + V_{IN} (Pin 15) = 20V = (Pin 13) V_{IN} (Pin 6) = (Pin 16) V_{IN} (Pin 9) = 6.0V (Pin 11)	17	-	V
27	Output Voltage High Level B1	V _{ОНВ1}	•	4(n)	V_{IN} (Pins 1,2) = 2.5V V_{IN} (Pins 3,10,12) = GND V_{IN} (Pin 5) = 0V I_{OUT} (Pin 11) = -20mA + V_{IN} (Pin 15) = 20V = (Pin 13) V_{IN} (Pin 6) = (Pin 16) V_{IN} (Pin 9) = 6.0V (Pin 14)	18	1	V
28	Output Voltage High Level B2	V _{ОНВ2}	-	4(n)	V_{IN} (Pins 1,2) = 2.5V V_{IN} (Pins 3,10,12) = GND V_{IN} (Pin 5) = 0V I_{OUT} (Pin 11) = -100mA + V_{IN} (Pin 15) = 20V = (Pin 13) V_{IN} (Pin 6) = (Pin 16) V_{IN} (Pin 9) = 6.0V (Pin 14)	17	-	V
29	Under-voltage Lockout	U _{VL}	-	4(0)	V_{IN} (Pins 1,2) = 2.5V V_{IN} (Pins 3,10,12) = GND V_{IN} (Pin 5) = 0V V_{IN} (Pin 6) = (Pin 16) V_{IN} (Pin 13) = 10V V_{IN} (Pin 9) = 6.0V + V_{IN} (Pin 15) = 10.5 to 5.0V (Pin 15)	6.0	8.0	V
30	Collector Leakage Current	lcl	-	4(p)	$\begin{split} &V_{IN} \text{ (Pins 1,2,10)} = 2.5V \\ &V_{IN} \text{ (Pin 5)} = 2.0V \\ &V_{IN} \text{ (Pins 3,12)} = \text{GND} \\ &V_{IN} \text{ (Pin 13)} = 35V \\ &+V_{IN} \text{ (Pin 15)} = 20V \\ &V_{IN} \text{ (Pin 9)} = 0V \\ &\text{(Pin 13)} \end{split}$	-	50	μА

PAGE 21

ISSUE 1

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - d.c. PARAMETERS (CONT'D)

			TEST METHOD	TEST	TEST CONDITIONS	LIM	ITS	
No.	CHARACTERISTICS	SYMBOL	MIL-STD 883	FIG.	(PINS UNDER TEST)	MIN	MAX	UNIT
31	Current Mirror	lм	-	4(q)	V_{IN} (Pins 1,2,9) = 2.5V V_{IN} (Pins 3,8,10,12) = GND I_{IN} (Pin 6) = -2.0mA + V_{IN} (Pin 15) = 20V V_{IN} (Pin 5) = 0V (Pin 5)	-1.7	-2.2	mA
32	Sync. Threshold	T _{SYNC}	-	4(r)	V_{IN} (Pins 1,2,9) = 2.5V V_{IN} (Pins 10,12) = GND + V_{IN} (Pin 15) = 20V V_{IN} (Pin 3) = 0 to 5.0V C = 10nF (Pin 3)	1.2	2.8	V
33	Sync. Input Current	I _{SYNC}	-	4(s)	$\begin{split} &V_{IN} \; (\text{Pins 1,2}) = 2.5 V \\ &V_{IN} \; (\text{Pins 4,10,12}) = \text{GND} \\ &V_{IN} \; (\text{Pin 13}) = 10 V \\ &+ V_{IN} \; (\text{Pin 15}) = 20 V \\ &C = 100 \text{nF} \\ &R = 3.6 \text{k} \Omega \\ &V_{IN} \; (\text{Pin 3}) = 3.5 V \\ &(\text{Pin 3}) \end{split}$	0.4	2.5	mA
34	Voltage Stability	V _{STAB}	-	4(t)	V_{IN} (Pins 1,2,9) = 2.5V V_{IN} (Pins 3,10,12) = GND + V_{IN} (Pin 15) = 8.0 to 35V C = 10nF R = 3.6k Ω (Pin 4)	-1.0	1.0	%
35	Supply Current	lcc	3005	4(u)	V _{IN} (Pins 1,2,9) = 2.5V V _{IN} (Pins 3,10,12) = GND + V _{IN} (Pin 15) = 35V C = 470pF (Pin 15)	1	20	mA

NOTES

1. Should be shorted for 5 seconds maximum.

Rev. 'A'

PAGE 22

ISSUE 1

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - a.c. PARAMETERS

Na	OLIADACTEDICTICS	SYMBOL	TEST METHOD	TEST	TEST CONDITIONS	LIM	ITS	LINITE
No.	CHARACTERISTICS	SAMBOL	MIL-STD 883	FIG.	(PINS UNDER TEST)	MIN	MAX	UNIT
36	Minimum Frequency	f _{MIN}	-	4(v)	V_{IN} (Pins 1,2,9) = 2.5V V_{IN} (Pins 3,10,12) = GND + V_{IN} (Pin 15) = 20V C = 100nF R = 200k Ω (Pin 4)	50	120	Hz
37	Maximum Frequency	fmax	-	4(v)	V_{IN} (Pins 1,2,9) = 2.5V V_{IN} (Pins 3,10,12) = GND + V_{IN} (Pin 15) = 20V C = 470pF R = 2.0k Ω (Pin 4)	400	-	kHz
38	Clock Pulse Width	P _W	-	4(v)	V_{IN} (Pins 1,2,9) = 2.5V V_{IN} (Pins 3,10,12) = GND + V_{IN} (Pin 15) = 20V C = 10nF R = 3.6k Ω (Pin 4)	0.3	1.4	μs
39	Minimum Duty Cycle A	MINDCA	-	4(w)	V_{IN} (Pins 1,2) = 2.5V V_{IN} (Pins 3,10,12) = GND V_{IN} (Pin 13) = 10V + V_{IN} (Pin 15) = 20V C = 10nF R = 3.6k Ω V_{IN} (Pin 9) = 0.7V (Pin 11)	-	0	%
40	Minimum Duty Cycle B	MINDCB	-	4(w)	$\begin{split} &V_{IN} \text{ (Pins 1,2)} = 2.5V \\ &V_{IN} \text{ (Pins 3,10,12)} = \text{GND} \\ &V_{IN} \text{ (Pin 13)} = 10V \\ &+V_{IN} \text{ (Pin 15)} = 20V \\ &C = 10nF \\ &R = 3.6k\Omega \\ &V_{IN} \text{ (Pin 9)} = 0.7V \\ &\text{(Pin 14)} \end{split}$	-	0	%
41	Maximum Duty Cycle A	MAXDCA	-	4(w)	V_{IN} (Pins 1,2) = 2.5V V_{IN} (Pins 3,10,12) = GND V_{IN} (Pin 13) = 10V + V_{IN} (Pin 15) = 20V C = 10nF R = 3.6k Ω V_{IN} (Pin 9) = 3.6V (Pin 11)	45	50	%

PAGE 23

ISSUE 1

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - a.c. PARAMETERS (CONT'D)

No.	No CHARACTERI	CHARACTERISTICS	SYMBOL	TEST METHOD	TEST	TEST TEST CONDITIONS	LIMITS		UNIT
NO.	CHARACTERISTICS	STIVIBUL	MIL-STD 883	FIG.	(PINS UNDER TEST)	MIN		UNIT	
42	Maximum Duty Cycle B	MAXDCB	-	4(w)	V_{IN} (Pins 1,2) = 2.5V V_{IN} (Pins 3,10,12) = GND V_{IN} (Pin 13) = 10V + V_{IN} (Pin 15) = 20V C = 10nF R = 3.6k Ω V_{IN} (Pin 9) = 3.6V (Pin 14)	45	50	%	

PAGE 24

ISSUE 1

TABLE 3 - ELECTRICAL MEASUREMENTS AT HIGH AND LOW TEMPERATURES, + 125°C AND -55°C - d.c. PARAMETERS

	OLIA DA OTEDIOTIO	OVANDOL	TEST METHOD	TEST	TEST CONDITIONS	LIM	ITS	LIAUT
No.	CHARACTERISTICS	SYMBOL	MIL-STD 883	FIG.	(PINS UNDER TEST)	MIN	MAX	UNIT
1	Reference Output Voltage	V _{REF}	-	4(a)	V_{IN} (Pins 1,2,9) = 2.5V V_{IN} (Pins 3,10,12) = GND + V_{IN} (Pin 15) = 20V C = 470pF I_{REF} = 20mA (Pin 16)	5.0	5.2	V
2	Line Regulation Voltage (ΔV_{REF})	K _{line}	. -	4(a)	V_{IN} (Pins 1,2,9) = 2.5V V_{IN} (Pins 3,10,12) = GND + V_{IN} (Pin 15) = 8.0 to 35V C = 470pF I_{REF} = 20mA (Pin 16)	•	±20	mV
3	Load Regulation Voltage (ΔV_{REF})	K _{load}	-	4(a)	V_{IN} (Pins 1,2,9) = 2.5V V_{IN} (Pins 3,10,12) = GND + V_{IN} (Pin 15) = 20V C = 470pF I_{REF} = 0 to 20mA (Pin 16)	- 100	-	mV
4	Short Circuit Current	los	-	4(a)	V_{IN} (Pins 1,2,9) = 2.5V V_{IN} (Pins 3,10,12) = GND + V_{IN} (Pin 15) = 20V C = 470pF V_{REF} (Pin 16) = GND (Note 1) (Pin 16)	-	130	mA
5	Input Offset Voltage	V _{IO}	4001	4(b)	$\begin{aligned} &V_{IN} \; (\text{Pin 2}) = 2.5V \\ &V_{IN} \; (\text{Pins 3,10,12}) = \text{GND} \\ &+ V_{IN} \; (\text{Pin 15}) = 20V \\ &C1 = 100 \text{nF}, \; C2 = 10 \text{nF} \\ &R1 = 3.6 \text{k}\Omega, \; R2 = 10 \text{k}\Omega \\ &(\text{Pins 1 to 2}) \end{aligned}$	- 5.0	5.0	mV
6	Input (Minus) Bias Current	I _{-IB}	4001	4(c)	$\begin{aligned} &V_{IN} \text{ (Pin 1) = 2.5V} \\ &V_{IN} \text{ (Pins 3,10,12) = GND} \\ &+V_{IN} \text{ (Pin 15) = 20V} \\ &C1 = 100\text{nF}, C2 = 10\text{nF} \\ &R1 = 3.6\text{k}\Omega, R2 = 10\text{k}\Omega \\ &\text{(Pin 1)} \end{aligned}$	-	10	μA
7	Input (Plus) Bias Current	I _{+IB}	4001	4(d)	$\begin{aligned} &V_{IN} \; (\text{Pin 2}) = 2.5 \text{V} \\ &V_{IN} \; (\text{Pins 3}, 10, 12) = \text{GND} \\ &+ V_{IN} \; (\text{Pin 15}) = 20 \text{V} \\ &C1 = 100 \text{nF}, \; C2 = 10 \text{nF} \\ &R1 = 3.6 \text{k}\Omega, \; R2 = 10 \text{k}\Omega \\ &(\text{Pin 2}) \end{aligned}$	-	10	μA

PAGE 25

ISSUE 1

TABLE 3 - ELECTRICAL MEASUREMENTS AT HIGH AND LOW TEMPERATURES, + 125°C AND -55°C - d.c. PARAMETERS (CONT'D)

		_						
No.	CHARACTERISTICS	SYMBOL	TEST METHOD	TEST		LIM	ITS	UNIT
NO.	CHANACTERISTICS	STIVIBOL	MIL-STD 883	FIG.	(PINS UNDER TEST)	MIN	MAX	OIVIT
8	Input Offset Current	l _{IO}	4001	-	I _{-IB} - I _{+IB}	- 1.0	1.0	μA
9	DC Open Loop Voltage Gain	Avs	4004	4(e)	V_{IN} (Pins 2,3,10,12) = GND + V_{IN} (Pin 15) = 20V C = 100nF R1 = 3.6k Ω , R2 = 1.0M Ω V _{OUT} (Pin 9) = 1.4 to 3.4V (Pins 1 to 2)	60	•	dB
10	Output Voltage Low Level	V _{OL}	4004	4(f)	V _{IN} (Pin 1) = 2.5V V _{IN} (Pins 2,3,10,12) = GND + V _{IN} (Pin 15) = 20V C = 100nF (Pin 9)	•	0.5	V
11	Output Voltage High Level	V _{ОН}	4004	4(f)	V _{IN} (Pin 2) = 2.5V V _{IN} (Pins 1,3,10,12) = GND + V _{IN} (Pin 15) = 20V C = 100nF (Pin 9)	3.8	-	V
12	Common Mode Rejection Ratio	CMRR	4003	4(g)	V_{IN} (Pins 1,2) = 1.5V to 5.2V V_{IN} (Pins 3,10,12) = GND + V_{IN} (Pin 15) = 20V C = 100nF R = 3.6k Ω (Pins 1 to 2)	60	-	dB
13	Power Supply Rejection Ratio	PSRR	4003	4(h)	V_{IN} (Pins 1,2,9) = 2.5V V_{IN} (Pins 3,10,12) = GND + V_{IN} (Pin 15) = 8.0 to 35V C = 100nF R = 3.6k Ω	50		dB
14	Input Threshold Max. Duty Cycle	MXPKCT	_	4(i)	V_{IN} (Pins 1,2,9) = 2.5V V_{IN} (Pins 3,10,12) = GND + V_{IN} (Pin 15) = 20V V_{IN} (Pin 6) = (Pin 16) C = 100nF (Pin 5)	3.0	4.0	V

PAGE 26

ISSUE 1

TABLE 3 - ELECTRICAL MEASUREMENTS AT HIGH AND LOW TEMPERATURES, + 125°C AND -55°C - d.c. PARAMETERS (CONT'D)

N.	OLIA DA OTEDIOTIOS	OVARIO	TEST METHOD	TEST	TEST CONDITIONS	LIM	ITS	LINUT
No.	CHARACTERISTICS	SYMBOL	MIL-STD 883	FIG.	(PINS UNDER TEST)	MIN	MAX	UNIT
15	Input Threshold Zero Duty Cycle	MNPKCT	-	4(i)	V_{IN} (Pins 1,2,9) = 2.5V V_{IN} (Pins 3,10,12) = GND + V_{IN} (Pin 15) = 20V V_{IN} (Pin 6) = (Pin 16) C = 100nF (Pin 5)	0.5	1.4	V
16	Softstart Current	S _{SC}	-	4(j)	V_{IN} (Pins 1,2,9) = 2.5V V_{IN} (Pins 3,10,12) = GND + V_{IN} (Pin 15) = 20V V_{IN} (Pin 5) = 0V V_{IN} (Pin 8) = 0V (Pin 8)	- 25	- 80	μА
17	Softstart Low Level	S _{SV}	-	4(k)	V_{IN} (Pins 1,2,9) = 2.5V V_{IN} (Pins 3,12) = GND + V_{IN} (Pin 15) = 20V V_{IN} (Pin 5) = 0V V_{IN} (Pin 10) = 2.5V (Pin 8)	•	0.7	٧
18	Shutdown Input Current	<u>_</u> 6	-	4(k)	V_{IN} (Pins 1,2,9) = 2.5V V_{IN} (Pins 3,12) = GND + V_{IN} (Pin 15) = 20V V_{IN} (Pin 5) = 0V V_{IN} (Pin 10) = 2.5V (Pin 10)	1	1.0	mA
19	Shutdown Threshold Voltage A	SDTHSA	-	4(I)	V_{IN} (Pins 1,2) = 2.5V V_{IN} (Pins 3,12) = GND V_{IN} (Pin 5) = 0V V_{IN} (Pin 6) = (Pin 16) + V_{IN} (Pin 15) = 20V = (Pin 13) V_{IN} (Pin 9) = 6.0V V_{IN} (Pin 10) = 0 to 1.5V (Pin 10)	0.4	1.2	>
20	Shutdown Threshold Voltage B	SDTHSB	-	4(I)	V_{IN} (Pins 1,2) = 2.5V V_{IN} (Pins 3,12) = GND V_{IN} (Pin 5) = 0V V_{IN} (Pin 6) = (Pin 16) + V_{IN} (Pin 15) = 20V = (Pin 13) V_{IN} (Pin 10) = 0 to 1.5V V_{IN} (Pin 9) = 6.0V (Pin 10)	0.4	1.2	V

PAGE 27

ISSUE 1

TABLE 3 - ELECTRICAL MEASUREMENTS AT HIGH AND LOW TEMPERATURES, + 125°C AND - 55°C - d.c. PARAMETERS (CONT'D)

		0.44501	TEST METHOD	TEST	TEST CONDITIONS	LIM	IITS	LINET
No.	CHARACTERISTICS	SYMBOL	MIL-STD 883	FIG.	(PINS UNDER TEST)	MIN	MAX	UNIT
21	Output Voltage Low Level A1	V _{OLA1}	-	4(m)	V _{IN} (Pins 1,2) = 2.5V V _{IN} (Pins 3,10,12) = GND I _{OUT} (Pin 11) = 20mA + V _{IN} (Pin 15) = 20V = (Pin 13) C = 100nF V _{IN} (Pin 6) = (Pin 16) V _{IN} (Pin 9) = 0V (Pin 11)	0.01	0.4	V
22	Output Voltage Low Level A2	V _{OLA2}	-	4(m)	V_{IN} (Pins 1,2) = 2.5V V_{IN} (Pins 3,10,12) = GND I_{OUT} (Pin 11) = 100mA + V_{IN} (Pin 15) = 20V = (Pin 13) C = 100nF V_{IN} (Pin 6) = (Pin 16) V_{IN} (Pin 9) = 0V (Pin 11)	-	2.1	V
23	Output Voltage Low Level B2	V _{OLB1}	-	4(m)	V_{IN} (Pins 1,2) = 2.5V V_{IN} (Pins 3,10,12) = GND I_{OUT} (Pin 14) = 20mA + V_{IN} (Pin 15) = 20V = (Pin 13) C = 100nF V_{IN} (Pin 6) = (Pin 16) V_{IN} (Pin 9) = 0V (Pin 14)	0.01	0.4	V
24	Output Voltage Low Level B2	V _{OLB2}	-	4(m)	V_{IN} (Pins 1,2) = 2.5V V_{IN} (Pins 3,10,12) = GND I_{OUT} (Pin 14) = 100mA + V_{IN} (Pin 15) = 20V = (Pin 13) C = 100nF V_{IN} (Pin 6) = (Pin 16) V_{IN} (Pin 9) = 0V (Pin 14)	-	2.1	V
25	Output Voltage High Level A1	V _{OHA1}	_	4(n)	V_{IN} (Pins 1,2) = 2.5V V_{IN} (Pins 3,10,12) = GND V_{IN} (Pin 5) = 0V I_{OUT} (Pin 11) = -20mA + V_{IN} (Pin 15) = 20V = (Pin 13) V_{IN} (Pin 6) = (Pin 16) V_{IN} (Pin 9) = 6.0V (Pin 11)	18	-	V

PAGE 28

ISSUE 1

TABLE 3 - ELECTRICAL MEASUREMENTS AT HIGH AND LOW TEMPERATURES, + 125°C AND -55°C - d.c. PARAMETERS (CONT'D)

	0.14.0.4.0.7.7.10.0	0.44501	TEST METHOD	TEST	TEST CONDITIONS	LIM	ITS	
No.	CHARACTERISTICS	SYMBOL	MIL-STD 883	FIG.	(PINS UNDER TEST)	MIN	MAX	UNIT
26	Output Voltage High Level A2	V _{OHA2}	-	4(n)	V_{IN} (Pins 1,2) = 2.5V V_{IN} (Pins 3,10,12) = GND V_{IN} (Pin 5) = 0V I_{OUT} (Pin 11) = -100mA + V_{IN} (Pin 15) = 20V = (Pin 13) V_{IN} (Pin 6) = (Pin 16) V_{IN} (Pin 9) = 6.0V (Pin 11)	17	1	V
27	Output Voltage High Level B1	V _{ОНВ1}	<u>-</u>	4(n)	$\begin{split} &V_{IN} \; (\text{Pins 1,2}) = 2.5V \\ &V_{IN} \; (\text{Pins 3,10,12}) = \text{GND} \\ &V_{IN} \; (\text{Pin 5}) = 0V \\ &I_{OUT} \; (\text{Pin 11}) = -20\text{mA} \\ &+ V_{IN} \; (\text{Pin 15}) = 20V \\ &= (\text{Pin 13}) \\ &V_{IN} \; (\text{Pin 6}) = (\text{Pin 16}) \\ &V_{IN} \; (\text{Pin 9}) = 6.0V \\ &(\text{Pin 14}) \end{split}$	18	-	V
28	Output Voltage High Level B2	V _{OHB2}	-	4(n)	V_{IN} (Pins 1,2) = 2.5V V_{IN} (Pins 3,10,12) = GND V_{IN} (Pin 5) = 0V I_{OUT} (Pin 11) = -100mA + V_{IN} (Pin 15) = 20V = (Pin 13) V_{IN} (Pin 6) = (Pin 16) V_{IN} (Pin 9) = 6.0V (Pin 14)	17	•	V
29	Under-voltage Lockout	U _{VL}	-	4(0)	V_{IN} (Pins 1,2) = 2.5V V_{IN} (Pins 3,10,12) = GND V_{IN} (Pin 5) = 0V V_{IN} (Pin 6) = (Pin 16) V_{IN} (Pin 13) = 10V V_{IN} (Pin 9) = 6.0V + V_{IN} (Pin 15) = 10.5 to 5.0V (Pin 15)	6.0	8.0	V
30	Collector Leakage Current	lcl	-	4(p)	V_{IN} (Pins 1,2,10) = 2.5V V_{IN} (Pin 5) = 2.0V V_{IN} (Pins 3,12) = GND V_{IN} (Pin 13) = 35V + V_{IN} (Pin 15) = 20V V_{IN} (Pin 9) = 0V (Pin 13)	-	200	μА

PAGE 29

ISSUE 1

TABLE 3 - ELECTRICAL MEASUREMENTS AT HIGH AND LOW TEMPERATURES, + 125°C AND -55°C - d.c. PARAMETERS (CONT'D)

						,		
No.	CHARACTERISTICS	SYMBOL	TEST METHOD	TEST	TEST CONDITIONS	LIM	ITS	UNIT
140.	01212101100	OTMIDGE	MIL-STD 883	FIG.	(PINS UNDER TEST)	MIN	MAX	01111
31	Current Mirror	Ιм	-	4(q)	V_{IN} (Pins 1,2,9) = 2.5V V_{IN} (Pins 3,8,10,12) = GND I_{IN} (Pin 6) = -2.0mA + V_{IN} (Pin 15) = 20V V_{IN} (Pin 5) = 0V (Pin 5)	-1.7	-2.2	mA
32	Sync. Threshold	T _{SYNC}	•	4(r)	V_{IN} (Pins 1,2,9) = 2.5V V_{IN} (Pins 10,12) = GND + V_{IN} (Pin 15) = 20V V_{IN} (Pin 3) = 0 to 5.0V C = 10nF (Pin 3)	1.2	2.8	V
33	Sync. Input Current	I _{SYNC}	-	4(s)	V_{IN} (Pins 1,2) = 2.5V V_{IN} (Pins 4,10,12) = GND V_{IN} (Pin 13) = 10V + V_{IN} (Pin 15) = 20V C = 100nF R = 3.6k Ω V_{IN} (Pin 3) = 3.5V (Pin 3)	0.4	2.5	mA
34	Voltage Stability	V _{STAB}	-	4(t)	V_{IN} (Pins 1,2,9) = 2.5V V_{IN} (Pins 3,10,12) = GND + V_{IN} (Pin 15) = 8.0 to 35V C = 10nF R = 3.6k Ω (Pin 4)	-1.0	1.0	%
35	Supply Current	lcc	3005	4(u)	V _{IN} (Pins 1,2,9) = 2.5V V _{IN} (Pins 3,10,12) = GND + V _{IN} (Pin 15) = 35V C = 470pF (Pin 15)	-	20	mA

Rev. 'A'

PAGE 30

ISSUE 1

TABLE 3 - ELECTRICAL MEASUREMENTS AT HIGH AND LOW TEMPERATURES, + 125°C AND -55°C - a.c. PARAMETERS

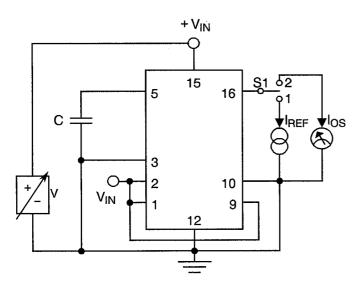
	OLIA DA OTEDIOTIO	0)(147)(1	TEST METHOD	TEST	TEST CONDITIONS	LIM	ITS	LINUT
No.	CHARACTERISTICS	SYMBOL	MIL-STD 883	FIG.	(PINS UNDER TEST)	MIN	MAX	UNIT
36	Minimum Frequency	f _{MIN}	-	4(v)	V_{IN} (Pins 1,2,9) = 2.5V V_{IN} (Pins 3,10,12) = GND + V_{IN} (Pin 15) = 20V C = 100nF R = 200k Ω (Pin 4)	50	120	Hz
37	Maximum Frequency	fmax	-	4(v)	V_{IN} (Pins 1,2,9) = 2.5V V_{IN} (Pins 3,10,12) = GND + V_{IN} (Pin 15) = 20V C = 470pF R = 2.0k Ω (Pin 4)	400	1	kHz
38	Clock Pulse Width	P _W	-	4(v)	V_{IN} (Pins 1,2,9) = 2.5V V_{IN} (Pins 3,10,12) = GND + V_{IN} (Pin 15) = 20V C = 10nF R = 3.6k Ω (Pin 4)	0.3	1.4	μs
39	Minimum Duty Cycle A	MINDCA	-	4(w)	$\begin{aligned} &V_{IN} \text{ (Pins 1,2)} = 2.5V \\ &V_{IN} \text{ (Pins 3,10,12)} = \text{GND} \\ &V_{IN} \text{ (Pin 13)} = 10V \\ &+V_{IN} \text{ (Pin 15)} = 20V \\ &C = 10nF \\ &R = 3.6k\Omega \\ &V_{IN} \text{ (Pin 9)} = 0.7V \\ &\text{(Pin 11)} \end{aligned}$	-	0	%
40	Minimum Duty Cycle B	MINDCB	-	4(w)	$\begin{split} &V_{IN} \text{ (Pins 1,2)} = 2.5V \\ &V_{IN} \text{ (Pins 3,10,12)} = \text{GND} \\ &V_{IN} \text{ (Pin 13)} = 10V \\ &+ V_{IN} \text{ (Pin 15)} = 20V \\ &C = 10nF \\ &R = 3.6k\Omega \\ &V_{IN} \text{ (Pin 9)} = 0.7V \\ &\text{(Pin 14)} \end{split}$	-	0	%
41	Maximum Duty Cycle A	MAXDCA	-	4(w)	V_{IN} (Pins 1,2) = 2.5V V_{IN} (Pins 3,10,12) = GND V_{IN} (Pin 13) = 10V $+ V_{IN}$ (Pin 15) = 20V $C = 10$ nF $R = 3.6$ k Ω V_{IN} (Pin 9) = 3.6V (Pin 11)	45	50	%

PAGE 31

ISSUE 1

TABLE 3 - ELECTRICAL MEASUREMENTS AT HIGH AND LOW TEMPERATURES, + 125°C AND - 55°C - a.c. PARAMETERS (CONT'D)

No.	CHARACTERISTICS	SYMBOL	TEST METHOD MIL-STD 883	TEST FIG.	TEST CONDITIONS (PINS UNDER TEST)	LIMITS		UNIT
						MIN	MAX	UNIT
42	Maximum Duty Cycle B	MAXDCB	-	4(w)	$\begin{split} &V_{IN} \text{ (Pins 1,2)} = 2.5V \\ &V_{IN} \text{ (Pins 3,10,12)} = \text{GND} \\ &V_{IN} \text{ (Pin 13)} = 10V \\ &+V_{IN} \text{ (Pin 15)} = 20V \\ &C = 10nF \\ &R = 3.6k\Omega \\ &V_{IN} \text{ (Pin 9)} = 3.6V \\ &(\text{Pin 14)} \end{split}$	45	50	%


PAGE 32

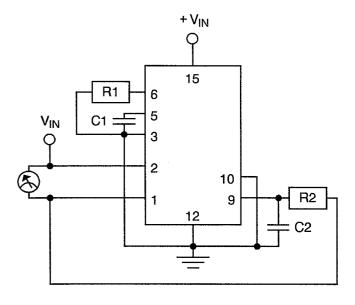
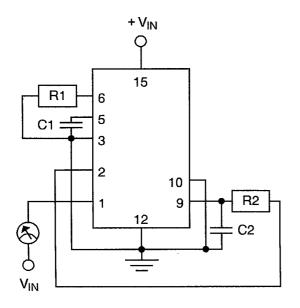
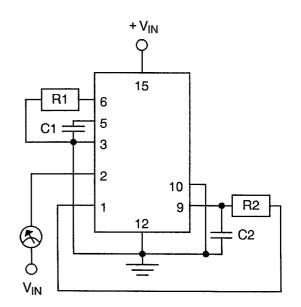

ISSUE 1

FIGURE 4 - CIRCUITS FOR ELECTRICAL MEASUREMENTS

FIGURE 4(a) - REFERENCE OUTPUT VOLTAGE, LINE REGULATION VOLTAGE, LOAD REGULATION VOLTAGE AND SHORT CIRCUIT CURRENT

FIGURE 4(b) - INPUT OFFSET VOLTAGE

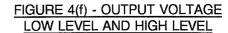


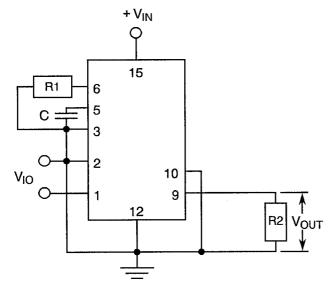

NOTES

- S1 is in Position 1 for V_{REF}, K_{line} and K_{load} measurements.
- 2. S1 is in Position 2 for IOS measurement.

FIGURE 4(c) - INPUT (MINUS) BIAS CURRENT

FIGURE 4(d) - INPUT (PLUS) BIAS CURRENT




PAGE 33

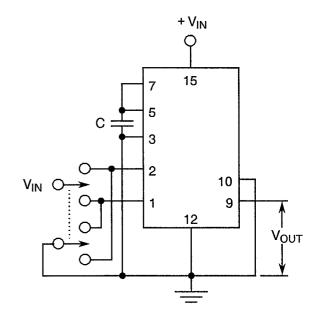
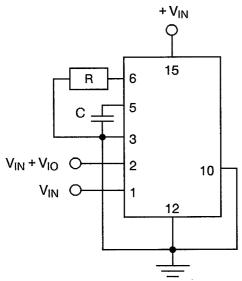

ISSUE 1

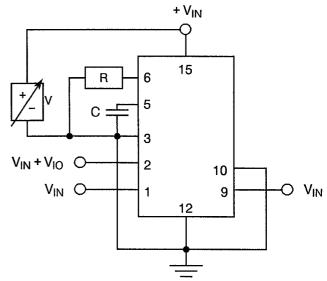
FIGURE 4 - CIRCUITS FOR ELECTRICAL MEASUREMENTS (CONTINUED)

FIGURE 4(e) - DC OPEN LOOP VOLTAGE GAIN



$$\begin{split} \frac{\text{NOTES}}{\text{1.}} & \text{A}_{VS} = \text{20 Log} \ \frac{V_{OUT}}{V_{IN}} & = \text{20 Log} \left(\frac{\Delta V_{OUT}}{\Delta V_{IO}} \right). \\ & V_{IO} = \text{Offset.} \end{split}$$

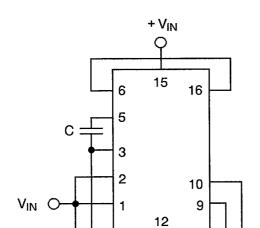
FIGURE 4(g) - COMMON MODE REJECTION RATIO


FIGURE 4(h) - POWER SUPPLY REJECTION RATIO

NOTES

1. CMRR = 20 Log
$$\left(\frac{\Delta V_{OUT}}{\Delta V_{IO}}\right)$$
.

 V_{IO} = Offset.



PAGE 34

ISSUE 1

FIGURE 4 - CIRCUITS FOR ELECTRICAL MEASUREMENTS (CONTINUED)

FIGURE 4(i) - INPUT THRESHOLD MAX. AND ZERO DUTY CYCLE

FIGURE 4(j) - SOFTSTART CURRENT

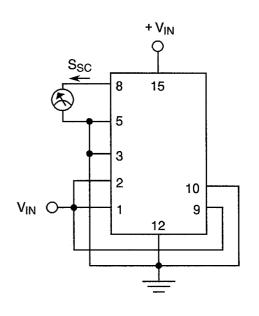
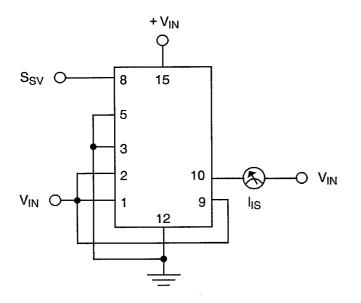
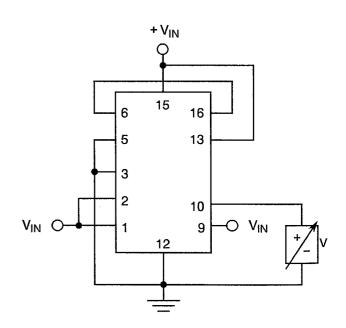
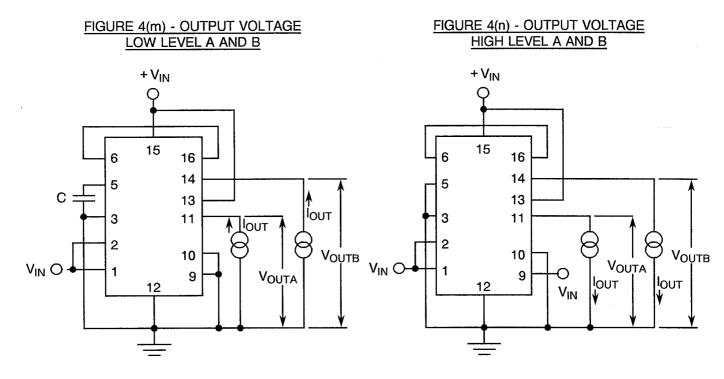
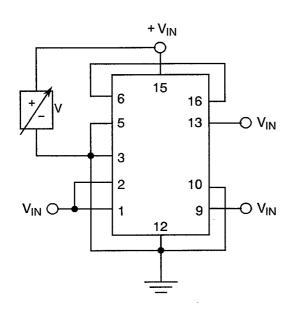




FIGURE 4(k) - SOFTSTART LOW LEVEL AND SHUTDOWN INPUT CURRENT

FIGURE 4(I) - SHUTDOWN THRESHOLD



PAGE 35


ISSUE 1

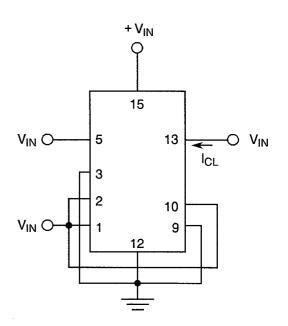
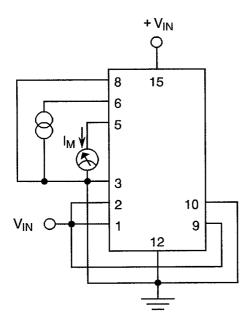

FIGURE 4 - CIRCUITS FOR ELECTRICAL MEASUREMENTS (CONTINUED)

FIGURE 4(o) - UNDER-VOLTAGE LOCKOUT

FIGURE 4(p) - COLLECTOR LEAKAGE CURRENT



PAGE 36

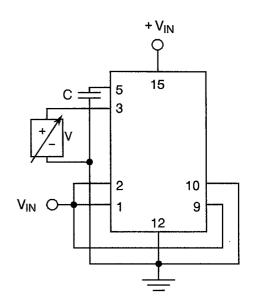
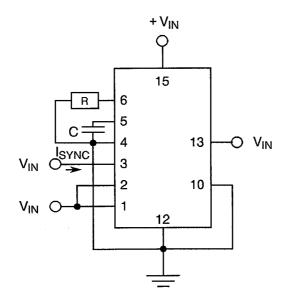

ISSUE 1

FIGURE 4 - CIRCUITS FOR ELECTRICAL MEASUREMENTS (CONTINUED)

FIGURE 4(q) - CURRENT MIRROR



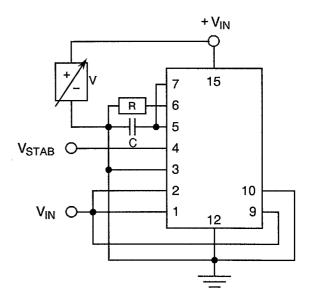
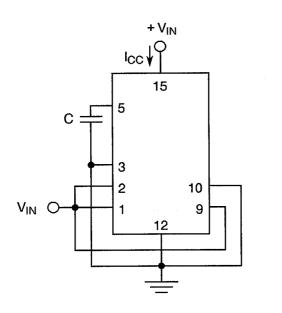

FIGURE 4(r) - SYNC THRESHOLD

FIGURE 4(s) - SYNC INPUT CURRENT

FIGURE 4(t) - VOLTAGE STABILITY


PAGE 37

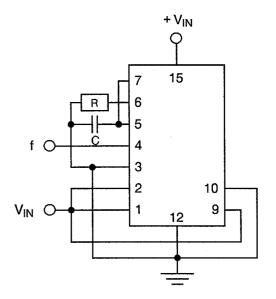

ISSUE 1

FIGURE 4 - CIRCUITS FOR ELECTRICAL MEASUREMENTS (CONTINUED)

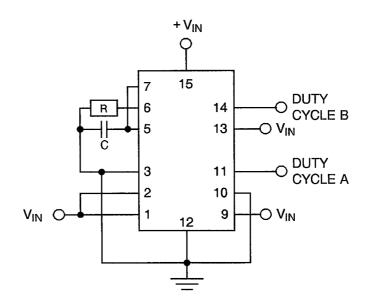

FIGURE 4(u) - SUPPLY CURRENT

FIGURE 4(v) - MINIMUM AND MAXIMUM FREQUENCY AND CLOCK PULSE WIDTH

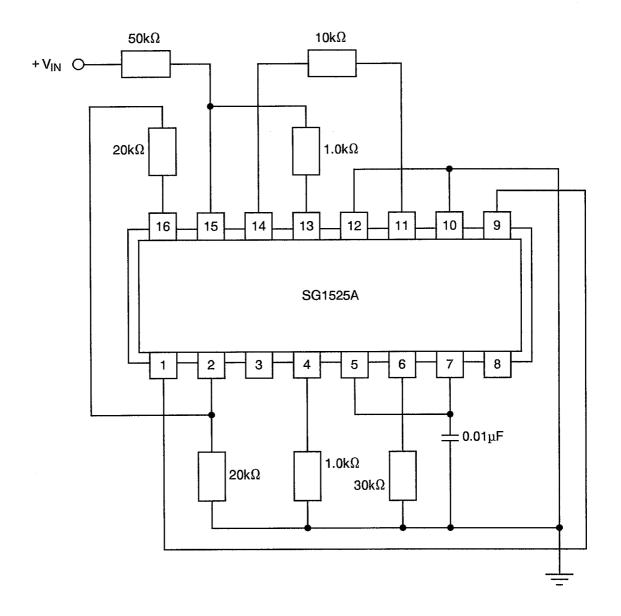
FIGURE 4(w) - DUTY CYCLE

PAGE 38

ISSUE 1

TABLE 4 - PARAMETER DRIFT VALUES

No.	CHARACTERISTICS	SYMBOL	SPEC. AND/OR TEST METHOD	TEST CONDITIONS	CHANGE LIMITS (Δ)	UNIT
1	Reference Output Voltage	V_{REF}	As per Table 2	As per Table 2	± 35	mV
2	Line Regulation Voltage	K _{line}	As per Table 2	As per Table 2	± 2.0	mV
3	Load Regulation Voltage	K _{load}	As per Table 2	As per Table 2	± 5.0	mV
5	Input Offset Voltage	V _{IO}	As per Table 2	As per Table 2	± 0.5	mV
6	Input (Minus) Bias Current	I _{-1B}	As per Table 2	As per Table 2	±50	nA
7	Input (Plus) Bias Current	I _{+IB}	As per Table 2	As per Table 2	±50	nA
8	Input Offset Current	l _{IO}	As per Table 2	As per Table 2	± 50	nA
22	Output Voltage Low Level A2	V _{OLA2}	As per Table 2	As per Table 2	±200	mV
24	Output Voltage Low Level B2	V _{OLB2}	As per Table 2	As per Table 2	±200	mV
26	Output Voltage High Level A2	V _{OHA2}	As per Table 2	As per Table 2	± 5.0	%
28	Output Voltage High Level B2	V _{OHB2}	As per Table 2	As per Table 2	± 5.0	%
35	Supply Current	lcc	As per Table 2	As per Table 2	± 1.0	mA


TABLE 5 - CONDITIONS FOR POWER BURN-IN AND OPERATING LIFE TESTS

No.	CHARACTERISTICS	SYMBOL	CONDITION	UNIT	
1	Ambient Temperature	T _{amb}	T _{amb} + 125(+ 0 – 5)		
2	Positive Supply Voltage (Pin 15)	+ V _{IN}	32	٧	
3	Negative Supply Voltage (Pin 12)	GND	0	٧	

PAGE 39

ISSUE 1

FIGURE 5 - ELECTRICAL CIRCUIT FOR POWER BURN-IN AND OPERATING LIFE TESTS

PAGE 40

ISSUE

4.8 <u>ENVIRONMENTAL AND ENDURANCE TESTS (CHARTS IV AND V OF ESA/SCC GENERIC SPECIFICATION NO. 9000)</u>

4.8.1 Electrical Measurements on Completion of Environmental Tests

The parameters to be measured on completion of environmental tests are scheduled in Table 6. Unless otherwise stated, the measurements shall be performed at T_{amb} = +25 ±3 °C.

4.8.2 Electrical Measurements at Intermediate Points during Endurance Tests

The parameters to be measured at intermediate points during endurance tests are as scheduled in Table 6 of this specification. Unless otherwise stated, the measurements shall be performed at $T_{amb} = +25 \pm 5$ °C.

4.8.3 Electrical Measurements on Completion of Endurance Tests

The parameters to be measured on completion of endurance testing are as scheduled in Table 6 of this specification. Unless otherwise stated, the measurements shall be performed at T_{amb} = +25 ±5 °C.

4.8.4 Conditions for Operating Life Test (Part of Endurance Testing)

The requirements for operating life testing are specified in Section 9 of ESA/SCC Generic Specification No. 9000. The conditions for operating life testing shall be as specified in Table 5 of this specification.

4.8.5 <u>Electrical Circuits for Operating Life Tests</u>

Circuits for use in performing the operating life test are shown in Figure 5 of this specification.

4.8.6 Conditions for High Temperature Storage Test (Part of Endurance Testing)

The requirements for the high temperature storage test are specified in ESA/SCC Generic Specification No. 9000. The conditions for high temperature storage shall be T_{amb} = +150(+0-5) °C.

4.9 TOTAL DOSE IRRADIATION TESTING

Not applicable.

PAGE 41

ISSUE 1

TABLE 6 - ELECTRICAL MEASUREMENTS ON COMPLETION OF ENVIRONMENTAL TESTS AND AT INTERMEDIATE POINTS AND ON COMPLETION OF ENDURANCE TESTS

No.	CHARACTERISTICS	SYMBOL	SPEC. AND/OR TEST METHOD	TEST	CHANGE LIMIT (Δ)	ABSOLUTE		UNIT
				CONDITION		MIN	MAX	UNII
1	Reference Output Voltage	V _{REF}	As per Table 2	As per Table 2	± 0.035	5.05	5.15	V
2	Line Regulation Voltage	K _{line}	As per Table 2	As per Table 2	± 2.0	-	20	mV
3	Load Regulation Voltage	K _{load}	As per Table 2	As per Table 2	±5.0	- 50	-	mV
5	Input Offset Voltage	V _{IO}	As per Table 2	As per Table 2	± 0.5	-5.0	5.0	mV
6	Input (Minus) Bias Current	I _{-IB}	As per Table 2	As per Table 2	± 0.05	-	10	μΑ
7	Input (Plus) Bias Current	I _{+IB}	As per Table 2	As per Table 2	± 0.05	-	10	μΑ
8	Input Offset Current	I _{IO}	As per Table 2	As per Table 2	± 0.05	- 1.0	1.0	μА
22	Output Voltage Low Level A2	V _{OLA2}	As per Table 2	As per Table 2	± 0.2	-	2.0	V
24	Output Voltage Low Level B2	V _{OLB2}	As per Table 2	As per Table 2	±0.2	-	2.0	V
26	Output Voltage High Level A2	V _{OHA2}	As per Table 2	As per Table 2	± 5.0%	17	-	V
28	Output Voltage High Level B2	V _{OHB2}	As per Table 2	As per Table 2	± 5.0%	17	-	V
35	Supply Current	lcc	As per Table 2	As per Table 2	<u>±</u> 1.0	-	20	mA