

Page i

INTEGRATED CIRCUITS, SILICON MONOLITHIC, JFET INPUT OPERATIONAL AMPLIFIER BASED ON TYPES LF155, LF155A, LF156, LF156A, LF157 ESCC Detail Specification No. 9101/017

ISSUE 1 October 2002

ESCC Detail Specification

PAGE	ii
ISSUE	1

LEGAL DISCLAIMER AND COPYRIGHT

European Space Agency, Copyright © 2002. All rights reserved.

The European Space Agency disclaims any liability or responsibility, to any person or entity, with respect to any loss or damage caused, or allleged to be caused, directly or indirectly by the use and application of this ESCC publication.

This publication, without the prior permission of the European Space Ageny and provided that it is not used for a commercial purpose, may be:

- copied in whole in any medium without alteration or modification.
- copied in part, in any medium, provided that the ESCC document identification, comprising the ESCC symbol, document number and document issue, is removed.

european space agency agence spatiale européenne

Pages 1 to 28

JFET INPUT OPERATIONAL AMPLIFIER BASED ON TYPES LF155, LF155A, LF156, LF156A, LF157

ESA/SCC Detail Specification No. 9101/017

space components coordination group

Issue/Rev. Date Issue 1 October 1994		Approved by			
	SCCG Chairman	ESA Director General or his Deputy			
Issue 1	October 1994	Formers	Hours		

PAGE 2

ISSUE 1

DOCUMENTATION CHANGE NOTICE

DOCUMENTATION CHANGE NOTICE							
Rev. Letter	Rev. Date	Reference	CHANGE Item	Approved DCR No.			
		·					
:							
:							

PAGE 3

ISSUE 1

TABLE OF CONTENTS

1.	GENERAL	<u>Page</u> 5
1.1	Scope	5
1.2	Component Type Variants	5
1.3	Maximum Ratings	5
1.4	Parameter Derating Information	5
1.5	Physical Dimensions	5
1.6	Pin Assignment	5
1.7	Truth Table	5
1.8	Circuit Schematic	5
1.9	Functional Diagram	5
1.10	Handling Precautions	5
2.	APPLICABLE DOCUMENTS	11
3.	TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS	11
4.	REQUIREMENTS	11
4.1	General	11
4.2	Deviations from Generic Specification	11
4.2.1	Deviations from Special In-process Controls	11
4.2.2	Deviations from Final Production Tests	11
4.2.3	Deviations from Burn-in Tests	11
4.2.4	Deviations from Qualification Tests	11
4.2.5	Deviations from Lot Acceptance Tests	11
4.3	Mechanical Requirements	11
4.3.1	Dimension Check	11
4.3.2	Weight	12
4.4	Materials and Finishes	12
4.4.1	Case	12
4.4.2	Lead Material and Finish	12
4.5	Marking	12
4.5.1 4.5.2	General Lead Identification	12 12
4.5.2	The SCC Component Number	12
4.5.4	Traceability Information	13
4.6	Electrical Measurements	13
4.6.1	Electrical Measurements at Room Temperature	13
4.6.2	Electrical Measurements at High and Low Temperatures	13
4.6.3	Circuits for Electrical Measurements	13
4.7	Burn-in Tests	13
4.7.1	Parameter Drift Values	13
4.7.2	Conditions for High Temperature Reverse Bias Burn-in	13
4.7.3	Conditions for Power Burn-in	13
4.7.4	Electrical Circiuts for High Temperature Reverse Bias Burn-in	13
4.7.5	Electrical Circiuts for Power Burn-in	13
4.8	Environmental and Endurance Tests	27
4.8.1	Electrical Measurements on Completion of Environmental Tests	27
4.8.2	Electrical Measurements at Intermediate Points During Endurance Tests	27
4.8.3	Electrical Measurements on Completion of Endurance Tests	27
4.8.4	Conditions for Operating Life Tests	27
4.8.5	Electrical Circuits for Operating Life Tests	27
4.8.6	Conditions for High Temperature Storage Test	27

PAGE 4 ISSUE 1

TABL	=Q	<u>Page</u>
IADL	<u></u>	
1(a)	Type Variants	6
1(b)	Maximum Ratings	6
2	Electrical Measurements at Room Temperature, d.c. Parameters	14
	Electrical Measurements at Room Temperature, a.c. Parameters	16
3	Electrical Measurements at High and Low Temperatures	17
4	Parameter Drift Values	25
5(a)	Conditions for High Temperature Reverse Bias Burn-in	25
5(b)	Conditions for Power Burn-in and Operating Life Tests	25
6	Electrical Measurements on Completion of Environmental Tests and at Intermediate	28
	Points and on Completion of Endurance Testing	
FIGUE	RES	
1	Parameter Derating Information	7
2	Physical Dimensions	8
3(a)	Pin Assignment	9
3(b)	Truth Table	9
3(c)	Circuit Schematic	10
3(d)	Functional Diagram	10
4	Circuits for Electrical Measurements	19
5(a)	Electrical Circuit for High Temperature Reverse Bias Burn-in	26
5(b)	Electrical Circuit for Power Burn-in and Operating Life Tests	26

APPENDICES (Applicable to specific Manufacturers only) None.

PAGE

ISSUE 1

5

1. **GENERAL**

1.1 SCOPE

This specification details the ratings, physical and electrical characteristics, test and inspection data for a silicon monolithic, JFET Input Operational Amplifier, based on Types LF155, LF155A, LF156, LF156A and LF157. It shall be read in conjunction with ESA/SCC Generic Specification No. 9000, the requirements of which are supplemented herein.

1.2 COMPONENT TYPE VARIANTS

Variants of the basic type integrated circuits specified herein, which are also covered by this specification, are given in Table 1(a).

1.3 MAXIMUM RATINGS

The maximum ratings, which shall not be exceeded at any time during use or storage, applicable to the integrated circuits specified herein, are as scheduld in Table 1(b).

1.4 PARAMETER DERATING INFORMATION

The parameter derating information of the integrated circuits specified herein is shown in Figure 1.

1.5 PHYSICAL DIMENSIONS

The physical dimensions of the integrated circuits specified herein are shown in Figure 2.

1.6 PIN ASSIGNMENT

As per Figure 3(a).

1.7 TRUTH TABLE

Not applicable.

1.8 CIRCUIT SCHEMATIC

As per Figure 3(c).

1.9 FUNCTIONAL DIAGRAM

As per Figure 3(d).

1.10 HANDLING PRECAUTIONS

These devices are susceptible to damage by electrostatic discharge. Therefore, suitable precautions shall be employed for protection during all phases of manufacture, testing, packaging, shipment and any handling.

These components are categorised as class 1 with a Minimum Critical Path Failure Voltage of 1000 Volts.

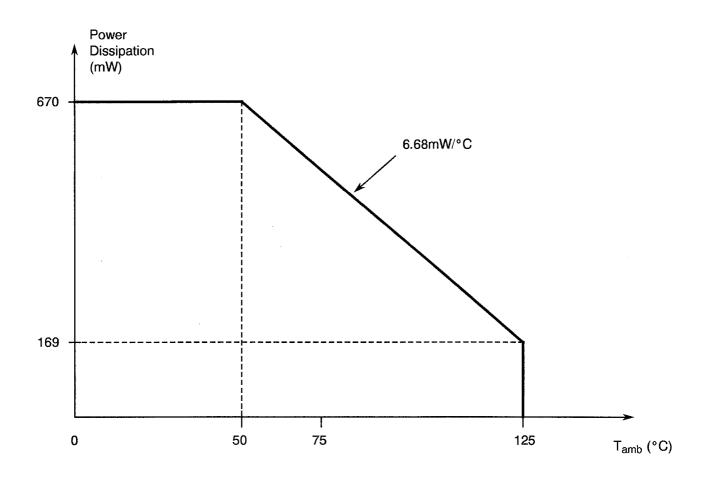
PAGE 6

ISSUE

TABLE 1(a) - TYPE VARIANTS

VARIANT	TYPE	CASE	FIGURE	LEAD MATERIAL AND FINISH
01	LF155	TO99	2	D9
02	LF156	TO99	2	D9
03	LF157	TO99	2	D9
04	LF155A	TO99	2	D9
05	LF156A	TO99	2	D9

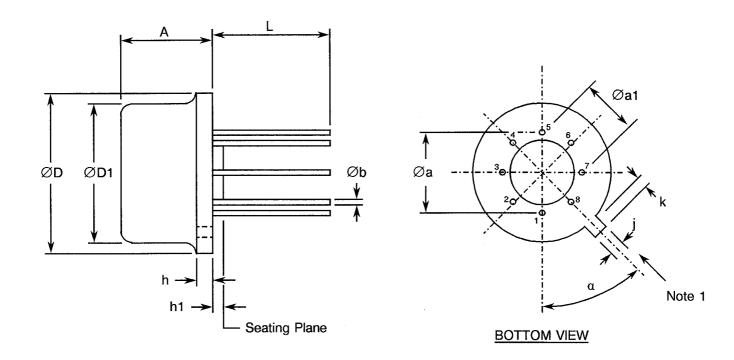
TABLE 1(b) - MAXIMUM RATINGS


No.	CHARACTERISTICS	SYMBOL	MAXIMUM RATINGS	UNITS	REMARKS
1	Supply Voltage Range	V _{cc}	± 22	٧	
2	Differential Input Voltage Range	V _{ID}	± 40	V	Note 1
3	Input Voltage Range	V _{IN}	±20	٧	Note 2
4	Device Power Dissipation (Continuous)	P _D	670	mW	Note 3
5	Operating Temperature Range	T _{op}	-55 to +125	°C	
6	Storage Temperature Range	T _{stg}	-65 to +150	°C	
7	Soldering Temperature	T _{sol}	+300	۰C	Note 4
8	Junction Temperature	Tj	+ 150	°C	

- 1. The inputs are shunted with back-to-back diodes for overvoltage protection.
- 2. If the supply voltage is less than -15V, the maximum input voltage is equal to the supply voltage.
- 3. At T_{amb} = +50°C. For derating at T_{amb} > +50°C, see Figure 1.
- 4. Duration 10 seconds maximum at a distance of not less than 1.5mm from the device body and the same lead shall not be resoldered until 3 minutes have elapsed.

PAGE 7

FIGURE 1 - PARAMETER DERATING INFORMATION

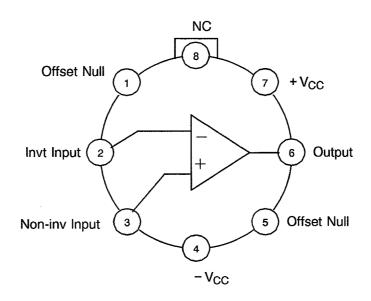

Power Dissipation versus Temperature

PAGE 8

ISSUE 1

FIGURE 2 - PHYSICAL DIMENSIONS - TO99 PACKAGE

SYMBOL	MILLIM	ETRES	NOTES
STIVIBOL	MIN	MAX	NOTES
Øa	5.08 T	YPICAL	
Øa1	3.56	4.06	
Α	4.19	4.70	
Øb	0.41	0.48	2
ØD	8.51	9.40	
ØD1	7.75	8.51	
h	-	1.02	
h1	0.25	1.14	3
j	0.71	0.86	
k	0.68	1.14	
L	12.70	-	
α	45°	TYPICAL	4


- 1. Reference index on Pin 8.
- 2. All leads or terminals.
- 3. The dimension shall be measured from the seating plane to the base plane.
- 4. 8 spaces.

PAGE

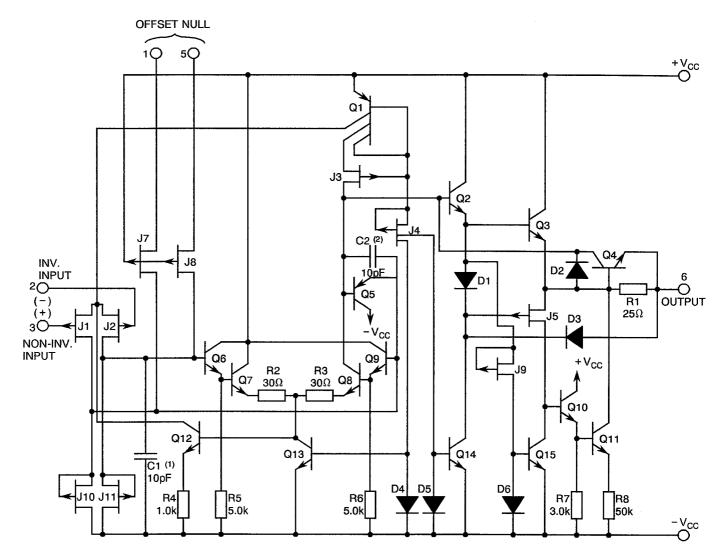
ISSUE 1

9

FIGURE 3(a) - PIN ASSIGNMENT

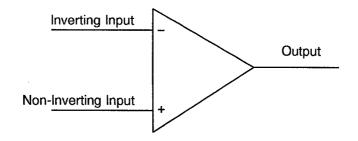
TOP VIEW

FIGURE 3 (b) - TRUTH TABLE


Not applicable.

PAGE 10

ISSUE 1


FIGURE 3(c) - CIRCUIT SCHEMATIC

NOTES

- 1. C1 = 5.0pF for LF157.
- 2. C2 = 2.0pF for LF157.

FIGURE 3(d) - FUNCTIONAL DIAGRAM

PAGE 11

ISSUE 1

2. APPLICABLE DOCUMENTS

The following documents form part of this specification and shall be read in conjunction with it:-

- (a) ESA/SCC Generic Specification No. 9000 for Integrated Circuits.
- (b) MIL-STD-883, Test Methods and Procedures for Micro-electronics.

3. TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS

For the purpose of this specification, the terms, definitions, abbreviations, symbols and units specified in ESA/SCC Basic Specification No. 21300 shall apply. In addition, the following abbreviations are used:-

V_{cc}: Supply Voltage of the device under test.

AV: Gain of the device under test.

4. REQUIREMENTS

4.1 GENERAL

The complete requirements for procurement of the integrated circuits specified herein are stated in this specification and ESA/SCC Generic Specification No. 9000 for Integrated Circuits. Deviations from the Generic Specification applicable to this specification only, are listed in Para. 4.2.

Deviations from the applicable Generic Specification and this Detail Specification, formally agreed with specific Manufacturers on the basis that the alternative requirements are equivalent to the ESA/SCC requirements and do not affect the components' reliability, are listed in the appendices attached to this specification.

4.2 DEVIATIONS FROM GENERIC SPECIFICATION

4.2.1 Deviations from Special In-process Controls

None.

4.2.2 Deviations from Final Production Tests (Chart II)

None.

4.2.3 Deviations from Burn-in Tests (Chart III)

(a) Para. 7.1.1(a), "High Temperature Reverse Bias" test and subsequent electrical measurements related to this test shall be omitted.

4.2.4 Deviations from Qualification Tests (Chart IV)

None.

4.2.5 <u>Deviations from Lot Acceptance Tests (Chart V)</u>

None.

4.3 MECHANICAL REQUIREMENTS

4.3.1 Dimension Check

The dimensions of the integrated circuits specified herein shall be checked. They shall conform to those shown in Figure 2.

PAGE 12

ISSUE

4.3.2 Weight

The maximum weight of the integrated circuits specified herein shall be 1.5 grammes.

4.4 MATERIALS AND FINISHES

The materials and finishes shall be as specified herein. Where a definite material is not specified, a material which will enable the integrated circuits specified herein to meet the performance requirements of this specification shall be used. Acceptance or approval of any constituent material does not guarantee acceptance of the finished product.

4.4.1 Case

The case shall be hermetically sealed and have a metal body with hard glass seals and the lids shall be welded.

4.4.2 Lead Material and Finish

The lead material shall be Type 'D' with Type '9' finish in accordance with the requirements of ESA/SCC Basic Specification No. 23500.

4.5 MARKING

4.5.1 General

The marking of components delivered to this specification shall be in accordance with the requirements of ESA/SCC Basic Specification No. 21700 and the following paragraphs. When the component is too small to accommodate all of the marking specified, as much as space permits shall be marked and the marking information, in full, shall accompany the component in its primary package.

The information to be marked and the order of precedence, shall be as follows:

- (a) Lead Identification.
- (b) The SCC Component Number.
- (c) Traceability Information.

4.5.2 Lead Identification

A tab shall be located at the edge of the package to identify Pin No. 8, in the position defined in Note 1 to Figure 2. The pin numbering shall be read with the tab on the left-hand side (bottom view).

4.5.3 The SCC Component Number

Each component shall bear the SCC Component Number which shall be constituted and marked as follows:

	<u>910101701</u> B
Detail Specification Number	
Type Variant (see Table 1(a)) ———	
Testing Level (B or C. as applicable)	

PAGE 13

ISSUE

4.5.4 Traceability Information

Each component shall be marked in respect of traceability information in accordance with the requirements of ESA/SCC Basic Specification No. 21700.

4.6 ELECTRICAL MEASUREMENTS

4.6.1 Electrical Measurements at Room Temperature

The parameters to be measured in respect of electrical characteristics are scheduled in Table 2. Unless otherwise specified, the measurements shall be performed at T_{amb} = +22 ±3 °C.

4.6.2 Electrical Measurements at High and Low Temperatures

The parameters to be measured at high and low temperatures are scheduled in Table 3. The measurements shall be performed at $T_{amb} = +125 (+0 -5)^{\circ}C$ and $-55 (+5 -0)^{\circ}C$ respectively.

4.6.3 Circuits for Electrical Measurements

Circuits and test sequences for use in performing the electrical measurements listed in Tables 2 and 3 of this specification are shown in Figure 4.

4.7 BURN-IN TESTS

4.7.1 Parameter Drift Values

The parameter drift values applicable to burn-in are specified in Table 4 of this specification. Unless otherwise stated, measurements shall be performed at T_{amb} = +22±3 °C. The parameter drift values (Δ) applicable to the parameters scheduled, shall not be exceeded. In addition to these drift value requirements, the appropriate limit value specified for a given parameter in Table 2 shall not be exceeded.

4.7.2 Conditions for High Temperature Reverse Bias Burn-In

Not applicable.

4.7.3 Conditions for Power Burn-in

The requirements for power burn-in are specified in Section 7 of ESA/SCC Generic Specification No. 9000. The conditions for power burn-in shall be as specified in Table 5(b) of this specification.

4.7.4 Electrical Circuits for High Temperature Reverse Bias Burn-in

Not applicable.

4.7.5 Electrical Circuits for Power Burn-in

Circuits for use in performing the power burn-in tests are shown in Figure 5(b) of this specification.

PAGE 14

ISSUE 1

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - d.c. PARAMETERS

Na	OLIA DA OTEDIOTIOO	CVANDOL	TEST METHOD	TEST	TEST CONDITIONS	LIM	IITS	l la ure
No.	CHARACTERISTICS	SYMBOL	MIL-STD 883	FIG.	TEST CONDITIONS	MIN	MAX	UNIT
1	Input Offset Voltage	V _{IO1}	4001	4(a)	$+ V_{CC} = +20V, -V_{CC} = -20V$ Variants 01, 02, 03 Variants 04, 05	-5.0 -2.0	+5.0 +2.0	mV
2	Input Offset Voltage	V _{IO2}	4001	4(a)	+ V _{CC} = +5.0V, - V _{CC} = -5.0V Variants 01, 02, 03 Variants 04, 05	-5.0 -2.0	+5.0 +2.0	mV
3	Input Offset Current	l ₁₀₁	4001	4(b)	$+ V_{CC} = +20V, -V_{CC} = -20V$ Variants 01, 02, 03 Variants 04, 05	- 20 - 10	+ 20 + 10	рA
4	Input Offset Current	1 ₁₀₂	4001	4(b)	+ V _{CC} = +5.0V, - V _{CC} = -5.0V Variants 01, 02, 03 Variants 04, 05	-20 -10	+20 +10	pА
5	Input Bias Current (Plus)	+ l _{IB1}	4001	4(c)	$+V_{CC} = +20V, -V_{CC} = -20V$ Variants 01, 02, 03 Variants 04, 05	- 100 - 50	+ 100 + 50	pА
6	Input Bias Current (Plus)	+ I _{IB2}	4001	4(c)	+ V _{CC} = +5.0V, - V _{CC} = -5.0V Variants 01, 02, 03 Variants 04, 05	- 100 - 50	+ 100 + 50	pА
7	Input Bias Current (Minus)	– I _{IB1}	4001	4(d)	$+V_{CC} = +20V, -V_{CC} = -20V$ Variants 01, 02, 03 Variants 04, 05	- 100 - 50	+ 100 + 50	рA
8	Input Bias Current (Minus)	I _{IB2}	4001	4(d)	+ V _{CC} = +5.0V, - V _{CC} = -5.0V Variants 01, 02, 03 Variants 04, 05	- 100 - 50	+ 100 + 50	pА
9	Short Circuit Output Current (Plus)	+ los	3011	4(e)	$+ V_{CC} = + 15V, - V_{CC} = - 15V$ $V_1 = - 15V (1)$ Variants 01, 02, 03 Variant 04 Variant 05	- 60 - 60 - 60	-20 -10 -15	mA
10	Short Circuit Output Current (Minus)	-I _{OS}	3011	4(e)	$+ V_{CC} = + 15V, - V_{CC} = - 15V$ $V_1 = + 15V (1)$ Variants 01, 02, 03 Variant 04 Variant 05	+20 +10 +15	+60 +60 +60	mA

PAGE 15

ISSUE 1

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - d.c. PARAMETERS (CONT'D)

No	CHARACTERISTICS	CVMDOL	TEST METHOD	TEST	TEST CONDITIONS	LIMITS		
No.	CHARACTERISTICS	SYMBOL	MIL-STD 883	FIG.	TEST CONDITIONS	MIN	MAX	UNIT
11	Output Voltage Swing (Plus)	+V _{OP}	4004	4(f)	$+V_{CC}$ = +15V, $-V_{CC}$ = -15V V ₁ = -15V, R _L = 10kΩ	+ 12	-	٧
12	Output Voltage Swing (Minus)	- V _{OP}	4004	4(f)	$+V_{CC}$ = +15V, $-V_{CC}$ = -15V V ₁ = +15V, R _L = 10kΩ	-	- 12	V
13	Power Supply Current	^l cc	4005	4(g)	$+V_{CC} = +20V, -V_{CC} = -20V$ Variants 01, 04 Variants 02, 03, 05	-	4.0 7.0	mA
14	Open Loop Voltage Gain (Plus)	+A _{VS}	4004	4(h)	$+V_{CC}$ = +15V, $-V_{CC}$ = -15V V ₁ = -10V, R _L = 2.0kΩ	50	<u>-</u>	V/mV
15	Open Loop Voltage Gain (Minus)	-A _{VS}	4004	4(h)	$+V_{CC}$ = +15V, $-V_{CC}$ = -15V V ₁ = +10V, R _L = 2.0kΩ	50	-	V/mV
16	Power Supply Rejection Ratio (Plus)	+PSRR	4003	4(i)	$+V_{CC} = +10V, -V_{CC} = -20V$	85	-	dB
17	Power Supply Rejection Ratio (Minus)	-PSRR	4003	4(i)	$+V_{CC} = +20V, -V_{CC} = -10V$	85	-	dB
18	Common Mode Rejection Ratio (Plus)	+ CMRR	4003	4(j)	$+V_{CC} = +15V, -V_{CC} = -15V$ $V_1 = -11V$	85	-	dB
19	Common Mode Rejection Ratio (Minus)	- CMRR	4003	4(j)	$+V_{CC} = +15V, -V_{CC} = -15V$ $V_1 = +11V$	85	-	dB

PAGE 16

ISSUE 1

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - a.c. PARAMETERS

	OLIA DA OTEDIOTIO	0)(1470)	TEST METHOD	TEST	TEST CONDITIONS	LIM	ITS	
No.	CHARACTERISTICS	SYMBOL	MIL-STD 883	FIG.	(NOTE 2)	MIN	MAX	UNIT
20	Slew Rate (Plus)	SR(+)	4002	4(k)	$+$ V_{CC} = +15V, $ V_{CC}$ = -15V V_{IN} = -2.0V, to +2.0V square AV = 5.0 Variants 01, 04 Variant 02 Variant 03 Variant 05	3.0 7.5 30 10	-	V/µs
21	Slew Rate (Minus)	SR(-)	4002	4(k)	$+$ V_{CC} = +15V, $ V_{CC}$ = -15V V_{IN} = -2.0V, to +2.0V square AV = 5.0 Variants 01, 04 Variant 02 Variant 03 Variant 05	3.0 7.5 30 10		V/µs
22	RiseTime	t _r	4002	4(k)	$+V_{CC}$ = +15V, $-V_{CC}$ = -15V AV = 1.0, V_{IN} = 50 mV Variants 01, 02, 04, 05 AV = +5.0 , V_{IN} = 10 mV Variant 03	-	800	ns
23	Overshoot (Plus)	OS(+)	4002	4(k)	$+V_{CC}$ = +20V, $-V_{CC}$ = -20V AV = 1.0, V_{IN} = 50 mV Variants 01, 02, 04, 05 AV = +5.0, V_{IN} = 10 mV Variant 03	-	20	%
24	Overshoot (Minus)	OS(-)	4002	4(k)	+ V _{CC} = $+$ 20V, $-$ V _{CC} = $-$ 20V AV = 1.0, V _{IN} = 50 mV Variants 01, 02, 04, 05 AV = 5.0 , V _{IN} = 10 mV Variant 03	-	20	%
25	Gain Bandwidth	GB	-	4(k)	$+ V_{CC} = + 15V, - V_{CC} = - 15V$ AV = 1.0 Variants 01, 04 Variants 02, 05 Variant 03	2.0 4.0 15	- - -	MHz

PAGE 17

ISSUE 1

TABLE 3 - ELECTRICAL MEASUREMENTS AT HIGH AND LOW TEMPERATURES

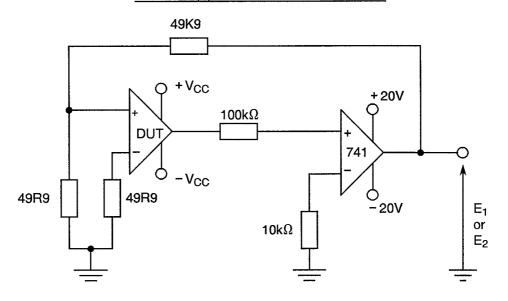
No.	CHARACTERISTICS	SYMBOL	TEST METHOD	TEST	TEST CONDITIONS	LIMITS		LINIE
NO.	CHARACTERISTICS	SAMBOL	MIL-STD 883	FIG.		MIN	MAX	UNIT
1	Input Offset Voltage	V _{IO1}	4001	4(a)	$+ V_{CC} = +20V, -V_{CC} = -20V$ Variants 01, 02, 03 Variants 04, 05	- 7.0 - 2.5	+ 7.0 + 2.5	mV
2	Input Offset Voltage	V _{IO2}	4001	4(a)	+ V _{CC} = +5.0V, - V _{CC} = -5.0V Variants 01, 02, 03 Variants 04, 05	- 7.0 - 2.5	+7.0 +2.5	mV
3	Input Offset Current	l ₁₀₁	4001	4(b)	+ V _{CC} = +20V, - V _{CC} = -20V Variants 01, 02, 03 (3) Variants 01, 02, 03 (4) Variants 04, 05	- 10 - 20 - 10	+10 +20 +10	nA
4	Input Offset Current	l _{IO2}	4001	4(b)	$+ V_{CC} = +5.0V,$ $- V_{CC} = -5.0V$ Variants 01, 02, 03 (3) Variants 01, 02, 03 (4) Variants 04, 05	- 10 - 20 - 10	+ 10 + 20 + 10	nA
5	Input Bias Current (Plus)	+ I _{IB1}	4001	4(c)	+ V _{CC} = +20V, -V _{CC} = -20V Variants 01, 02, 03, 04, 05 (3) Variants 01, 02, 03, 04, 05 (4)	- 25 - 100	+ 25 + 100	nA pA
6	Input Bias Current (Plus)	+ I _{IB2}	4001	4(c)	$+ V_{CC} = +5.0V,$ $- V_{CC} = -5.0V$ Variants 01, 02, 03, 04, 05 (3) Variants 01, 02, 03, 04, 05 (4)	- 25 - 100	+25 +100	nA pA
7	Input Bias Current (Minus)	– I _{IB1}	4001	4(d)	+ V _{CC} = +20V, -V _{CC} = -20V Variants 01, 02, 03, 04, 05 (3) Variants 01, 02, 03, 04, 05 (4)	- 25 - 100	+ 25 + 100	nA pA
8	Input Bias Current (Minus)	- I _{IB2}	4001	4(d)	+ V _{CC} = +5.0V, - V _{CC} = -5.0V Variants 01, 02, 03, 04, 05 (3) Variants 01, 02, 03, 04, 05 (4)	- 25 - 100	+ 25 + 100	nA pA

PAGE 18

ISSUE 1

TABLE 3 - ELECTRICAL MEASUREMENTS AT HIGH AND LOW TEMPERATURES (CONT'D)

No.	CHARACTERISTICS	SYMBOL	TEST METHOD MIL-STD 883	TEST FIG.	TEST CONDITIONS	LIMITS		UNIT
INO.						MIN	MAX	ONIT
11	Output Voltage Swing (Plus)	+V _{OP}	4004	4(f)	+ V_{CC} = + 15V, - V_{CC} = - 15V V ₁ = - 15V, R _L = 10kΩ	+ 12	<u>-</u>	٧
12	Output Voltage Swing (Minus)	-V _{OP}	4004	4(f)	$+V_{CC}$ = +15V, $-V_{CC}$ = -15V V ₁ = +15V, R _L =10kΩ	-	-12	V
14	Open Loop Voltage Gain (Plus)	+A _{VS}	4004	4(h)	$+V_{CC}$ = +15V, $-V_{CC}$ = -15V V ₁ = -10V, R _L = 2.0kΩ	25	-	V/mV
15	Open Loop Voltage Gain (Minus)	- A _{VS}	4004	4(h)	$+V_{CC}$ = +15V, $-V_{CC}$ = -15V V ₁ = +10V, R _L = 2.0kΩ	25	<u>-</u>	V/mV
16	Power Supply Rejection Ratio (Plus)	+PSRR	4003	4(i)	$+V_{CC} = +10V, -V_{CC} = -20V$	85	-	dB
17	Power Supply Rejection Ratio (Minus)	-PSRR	4003	4(i)	$+V_{CC} = +20V, -V_{CC} = -10V$	85	-	dB
18	Common Mode Rejection Ratio (Plus)	+ CMRR	4003	4(j)	+ V _{CC} = + 15V, - V _{CC} = - 15V V ₁ = - 11V	85	-	dB
19	Common Mode Rejection Ratio (Minus)	- CMRR	4003	4(j)	+ V _{CC} = + 15V, - V _{CC} = - 15V V ₁ = + 11V	85	-	dB

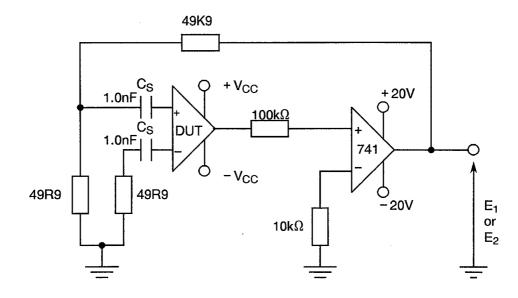

- 1. For sampling inspections and end point tests the duration of I_{OS} shall be 5ms maximum. For other tests this duration may be reduced to be consistent with automatic test procedures provided that the same limits are maintained.
- 2. Sample test: Inspection Level = II, AQL = 2.5%.
- 3. For measurements at $T_{amb} = +125$ °C only.
- 4. For measurements at $T_{amb} = -55$ °C only.

PAGE 19

ISSUE 1

FIGURE 4 - CIRCUITS FOR ELECTRICAL MEASUREMENTS

FIGURE 4(a) - INPUT OFFSET VOLTAGE



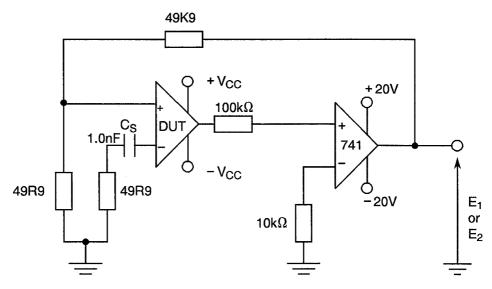
NOTES

- 1. Measure E_1 when $+V_{CC}$ = +20V and $-V_{CC}$ = -20V.
- 2. Measure E_2 when $+V_{CC} = +5.0V$ and $-V_{CC} = -5.0V$.

 $V_{1O1} = E_1 \text{ and } V_{1O2} = E_2$

FIGURE 4(b) - INPUT OFFSET CURRENT

- 1. Measure E_1 when $+V_{CC} = +20V$ and $-V_{CC} = -20V$.
- 2. Measure E_2 when $+V_{CC} = +5.0V$ and $-V_{CC} = -5.0V$.
- 3. $t_S = C_S$ capacitance charge time = 100ms.

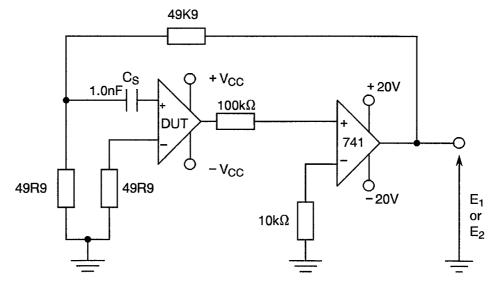

$$I_{IO1} = \frac{(V_{IO1} - E_1)xC_S}{t_S}$$
 $I_{IO2} = \frac{(V_{IO2} - E_2) \times C_S}{t_S}$

PAGE 20

ISSUE 1

FIGURE 4 - CIRCUITS FOR ELECTRICAL MEASUREMENTS (CONTINUED)

FIGURE 4(c) - POSITIVE INPUT BIAS CURRENT



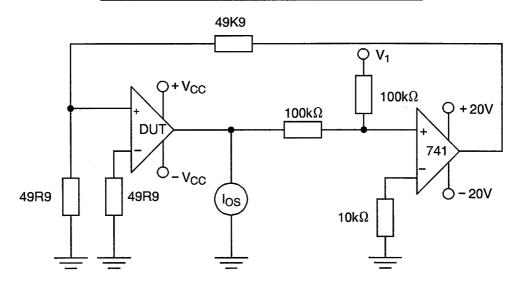
NOTES

- 1. Measure E_1 when $+V_{CC} = +20V$ and $-V_{CC} = -20V$.
- 2. Measure E_2 when $+V_{CC} = +5.0V$ and $-V_{CC} = -5.0V$.
- 3. $t_S = C_S$ capacitance charge time = 100ms.

$$+ I_{IB1} = \frac{(V_{IO1} - E_1) \times C_S}{t_S} + I_{IB2} = \frac{(V_{IO2} - E_2) \times C_S}{t_S}$$

FIGURE 4(d) - NEGATIVE INPUT BIAS CURRENT

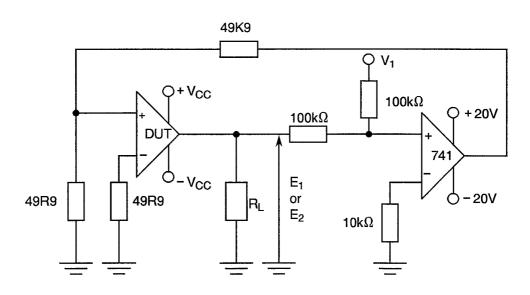
- 1. Measure E₁ when $+V_{CC} = +20V$ and $-V_{CC} = -20V$. 2. Measure E₂ when $+V_{CC} = +5.0V$ and $-V_{CC} = -5.0V$.
- 3. $t_S = C_S$ capacitance charge time = 100ms.


$$-I_{|B1} = \frac{(E_1 - V_{|O1}) \times C_S}{t_S} - I_{|B2} = \frac{(E_2 - V_{|O2}) \times C_S}{t_S}$$

PAGE 21

ISSUE 1

FIGURE 4 - CIRCUITS FOR ELECTRICAL MEASUREMENTS (CONTINUED)

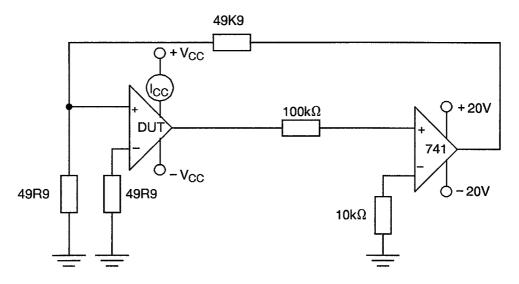

FIGURE 4(e) - SHORT CIRCUIT OUTPUT CURRENT

NOTES

1. Measure los.

FIGURE 4(f) - OUTPUT VOLTAGE SWING

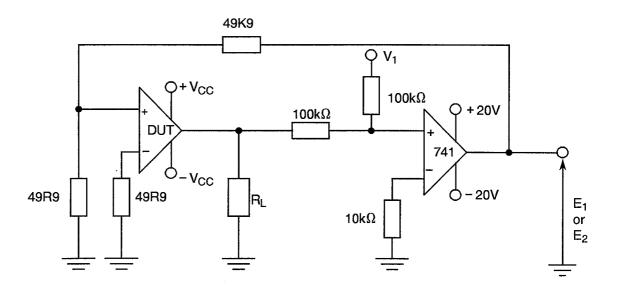
- Measure E₁ when V₁ = -15V.
 Measure E₂ when V₁ = +15V.


$$+ V_{OP} = E_1 - V_{OP} = E_2$$

PAGE 22

ISSUE 1

FIGURE 4 - CIRCUITS FOR ELECTRICAL MEASUREMENTS (CONTINUED)


FIGURE 4(g) - POWER SUPPLY CURRENT

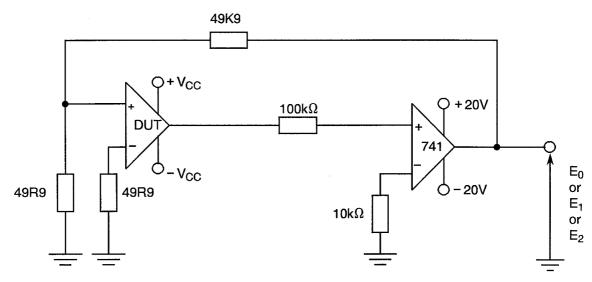
NOTES

1. Measure I_{CC}.

FIGURE 4(h) - OPEN LOOP VOLTAGE GAIN

<u>NOTES</u>

1. Measure E_1 when $V_1 = -10V$ and E_2 when $V_1 = +10V$.

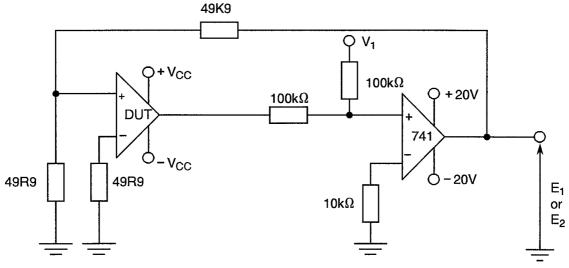

$$+A_{VS} = \frac{10}{V_{IO1} - E_1}$$
 $-A_{VS} = \frac{10}{E_2 - V_{IO1}}$

PAGE 23

ISSUE 1

FIGURE 4 - CIRCUITS FOR ELECTRICAL MEASUREMENTS (CONTINUED)

FIGURE 4(i) - POWER SUPPLY REJECTION RATIO



NOTES

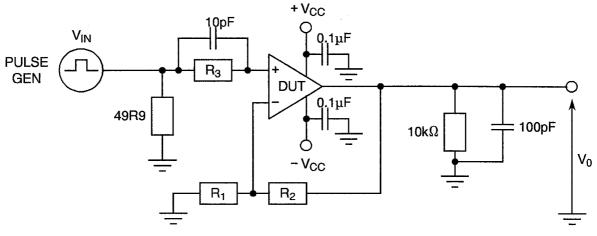
- 1. Measure E_0 when $+V_{CC}=+20V$ and $-V_{CC}=-20V$. 2. Measure E_1 when $+V_{CC}=+10V$ and $-V_{CC}=-20V$. 3. Measure E_2 when $+V_{CC}=+20V$ and $-V_{CC}=-10V$.

+ PSRR = 20
$$\log_{10} \frac{10^4}{E_1 - E_0}$$
 - PSRR = 20 $\log_{10} \frac{10^4}{E_2 - E_0}$

FIGURE 4(i) - COMMON MODE REJECTION RATIO

- 1. Measure E_1 when $+V_{CC}=+15V$, $-V_{CC}=-15V$ and $V_1=-11V$ 2. Measure E_2 when $+V_{CC}=+15V$, $-V_{CC}=-15V$ and $V_1=+11V$

+ CMRR = 20
$$\log_{10} \frac{11 \times 10^3}{E_1 - V_{IO2}}$$
 - CMRR = 20 $\log_{10} \frac{11 \times 10^3}{E_2 - V_{IO2}}$



PAGE 24

ISSUE 1

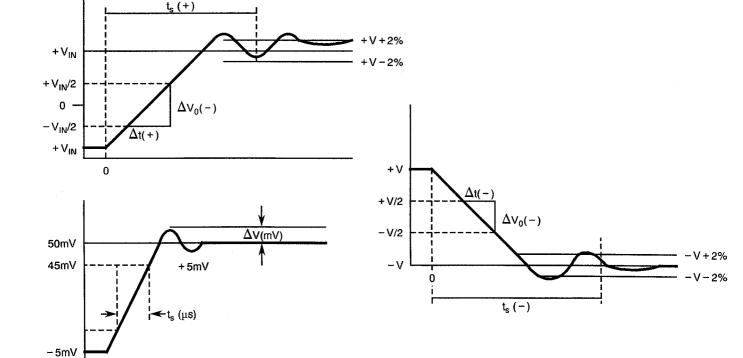

FIGURE 4 - CIRCUITS FOR ELECTRICAL MEASUREMENTS (CONTINUED)

FIGURE 4(k) - DYNAMIC TEST MEASUREMENT CIRCUIT

- 1. Pulse Generator:
 - Rise time ≤ 10ns; Repetition rate 1.0kHz (max.)
 - Pulse voltage: -2.0V to +2.0V for slew rate measurement, AV = 5.0.
 - Pulse voltage = 50mV for rise time and overshoot measurements, AV = 1.0.
 - Pulse voltage = 10mV for rise time and overshoot measurements, AV = 5.0.
- 2. AV = 1.0 when R_1 is open, R_2 = 10k Ω and R_3 = 10k Ω .
- 3. AV = 5.0 when $R_1 = 1.0k\Omega$, $R_2 = 4.0k\Omega$ and $R_3 = 1.0k\Omega$.

$$SR = \begin{vmatrix} \frac{\Delta V_0}{\Delta t} \end{vmatrix} \qquad OS = \frac{\Delta V}{50} \times 100 \qquad GB = \frac{0.35MHz}{t_s}$$

PAGE 25

TABLE 4 - PARAMETER DRIFT VALUES

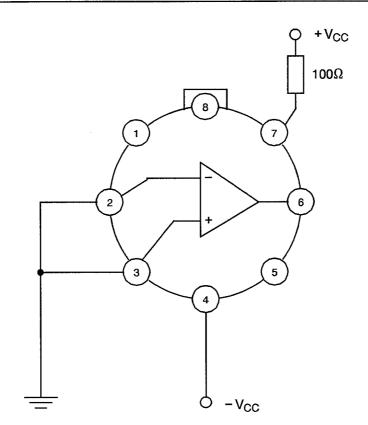
No.	CHARACTERISTICS	SYMBOL	SPEC. AND/OR TEST METHOD	TEST CONDITIONS	CHANGE LIMITS (Δ)	UNIT
1	Input Offset Voltage	V _{IO1}	As per Table 2	As per Table 2	± 1.0	mV
3	Input Offset Current	I ₁₀₁	As per Table 2	As per Table 2	±20	рА
5	Input Bias Current (Plus)	+ I _{IB1}	As per Table 2	As per Table 2	±50	рA
7	Input Bias Current (Minus)	−l _{iB1}	As per Table 2	As per Table 2	±50	pА

TABLE 5(a) - CONDITIONS FOR HIGH TEMPERATURE REVERSE BIAS BURN -IN

Not applicable.

TABLE 5(b) - CONDITIONS FOR POWER BURN-IN AND OPERATING LIFE TESTS

No.	CHARACTERISTICS	SYMBOL	CONDITION	UNIT
1	Ambient Temperature	T _{amb}	+125(+5-0)	°C
2	Power Supply Voltage (±)	V _{CC}	± 15	V


PAGE 26

ISSUE 1

FIGURE 5(a) - ELECTRICAL CIRCUIT FOR HIGH TEMPERATURE REVERSE BIAS BURN-IN

Not applicable.

FIGURE 5(b) - ELECTRICAL CIRCUIT FOR POWER BURN-IN AND OPERATING LIFE TESTS

PAGE 27

ISSUE 1

4.8 <u>ENVIRONMENTAL AND ENDURANCE TESTS (CHARTS IV AND V OF ESA/SCC GENERIC SPECIFICATION NO. 19000)</u>

4.8.1 Electrical Measurements on Completion of Environmental Tests

The parameters to be measured on completion of environmental tests are scheduled in Table 6. Unless otherwise stated, the measurements shall be performed at $T_{amb} = +22 \pm 3$ °C.

4.8.2 Electrical Measurements at Intermediate Points during Endurance Tests

The parameters to be measured at intermediate points during endurance tests are as scheduled in Table 6 of this specification. Unless otherwise stated, the measurements shall be performed at $T_{amb} = +22 \pm 3$ °C.

4.8.3 Electrical Measurements on Completion of Endurance Tests

The parameters to be measured on completion of endurance testing are as scheduled in Table 6 of this specification. Unless otherwise stated, the measurements shall be performed at $T_{amb} = +22 \pm 31$ °C.

4.8.4 Conditions for Operating Life Tests

The requirements for operating life testing are specified in Section 9 of ESA/SCC Generic Specification No. 9000. The conditions for operating life testing shall be as specified in Table 5(b) of this specification.

4.8.5 Electrical Circuits for Operating Life Tests

Circuits for use in performing the operating life tests are shown in Figure 5(b) of this specification.

4.8.6 Conditions for High Temperature Storage Test

The requirements for the high temperature storage test are specified in ESA/SCC Generic Specification No. 9000. The temperature to be applied shall be the maximum storage temperature specified in Table 1(b) of this specification.

PAGE 28

ISSUE 1

TABLE 6 - ELECTRICAL MEASUREMENTS ON COMPLETION OF ENVIRONMENTAL TESTS AND AT INTERMEDIATE POINTS AND ON COMPLETION OF ENDURANCE TESTING

No.	CHARACTERISTICS	SYMBOL	SPEC. AND/OR	TEST CONDITIONS	CHANGE LIMITS (Δ)		UNIT
			TEOT WETTIOD	OCNETION	MIN	MAX	
1	Input Offset Voltage	V _{IO1}	As per Table 2	As per Table 2 Variants 01, 02, 03 Variants 04, 05	-5.0 -2.0	+5.0 +2.0	mV
3	Input Offset Current	l ₁₀₁	As per Table 2	As per Table 2 Variants 01, 02, 03 Variants 04, 05	- 20 - 10	+20 +10	pА
5	Input Bias Current (Plus)	+ l _{IB1}	As per Table 2	As per Table 2 Variants 01, 02, 03 Variants 04, 05	100 50	+ 100 + 50	рA
7	Input Bias Current (Minus)	— I _{IB1}	As per Table 2	As per Table 2 Variants 01, 02, 03 Variants 04, 05	- 100 - 50	+ 100 + 50	pА
11	Output Voltage Swing (Plus)	+ V _{OPP}	As per Table 2	As per Table 2	+ 12	-	٧
12	Output Voltage Swing (Minus)	-V _{OPP}	As per Table 2	As per Table 2	-	+12	V
13	Power Supply Current	lcc	As per Table 2	As per Table 2 Variants 01, 04 Variants 02, 03, 05	-	4.0 7.0	mA
14	Open Loop Voltage Gain (Plus)	+ A _{VS}	As per Table 2	As per Table 2	50		V/mV
15	Open Loop Voltage Gain (Minus)	-A _{VS}	As per Table 2	As per Table 2	50	-	V/mV