

Page i

INTEGRATED CIRCUITS, MONOLITHIC, SILICON ON SAPPHIRE, CMOS VIRTUAL CHANNEL ASSEMBLER, BASED ON TYPE 12399 ESCC Detail Specification No. 9544/005

ISSUE 1 October 2002

ESCC Detail Specification

PAGE	ii
ISSUE	1

LEGAL DISCLAIMER AND COPYRIGHT

European Space Agency, Copyright © 2002. All rights reserved.

The European Space Agency disclaims any liability or responsibility, to any person or entity, with respect to any loss or damage caused, or allleged to be caused, directly or indirectly by the use and application of this ESCC publication.

This publication, without the prior permission of the European Space Ageny and provided that it is not used for a commercial purpose, may be:

- copied in whole in any medium without alteration or modification.
- copied in part, in any medium, provided that the ESCC document identification, comprising the ESCC symbol, document number and document issue, is removed.

european space agency agence spatiale européenne

Pages 1 to 85

INTEGRATED CIRCUITS, MONOLITHIC,
SILICON ON SAPPHIRE, CMOS VIRTUAL
CHANNEL ASSEMBLER,
BASED ON TYPE 12399
ESA/SCC Detail Specification No. 9544/005

space components coordination group

		Approved by	
Issue/Rev.	Date	SCCG Chairman	ESA Director General or his Deputy
Issue 1	September 1995	Ponomical	Hoom
Revision 'A'	January 1997	Sannott	Alor
			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

Rev. 'A'

PAGE 2 ISSUE 1

DOCUMENTATION CHANGE NOTICE

	DOCUMENTATION CHANGE NOTICE			
Rev. Letter	Rev. Date	Reference	CHANGE Item	Approved DCR No.
'A'	Jan. '97	P1. Cover page P2. DCN P4. T of C P5. Para. 1.1 P67. Figure 5(b) P77. Figure 6 P84. Appendix 'A'	: Part Number amended : Appendix 'A' entry amended : In the first sentence, Part Number amended : Part Number amended : Part Number amended : Title amended : For Para. 4.2.3 entry, Item "(b)" added	221376 None 221376 221376 221376 221376 221376

PAGE 3

ISSUE 1

TABLE OF CONTENTS

1.	GENERAL	<u>Page</u> 5
1.1	Scope	5
1.2	Component Type Variants	5
1.3	Maximum Ratings	5
1.4	Parameter Derating Information	5
1.5	Physical Dimensions	5
1.6	Pin Assignment	5
1.7	Truth Table	5
1.8	Circuit Description	5
1.9	Functional Diagram	5
1.10	Handling Precautions	5
1.11	Input/Output Protection Networks	5
2.	APPLICABLE DOCUMENTS	27
3.	TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS	27
4.	REQUIREMENTS	27
4.1	General	27
4.2	Deviations from Generic Specification	27
4.2.1	Deviations from Special In-process Controls	27
4.2.2	Deviations from Final Production Tests	27
4.2.3	Deviations from Burn-in and Electrical Measurements	27
4.2.4	Deviations from Qualification Tests	27
4.2.5	Deviations from Lot Acceptance Tests	27
4.3	Mechanical Requirements	28
4.3.1	Dimension Check	28
4.3.2	Weight	28
4.3.3	Terminal Strength	28
4.4	Materials and Finishes	28
4.4.1	Case	28
4.4.2	Lead Material and Finish	28
4.5	Marking	28
4.5.1	General	28
4.5.2	Lead Identification	28
4.5.3	The SCC Component Number	29
4.5.4	Traceability Information	29
4.6	Electrical Measurements	29
4.6.1	Electrical Measurements at Room Temperature	29
4.6.2	Electrical Measurements at High and Low Temperatures	29
4.6.3	Circuits for Electrical Measurements	29
4.7	Burn-in Tests	29
4.7.1	Parameter Drift Values	29
4.7.2	Conditions for H.T.R.B. Burn-in	29
4.7.3	Conditions for Power Burn-in	29
4.7.4	Electrical Circuits for H.T.R.B. Burn-in	29
4.7.5	Electrical Circuits for Power Burn-in	29
4.8	Environmental and Endurance Tests	68
4.8.1	Electrical Measurements on Completion of Environmental Tests	68
4.8.2	Electrical Measurements at Intermediate Points during Endurance Tests	68
4.8.3	Electrical Measurements on Completion of Endurance Tests	68

Rev. 'A'

PAGE 4

ISSUE 1

404	Conditions for Operation Life Tests	Page 00
4.8.4 4.8.5	Conditions for Operating Life Tests	68
4.8.6	Electrical Circuits for Operating Life Tests Conditions for High Temperature Storage Test	68 68
4.0.0	Total Dose Irradiation Testing	68
4.9.1	Application	68
4.9.2	Bias Conditions	68
4.9.3	Electrical Measurements	68
TABLI	<u>ES</u>	
1(a)	Type Variants	6
1(b)	Maximum Ratings	6
2	Electrical Measurements at Room Temperature - d.c. Parameters	30
	Electrical Measurements at Room Temperature - a.c. Parameters	35
3(a)	Electrical Measurements at High Temperature - d.c. Parameters	40
- 4 \	Electrical Measurements at High Temperature - a.c. Parameters	45
3(b)	Electrical Measurements at Low Temperature - d.c. Parameters	50
	Electrical Measurements at Low Temperature - a.c. Parameters	55
4	Parameter Drift Values	64
5(a)	Conditions for High Temperature Reverse Bias Burn-in	65
5(b)	Conditions for Power Burn-in and Operating Life Tests	65
6	Electrical Measurements on Completion of Environmental Tests and	69
7	at Intermediate Points and on Completion of Endurance Testing	70
	Electrical Measurements During and on Completion of Irradiation Testing	78
FIGUE	<u>RES</u>	
1	Parameter Derating Information	6
2(a)	Physical Dimensions	7
3(a) 3(b)	Pin Assignment Truth Table	9 12
3(c)	Circuit Description	14
3(d)	Functional Diagram	26
3(e)	Input/output Protection Networks	26 26
4	Circuits for Electrical Measurements	60
5(a)	Electrical Circuit for High Temperature Reverse Bias Burn-in	67
5(b)	Electrical Circuit for Power Burn-in and Operating Life Tests	67
6	Bias Conditions for Irradiation Testing	75
APPEI	NDICES (Applicable to specific Manufacturers only)	
'A'	Agreed Deviations for MITEL (S)	84

Rev. 'A'

PAGE 5

ISSUE 1

1. **GENERAL**

1.1 SCOPE

This specification details the ratings, physical and electrical characteristics, test and inspection data for a monolithic, Silicon on Sapphire CMOS Virtual Channel Assembler, based on Type 12399. It shall be read in conjunction with ESA/SCC Generic Specification No. 9000, the requirements of which are supplemented herein.

1.2 COMPONENT TYPE VARIANTS

Variants of the basic type integrated circuits specified herein, which are also covered by this specification, are given in Table 1(a).

1.3 MAXIMUM RATINGS

The maximum ratings, which shall not be exceeded at any time during use or storage, applicable to the integrated circuits specified herein, are as scheduled in Table 1(b).

1.4 PARAMETER DERATING INFORMATION (FIGURE 1)

Not applicable.

1.5 PHYSICAL DIMENSIONS

As per Figure 2.

1.6 PIN ASSIGNMENT

As per Figure 3(a).

1.7 TRUTH TABLE

As per Figure 3(b).

1.8 CIRCUIT DESCRIPTION

As per Figure 3(c).

1.9 FUNCTIONAL DIAGRAM

As per Figure 3(d).

1.10 HANDLING PRECAUTIONS

These devices are susceptible to damage by electrostatic discharge. Therefore, suitable precautions shall be employed for protection during all phases of manufacture, testing, packaging, shipment and any handling.

These components are categorised as Class 2 with a Minimum Critical Path Failure Voltage of 1500Volts.

1.11 <u>INPUT/OUTPUT PROTECTION NETWORKS</u>

Protection networks shall be incorporated into each input and output as shown in Figure 3(e).

PAGE 6

ISSUE 1

TABLE 1(a) - TYPE VARIANTS

VARIANT	CASE	FIGURE	LEAD MATERIAL AND FINISH
01	FLAT	2(a)	D2

TABLE 1(b) - MAXIMUM RATINGS

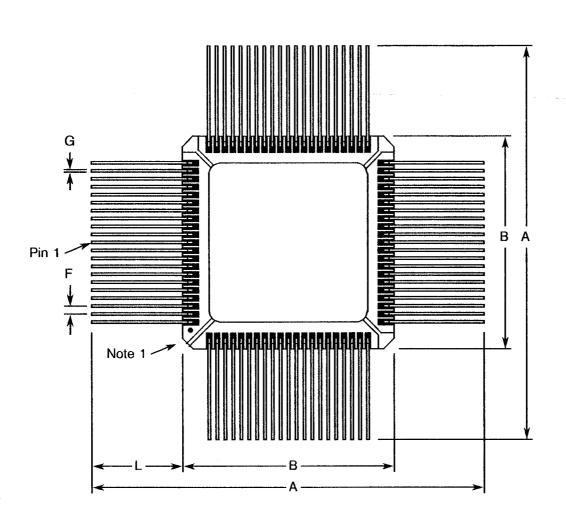
No.	CHARACTERISTICS	SYMBOL	MAXIMUM RATINGS	UNIT	REMARKS
1	Supply Voltage	V _{DD}	-0.5 to +7.0	٧	-
2	Input Voltage	V _{IN}	– 0.5 to V _{DD} + 0.5	٧	-
3	DC Input Current	IN	20	mA	-
4	DC Output Current	Гоит	10	mA	Note 1
5	Device Dissipation (Continuous)	P _D	200	mWdc	-
6	Output Dissipation	P _{DSO}	50	mWdc	Note 1
7	Operating Temperature Range	Тор	– 55 to + 125	°C	T _{amb}
8	Storage Temperature Range	T _{stg}	- 65 to + 150	°C	-
9	Soldering Temperature	T _{sol}	+ 260	۰C	Note 2

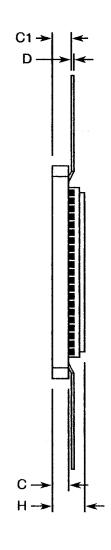
NOTES

- 1. Single output.
- 2. Duration 5 seconds maximum at a distance of not less than 1.0mm from the device body and the same lead shall not be resoldered until 3 minutes have elapsed.

FIGURE 1 - PARAMETER DERATING INFORMATION

Not applicable.




PAGE

ISSUE

FIGURE 2 - PHYSICAL DIMENSIONS

FIGURE 2(a) - FLAT PACKAGE, 84-PIN

SYMBOL	MILLIMETRES		NOTES
STIVIBUL	MIN	MAX	NOTES
Α	33.5	35.0	
В	16.2	16.7	
С	1.0	1.5	
C1	1.2	1.7	2, 5
D	0.1	0.2	
F	0.5	0.7	3, 4
G	0.2	0.3	2
н .	1.9	2.4	
L	8.2	9.5	2

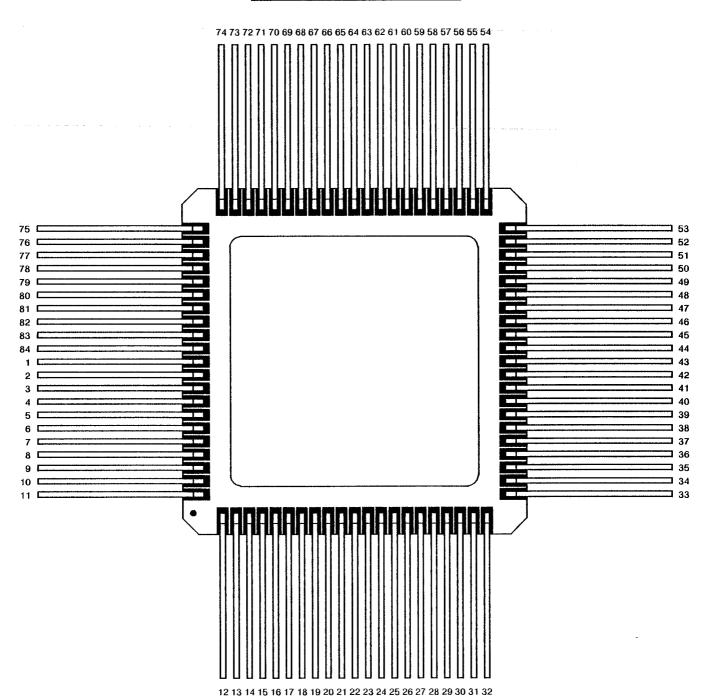
PAGE 8

ISSUE 1

FIGURE 2 - PHYSICAL DIMENSIONS (CONTINUED)

NOTES TO FIGURE 2(a)

- 1. Index area; the index shall be as defined in Figure 2(a).
- 2. All leads.
- 3. 80 spaces for flat packages.
- 4. The true position pin spacing is 0.635mm between centre lines. Each pin centreline shall be located within ± 0.1mm of its true longitudinal position relative to Pin 1 and the highest pin number.
- 5. The dimension shall be measured at the point of exit of the lead from the body.



PAGE

ISSUE 1

9

FIGURE 3(a) - PIN ASSIGNMENT

PAGE 10

ISSUE 1

FIGURE 3(a) - PIN ASSIGNMENT (CONTINUED)

PIN DESCRIPTION

SYMBOL	FUNCTION	DESCRIPTION	PIN NUMBER
V_{DD}	Input	Positive Supply	1
D5	Data Input, Parallel Interface	TTL Input	2
D6	Data Input, Parallel Interface	TTL Input	3
V _{SS}	Input	Negative Supply	4
D7	Data Input, Parallel Interface	TTL Input	5
BUSY	VCA Busy	Output	6
VCAR	VCA Ready	Output	7
SCLK	Clock, Serial Interface	CMOS Input	8
SIN	Data Input, Serial Interface	CMOS Input	9
SVALID	Data Valid, Serial Interface	CMOS Input	10
SMODE	Mode Selection	CMOS Input	11
RESET	Master Reset	Schmitt Trigger Input	12
CLK	Clock	CMOS Input	13
NC	Not Connected	-	14
ERR	Internal Error	Output	15
TEST1	Test Control	CMOS Input	16
TEST0	Test Control	CMOS Input	17
PROG2	Poll Programme	CMOS Input	18
PROG1	Poll Programme	CMOS Input	19
PROG0	Poll Programme	CMOS Input	20
$V_{ m DD}$	Input	Positive Supply	21
V_{SS}	Input	Negative Supply	22
OPCF	Operational Control Field	CMOS Input	23
FECW	Frame Error Control Word	CMOS Input	24
LEN1	Transfer Frame Length	CMOS Input	25
LEN0	Transfer Frame Length	CMOS Input	26
SYNCF	Synchronisation Flag	CMOS Input	27
PKTVER	Packet Version for Idle Telemetry Packets	CMOS Input	28
SECHEAD	Secondary Header Flag	CMOS Input	29
LSEG1	Segmentation Length Identifier	CMOS Input	30
LSEG0	Segmentation Length Identifier	CMOS Input	31
PKTORD	Packet Order Flag	CMOS Input	32
RANDOM	Pseudo-Random Data	Output	33
IFILL	Idle Fill Data	CMOS Input	34
TMODE3	Timing Strobe Mode	CMOS Input	35
TMODE2	Timing Strobe Mode	CMOS Input	36
TMODE1	Timing Strobe Mode	CMOS Input	37
TMODE0	Timing Strobe Mode	CMOS Input	38

PAGE 11

ISSUE 1

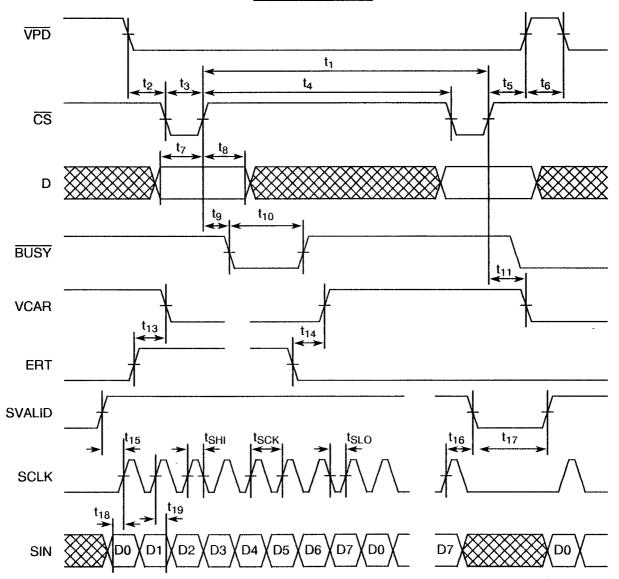
FIGURE 3(a) - PIN ASSIGNMENT (CONTINUED)

PIN DESCRIPTION (CONTINUED)

SYMBOL	FUNCTION	DESCRIPTION	PIN NUMBER
V _{SS}	Input	Negative Supply	39
TESTOUT	Production Test Output	Output	40
TIME	Time Sampling Strobe	Output	41
CLKMODE	Clock Mode	CMOS Input	42
BITCLK	Bit Clock	CMOS Input	43
RTS	Ready To Send	Output	44
PVCF	Partial Virual Frame Data	Output	45
CTS	Clear To Send	CMOS Input	46
POLL	Device Poll	CMOS Input	47
V_{DD}	Input	Positive Supply	48
ERT	External RAM Test	CMOS Input	49
RD3	RAM Data	TTL Input/Output	50
RD4	RAM Data	TTL Input/Output	51
RD2	RAM Data	TTL Input/Output	52
RD1	RAM Data	TTL Input/Output	53
RD5	RAM Data	TTL Input/Output	54
RD0	RAM Data	TTL Input/Output	55
RD6	RAM Data	TTL Input/Output	56
V _{SS}	Input	Negative Supply	57
RA0	RAM Address	Output	58
RD7	RAM Data	TTL Input/Output	59
RA1	RAM Address	Output	60
RCS	RAM Chip Select	Output	61
RA2	RAM Address	Output	62
RA10	RAM Address	Output	63
V _{SS}	Input	Negative Supply	64
V_{DD}	Input	Positive Supply	65
RA3	RAM Address	Output	66
ŌĒ	RAM Output Enable Control	Output	67
RA4	RAM Address	Output	68
RA11	RAM Address	Output	69
RA5	RAM Address	Output	70
RA9	RAM Address	Output	71
RA6	RAM Address	Output	72
RA8	RAM Address	Output	73
V_{SS}	Input	Negative Supply	74
RA7	RAM Address	Output	75
RA12	RAM Address	Output	76

PAGE 12

ISSUE 1

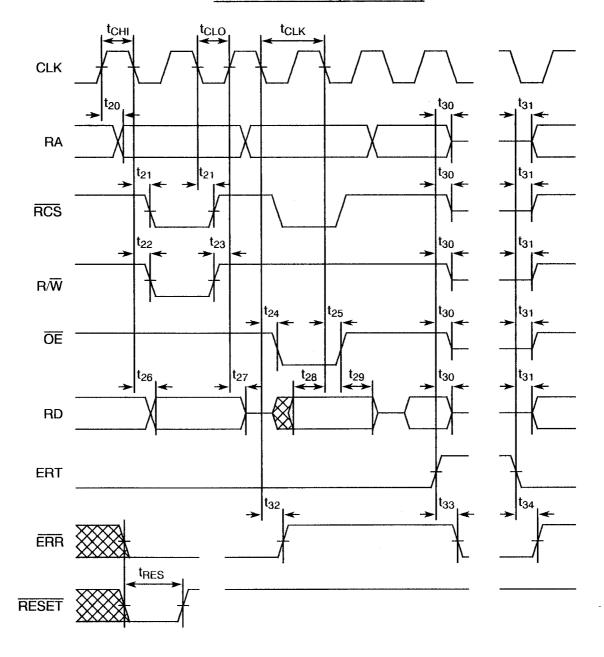

FIGURE 3(a) - PIN ASSIGNMENT (CONTINUED)

PIN DESCRIPTION (CONTINUED)

SYMBOL	FUNCTION	DESCRIPTION	PIN NUMBER
R/W	RAM Read/Write Control	Output	77
VPD	Valid Packet Data for Parallel Interface	TTL Input	78
<u>CS</u>	Chip Select, Parallel Interface	TTL Input	79
D0	Data Input, Parallel Interface	TTL Input	80
D1	Data Input, Parallel Interface	TTL Input	81
D2	Data Input, Parallel Interface	TTL Input	82
D3	Data Input, Parallel Interface	TTL Input	83
D4	Data Input, Parallel Interface	TTL Input	84

FIGURE 3(b) - TRUTH TABLE

TIMING DIAGRAMS

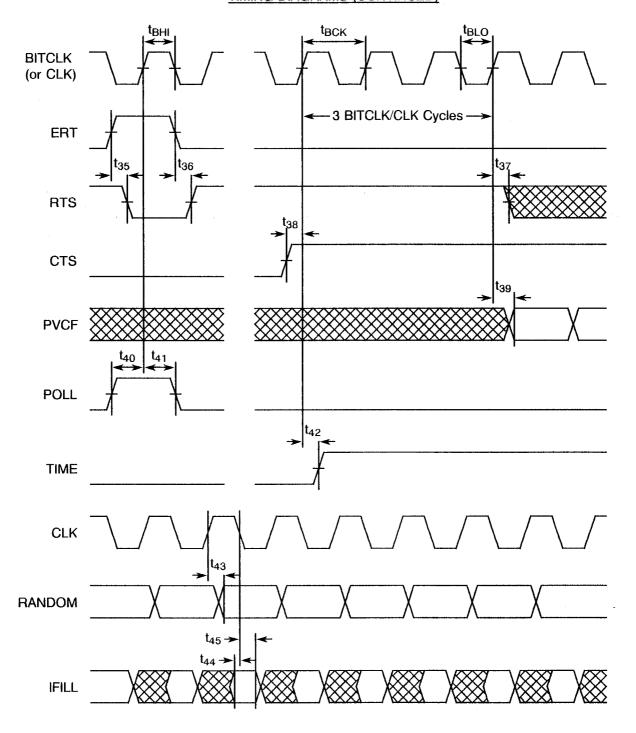


PAGE 13

ISSUE 1

FIGURE 3(b) - TRUTH TABLE (CONTINUED)

TIMING DIAGRAMS (CONTINUED)



PAGE 14

ISSUE 1

FIGURE 3(b) - TRUTH TABLE (CONTINUED)

TIMING DIAGRAMS (CONTINUED)

PAGE 15

ISSUE

FIGURE 3(c) - CIRCUIT DESCRIPTION

SUMMARY OF OPERATION

After reset and the optional self-test, the VCA provides the following functions:

- Reception of data from the OBDH system, which is stored in an external RAM together with header data.
- When requested by the VCM, a partial Transfer Frame is output, consisting of the PVCF Header, optionally including a Secondary Header, and the Transfer Frame Data Field.
- If enough data is not available, a partial Idle Transfer Frame is output instead.
- Optional generation of Idle Telemetry Packets to fill up incomplete Transfer Frames.
- Generation of Pseudo-random Idle Fill data, used for the generation of partial Idle Telemetry Packets and Idle Transfer Frames.
- Generation of a Time sampling strobe.

In order to complete the Transfer Frame the VCM performs the following functions:

- Generation of the 32 bit Synchronisation Marker.
- Generation of the first three octets of the Transfer Frame Primary Header.
- Feed-through of the PVCF data as part of the Transfer Frame.
- Generation of an optional Transfer Frame Trailer.
- Optionally leaving space for a Reed-Solomon code check block.

FUNCTIONS NOT INCLUDED IN THE VCA

The VCA does not perform segmentation of Source Packets, which should be done by the data source. The VCA can handle Telemetry Packets and data blocks longer than 8k octets, though only a part of the data will reside in the external RAM at a time.

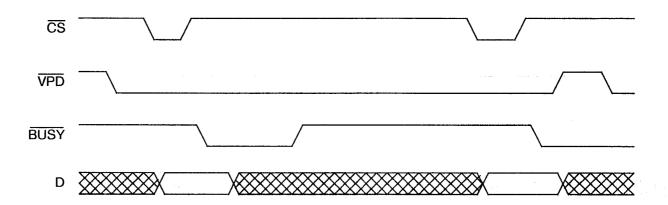
The VCA does not check the contents or the format of the Telemetry Packets provided by the source. Thus the VCA is independent of the Telemetry Packet format and any data structure can be used. The only exception is the Idle Telemetry Packets that can be optionally generated by the VCA itself, which have a predefined structure.

PARALLEL INPUT INTERFACE

The parallel interface, shown in Figure I, is active when SMODE = "0". The serial interface inputs SCLK, SVALID and SIN are then disabled but should be held to a defined logic level.

The main functions of the parallel input interface are:

- To latch data from the input bus and into the VCA.
- To inform the data source that the VCA has space in the external RAM.
- To detect the beginning of Telemetry Packets or data blocks being sent from the source and to set the First Header Pointer accordingly.



PAGE 16

ISSUE 1

FIGURE 3(c) - CIRCUIT DESCRIPTION (CONTINUED)

FIGURE I - PARALLEL INPUT INTERFACE

Data is input from the data source using the eight-bit-wide data bus (D0 - D7), and the chip select, \overline{CS} . The interface is asynchronous. Data is latched into the VCA on the rising \overline{CS} edge, as shown in Figure I.

N.B. D0 is the MSB.

The active low Valid Packet Data (\overline{VPD}) input defines when a new Telemetry Packet (data block in asynchronous mode) starts. The VCA stores data latched by the input interface when the \overline{VPD} input is enabled (\overline{VPD} = "0"). The \overline{VPD} input should be continuously enabled while a Telemetry Packet is being input. The timing of \overline{VPD} is shown in Figure I. \overline{VPD} is also used to set the First Header Pointer.

Data may be supplied at any rate up to one octet transfer every four CLK cycles, allowing a maximum peak input data rate of 25MBit/s when operating at the maximum clock frequency of 12.5MHz. If data is input at a higher rate, data could be lost.

In the case of using Telemetry Packets with a limited length (LSEG≠"11"), the VCA Ready (VCAR) output is enabled when there is room for at least one maximum-length Telemetry Packet in the external RAM. Otherwise the VCAR output is enabled when there is room for at least one Transfer Frame Data Field.

This output is enabled (= "1") when the VCA has place to store data in the external RAM, as defined below. VCAR changes state on the falling CLK edge. VCAR is also disabled when ERT is enabled (= "1") since the RAM is not then accessible. The values correspond to one maximum length packet or data field, respectively.

SYNCF	LSEG0	LSEG1	VCAR Threshold
0	0	0	≥262 (256 + 6)
0	0	1	≥518 (512+6)
0	1	0	≥ 1030 (1024 + 6)
0	1	. 1	≥Length of Transfer Frame Data Field
1	-	-	≥Length of Transfer Frame Data Field

NOTES

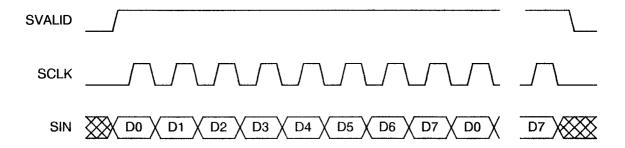
1. Logic Level Definitions: 0 = Low Level, 1 = High Level.

PAGE 17

ISSUE :

FIGURE 3(c) - CIRCUIT DESCRIPTION (CONTINUED)

Since VCAR is enabled when there is room for a predefined amount of data (one maximum-length Telemetry Packet or alternatively one Transfer Frame Data Field), this data can be transferred in its entirety without needing to check VCAR again.


The BUSY (VCA Busy) output is enabled (BUSY = "0") immediately after an octet has been written into the VCA (i.e. the rising CS edge). BUSY is disabled at the next falling CLK edge three CLK cycles after the rising CS edge. Since CS may be asynchronous, the actual duration of BUSY enabled can vary between three and four CLK cycles. BUSY is also enabled when there is no space for more octets in the external RAM. If CS is enabled while BUSY is enabled, no data will be latched.

The VCAR output alone can be used together with data sources that provide data with a transfer rate which is less than the maximum possible, while the BUSY output can be used with fast data sources that need acknowledgement on the octet level, such as a CPU.

SERIAL INPUT INTERFACE

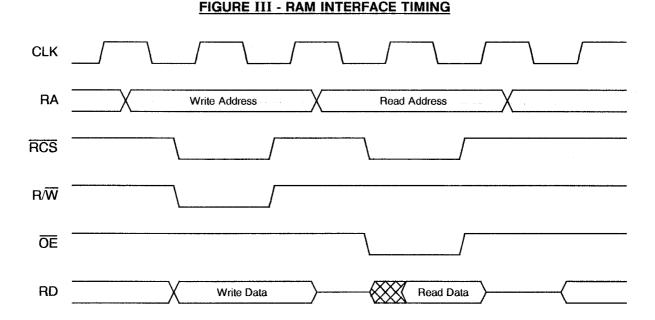
The serial input interface, shown in Figure II, is enabled when SMODE = "1". The parallel interface inputs \overline{CS} , \overline{VPD} and D0 - D7 are disabled, but should be held to a defined logic level. The VCAR and \overline{BUSY} outputs and all other functions of the VCA behave the same as for the parallel input interface, although they are probably less useful for the serial interface.

FIGURE II - SERIAL INPUT INTERFACE

Serial data is clocked in on the rising SCLK edge, when SVALID = "1". The serial data is assembled in a shift register and when eight bits have been input, the resulting octet is internally forwarded to the parallel interface. Data should consist of multiples of eight bits otherwise the last bits will be lost.

The input signal SVALID is used to delimit Telemetry Packets (data blocks in asynchronous mode), in the same way as $\overline{\text{VPD}}$ is used for the parallel interface. It shall be enabled while a Telemetry Packet (data block) is being input. In addition, SVALID defines the octet boundaries in the input data stream, the first octet explicitly and the following octets each subsequent eight SCLK cycles; the first bit received after SVALID has been enabled is bit 0. SVALID shall be enabled when data is input.

SCLK is asynchronous and thus need not be correlated to the CLK, except for the maximum input data transfer rate (one octet per four CLK cycles).


PAGE 18

ISSUE -

FIGURE 3(c) - CIRCUIT DESCRIPTION (CONTINUED)

STORAGE OF DATA IN EXTERNAL RAM

The VCA interfaces to an external 8k×8 static RAM to store PVCF data until the VCM requests it. The VCA RAM interface is shown in Figure III. The interface timing ensures that no bus collisions occur due to the VCA and RAM driving output data at the same time and this also applies for consecutive read and write cycles. The VCA can be used with RAMs such as MA9264 from GEC Plessey Semiconductors and HM65664 from Matra MHS, among others.

The VCA is capable of storing a variable number of PVCFs, ranging from 7 of the maximum length PVCFs to 36 of minimum length. Table I shows the relationship between the Transfer Frame length and the maximum number of PVCFs that can be stored.

TABLE I - TRANSFER FRAME LENGTH VERSUS MAXIMUM NUMBER OF PVCFs STORED

TRANSFER FRAME LENGTH	MAXIMUM NUMBER OF PVFCs THAT CAN BE STORED
223	36
446	18
892	9
1115	7

The VCA generates the RAM address (RA0 - RA12), the Chip Select (\overline{RCS}), the Read/Write strobe ($\overline{R/W}$) and the Output Enable (\overline{OE}). Data is transferred to and from the RAM over the bidirectional data bus (RD0 - RD7). The duration of the read and write cycles generated by the VCA is two CLK cycles. When the VCA does not access the RAM, the RD data bus is still driven to ensure that the bus is not left floating.

PAGE 19

ISSUE 1

FIGURE 3(c) - CIRCUIT DESCRIPTION (CONTINUED)

Once a PVCF transfer to the VCM has started, the VCA continues to output the PVCF data without interruption. Therefore, during the output of a PVCF to the VCM, the VCA reads PVCF data from the RAM once every eight CLK cycles (BITCLK cycles, when CLKMODE = "1").

The maximum input data rate is one octet every four CLK cycles, and thus the VCA may be required to write input data to the RAM once every four CLK cycles. In addition, Transfer Frame Header data and Idle Telemetry Packets are written to the RAM without disturbing the above RAM accesses.

VIRTUAL CHANNEL FRAME COUNTER

To verify that all Virtual Channel Frames have been received and in the correct order, the VCA has a 32 bit wrap-around Virtual Channel Frame Counter, which is incremented for each PVCF, normal and idle.

The VCA assigns the eight LSBs of the Virtual Channel Frame Counter to the Virtual Channel Frame Count field in the Primary Header. When the Secondary Header is present (SECHEAD = "1") the VCA assigns the 24 MSBs of the Virtual Channel Frame Counter to the Secondary Header Data field.

MSB	32-bit Virtual Ch	nannel Fram	e Counte	er e e e e e e e e e e e e e e e e e e	LSB
0		23	24		31
MSB	Secondary Header Data	LSB	MSB	VC Frame Count	LSB
0		23	0		7

FIRST HEADER POINTER

The First Header Pointer is required for the Telemetry Packet chaining process during Telemetry Packet de-multiplexing at the ground (Earth). The VCA generates partial Transfer Frames in one of two possible states; active or idle, as defined in RD1. The data contained in an active Transfer Frame can be either Telemetry Packets (SYNCF = "0") or non-packet data delimited into data blocks (SYNCF = "1"). Telemetry Packets are referred to as synchronous data in RD1 whereas non-packet data is referred to as asynchronous data.

In the active state, Telemetry Packets may be of varying lengths. It is unlikely that an integer number of Telemetry Packets will be exactly contained within a Transfer Frame, so some Telemetry Packets will be split between two Transfer Frames. The VCA calculates the position of the first octet of the first Telemetry Packet to be placed in each Transfer Frame, in accordance with RD1, then inserts this value into the header of the PVCF.

For the VCA, the above also applies to non-packet data, allowing data blocks to be identified in the data stream. This is an extension to RD1, permitting the First Header Pointer also to be set for non-packet data in the same way as it is set for Telemetry Packets. This feature is activated by using the $\overline{\text{VPD}}$ signal for the parallel interface (SVALID signal for the serial interface) to delimit data blocks, in the same way as for delimiting Telemetry Packets. For serial input mode, SVALID has the same functions as $\overline{\text{VPD}}$ in parallel input mode.

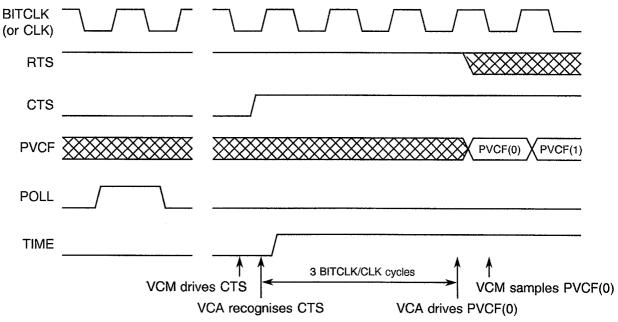
PAGE 20

ISSUE

FIGURE 3(c) - CIRCUIT DESCRIPTION (CONTINUED)

The First Header Pointer is initiated to "all ones" at reset, allowing the VCA to operate in full compliance with RD1 for non-packet data by permanently connecting VPD to logic "0" (SVALID to logic "1" when SMODE = "1"). This means that when using Telemetry Packets (or when using the First Header Pointer for non-packet data), the VPD input should be held at logic "1" (SVALID at logic "0" when SMODE = "1") until six CLK cycles after RESET has been disabled, to be disabled before writing the first Telemetry Packet or data block. Otherwise the First Header Pointer for the first transmitted non-Idle Transfer Frame after reset would have the First Header Pointer set to "all ones" instead of "all zeros".

IF $\overline{\text{VPD}}$ (SVALID when SMODE = "1") was not disabled while all the data filling up a Transfer Frame was input, e.g. if a Telemetry Packet or data block is longer than the data field of the Transfer Frame, the First Header Pointer is set to "all ones"; First Header Pointer = "111111111111".


In the idle state, the VCA sends a partial Idle Transfer Frame and the First Header Pointer is set to the predefined Idle First Header Pointer code. This code is the same both for Telemetry Packets and non-packet data; First Header Pointer = "11111111111111".

The VCA fully supports the First Header Pointer and has therefore no requirements on aligning the data with the Transfer Frame boundary, contrary to other implementations.

VCA/VCM INTERFACE

The VCA/VCM interface, shown in Figure IV, is for the serial transfer of partial Transfer Frames to the VCM. The VCA relates its operations to the rising CLK edge (rising BITCLK edge, when CLKMODE = "1"), whereas the VCM relates its operations to the falling BITCLK edge, to minimise potential skew problems. The VCA has a Clear To Send (CTS) and a device POLLed (POLL) input, and a Ready To Send (RTS) and a Partial Virtual Channel Frame data (PVCF) output.

FIGURE IV - TIMING OF VCA/VCM INTERFACE

NOTES

- 1. The RTS signal will stay asserted if there are more PVCFs available.
- 2. If there are no more PVCFs the RTS signal will be de-asserted.
- 3. PVCF(1) = Bit 1 of PVCF.

PAGE 21

ISSUE -

FIGURE 3(c) - CIRCUIT DESCRIPTION (CONTINUED)

The VCA/VCM interface can operate relative to the BITCLK signal for bit rates up to 3MBit/s or relative to the CLK signal for bit rates up to 12.5MBit/s. When CLKMODE = "0", the VCA/VCM interface uses the CLK signal; when CLKMODE = "1", the interface uses the asynchronous BITCLK signal. BITCLK is then sampled internally by the VCA generating an internal enable signal when the rising BITCLK edge is detected. This signal enables the interface signals (RTS, POLL, CTS, PVCF) to be sampled/driven during the next CLK cycle.

Using the BITCLK signal enables the VCA to operate at a higher clock frequency than the VCM, allowing a bit rate independent of input data rate. In addition, the RAM power dissipation might decrease due to the chip select being enabled for a shorter time, depending on the RAM device used.

The VCA enables the output signal RTS when it has stored a complete PVCF in RAM. RTS will remain enabled as long as there is one or more complete PVCFs in RAM, excluding a PVCF currently being output. When the VCM is ready to receive data from the VCA, it enables the CTS signal. Three CLK (or BITCLK) cycles after the VCA has detected the enabled CTS input, it will start to output PVCF data. The PVCF data is output at the rate of one bit per CLK (or BITCLK) cycle without interrupt until the complete PVCF has been output. The CTS input shall be enabled for a minimum of 16 CLK cycles, and it shall be disabled before the end of the PVCF.

If the VCM enables the CTS signal when the VCA has not enabled RTS, the VCA outputs an Idle PVCF.

IDLE TRANSFER TIMES

An Idle PVCF, which will be finalised into an Idle Transfer Frame by the VCM, will be produced when the VCA has not stored a complete PVCF in RAM, when CTS is enabled. Idle PVCFs are not stored in RAM but generated while being output. The timing and the length of an Idle PVCF is identical to a normal PVCF. Idle Transfer Frames should not be confused with Idle Telemetry Packets.

The Idle PVCF Data Field contains no useful data. It will be filled with data from the Idle Fill data input (IFILL). One bit per CLK cycle (BITCLK cycle, when CLKMODE = "1") is sampled and used for Idle PVCF data.

IDLE TELEMETRY PACKET INSERTION

The VCA can optionally generate and insert Idle Telemetry Packets, to fill up an incomplete Transfer Frame. This ensures that Telemetry Packets do not remain inaccessible due to an incomplete Transfer Frame being resident in the RAM. This feature is only available when the VCA is operating with Telemetry Packets, referred to as synchronous data in RD1. Idle Telemetry Packets should not be confused with Idle Transfer Frames.

The Idle Telemetry Packet insertion process starts when all of the following conditions are met:

- The VCA operates with Telemetry Packets (SYNCF = "0").
- The source is not sending a Telemetry Packet (VPD = "1" or SVALID = "0", respectively).
- The VCA is not Ready To Send data (RTS = "0").
- An incomplete PVCF (containing non-Idle Telemetry Packets or part of a non-Idle Telemetry Packet) is resident in the external RAM.
- The value of the Poll Programme inputs, PPROG0 to PPROG2, is not equal to "111".
- The appropriate number of device polls have been counted by the Poll Counter.

PAGE 22

ISSUE 1

FIGURE 3(c) - CIRCUIT DESCRIPTION (CONTINUED)

When the Idle Telemetry Packet insertion process has filled the PVCF, the VCA enables the RTS output. The Idle Telemetry Packet insertion process stops after the last Idle Telemetry Packet has been stored in the RAM. In the case that the last Idle Telemetry Packet spilled over, it will be written to the next PVCF. The time required for the VCA to complete a PVCF with Idle Telemetry Packets depends on how much space there is left to be filled. The worst case is when the longest possible data field in a Transfer Frame of 1115 octets contains only one octet of Telemetry Packet data, which will take less than 12 000 CLK cycles to complete the PVCF data field.

Should VPD (SVALID when SMODE = "1") be enabled after the Idle Telemetry Packet insertion process has started, the current Idle Telemetry Packet is completed in parallel with the storing of Telemetry Packet data and then the Idle Telemetry Packet insertion process is suspended. As soon as VPD (SVALID) is disabled, indicating the end of the normal Telemetry Packet, the Idle Telemetry Packet insertion process resumes and continues until the PVCF has been completed (it will not stop due to a new Telemetry Packet being received) unless the PVCF was already completely filled with normal Telemetry Packets.

The VCA is able to receive Telemetry Packets and send PVCFs simultaneously with the insertion of an Idle Telemetry Packet.

When a Transfer Frame contains no Telemetry packets or when it contains only part of an Idle Telemetry Packet, the Idle Telemetry Packet insertion process will not start. The situation where a PVCF contains only part of an Idle Telemetry Packet occurs when an Idle Packet spilled over from the previous Transfer Frame and it is the only data in the Transfer Frame.

POLL COUNTER

In the previous section, six conditions were listed for the Idle Telemetry Packet insertion process to commence. When the VCA detects that the first five conditions are met, it enables the Poll Counter. The Poll Counter is reset and disabled when either of the following conditions is met:

- The source asserts VPD or SVALID in preparation for sending Telemetry Packets, OR
- The Idle Telemetry Packet insertion process is active.

When the Poll Counter is enabled, it increments by one at every rising CLK edge (rising BITCLK edge, when CLKMODE = "1") when the POLL input is enabled. The VCM asserts POLL every time it checks the RTS signal of the VCA, while selecting which VCA to output the next PVCF. The Poll Counter increments until it reaches the number of programmed polls, ranging from 1 to 1024, as indicated by the value of PPROG0 to PPROG2 and then it enables the Idle Telemetry Packet insertion process.

The Poll Counter is enabled when:

- (SYNCF = "0") AND,
- (VPD = "1") or SVALID = "0", respectively) AND,
- (RTS = "0") AND,
- ("000" < PPROG[0...2] < "111") AND,
- (The incomplete PVCF contains non-Idle Telemetry Packet data) AND,
- (The Idle Telemetry Packet insertion process is not active),

otherwise the Poll Counter is reset and disabled.

PAGE 23

ISSUE 1

FIGURE 3(c) - CIRCUIT DESCRIPTION (CONTINUED)

The Poll Counter is incremented by one at every rising CLK edge (rising BITCLK edge, when CLKMODE = "1") when:

- (Poll Counter enabled) AND (POLL = "1").

The Idle Telemetry Packet insertion process starts when:

- [(POLL Counter enabled) AND,
- (POLL Counter = Threshold value as defined in Table II)] OR,
- [(PPROG[0...2] = "000") AND,
- (SYNCF = "0") AND,
- (VPD = "1") AND,
- (RTS = "0") AND,
- (The incomplete PVCF contains non-ldle Telemetry Packet data)).]

The Idle Telemetry Packet insertion process stops when:

- The PVCF is complete and the remainder of the last Idle Telemetry Packet has been stored in the next PVCF, if the Idle Telemetry Packet spills over from the last PVCF.

The relationship between the signals POLL and VPD or SVALID has to allow for internal synchronisation of the signals in the VCA.

TABLE II - POLL COUNTER THRESHOLD

	PPROG2	PPROG1	PPROG0	Poll Counter Threshold
÷>	0	0	0	Immediate Idle Telemetry Packet Insertion (1)
	0	0	1	1 device poll
	0	1	0	4 device polls
	0	1	1	16 device polls
	1	0	0	64 device polls
	1	0	1	256 device polls
	1	1	0	1024 device polls
	1	1	1	Idle Telemetry Packet insertion process will not be started

NOTES

1. Idle Telemetry Packet insertion process starts when all relevant conditions are met.

IDLE TELEMETRY PACKET

The VCA generates the Idle Telemetry Packet Header and inserts the pre-defined values into the appropriate fields.

The data field of an Idle Telemetry Packet is filled with data from the Idle Fill data input (IFILL). One bit per CLK cycle is sampled and used for Idle Telemetry Packet data.

PAGE 24

ISSUE 1

FIGURE 3(c) - CIRCUIT DESCRIPTION (CONTINUED)

PSEUDO-RANDOM IDLE FILL DATA

The Pseudo-random Idle Fill data is generated to provide fill data for the data fields of Idle Telemetry Packets and Idle PVCFs. The pseudo-random data generator generates the RANDOM output signal, which can be connected to the Idle Fill data input pin (IFILL). The data output rate is one bit per CLK cycle. The pseudo-random Data generator is free-running, and will not be initialised by any event except reset (\overline{RESET} = "0"). The pseudo-random data generator polynomial is $x^9 + x^5 + 1$.

The design of the generator ensures that a Single Event Upset (SEU) or any other spurious event will not cause the generator to jump to an invalid state and produce a continuous output of ones or zeros.

TIME SAMPLING STROBE

The VCA provides the active high TIME strobe for sampling the on-board time according to Section 7.4 of RD1. TIME is enabled one CLK cycle (two CLK cycles after the rising BITCLK edge, when CLKMODE = "1") after CTS has been asserted, when the eight LSBs of the Virtual Channel Frame Counter for the partial Transfer Frame to be sent out contain the value(s) selected by the four TMODE pins. This allows all intervals defined in RD1 to be selected. TIME will remain asserted for 128 CLK cycles, regardless of the CLKMODE value.

This means that the TIME strobe will be enabled 51 CLK cycles (51 BITCLK plus two CLK cycles after the rising BITCLK edge, when CLKMODE = "1") after the leading edge of the Synchronisation Marker has been output from the VCM. This can be regarded as compliant with the requirements of RD1 since the delay relative to the rising edge of the first bit of the Synchronisation Marker is fixed and known.

If it nevertheless is required to sample the on-board time exactly at the rising edge of the Synchronisation Marker, the time can be sampled at this edge for every Transfer Frame generated but only read out when the TIME strobe is asserted.

The TIME strobe from the VCA associated with Virtual Channel 0 should be used for sampling the on-board spacecraft time.

TEST

The VCA features Built-in Self Test (BIST) with a fault coverage of 89.5%. The BIST runs for 4996 CLK cycles after RESET has been released. The BIST result does not depend on the state of any of the inputs. The BIST can be disabled by connecting the TEST0 input to logic "1"; after releasing RESET, the VCA will be reset but no BIST will be performed.

If an error is detected by the BIST, the \overline{ERR} output remains enabled (\overline{ERR} = "0"), until the next reset occurs. The VCA will try to continue to operate in normal mode. If no internal error was detected, the \overline{ERR} output is disabled, and the VCA starts working in normal mode.

When RESET is enabled and during BIST, the RCS, OE and R/W outputs are driven to logic "1" and all other outputs except RANDOM are driven to logic "0" so as not to trigger connected devices. The RD data bus is driven to logic "0" to ensure that it is not left floating. Due to design reasons, the RANDOM pin outputs pseudo-random data also during BIST.

PAGE 25

ISSUE

FIGURE 3(c) - CIRCUIT DESCRIPTION (CONTINUED)

The active high input External Ram Test (ERT) can be used to 3-state <u>all</u> outputs from the VCA to the external RAM, to allow for RAM test. When ERT is enabled the outputs <u>ERR</u>, VCAR and RTS are held at logic "0" since the VCA can no longer control the RAM. When ERT is disabled, control of the RAM interface, VCAR, RTS and <u>ERR</u> is returned to the VCA. ERT is asynchronous and only disables the outputs, without any other impact on the VCA.

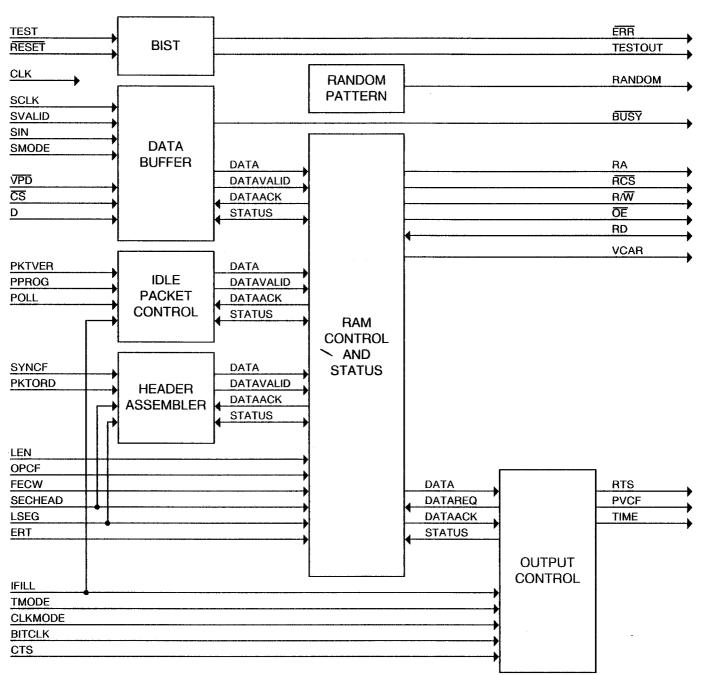
The production test for the VCA has a fault coverage higher then 96%, and is performed at a CLK frequency of 10MHz. The TEST1 input is used for the production test and shall be tied to logic "0" during normal operation.

The fault coverage figures are based on stuck-at-0/1 faults at the gate level, faulting all nets (gate outputs).

STATE AFTER RESET

After reset, or after reset and completion of BIST, the VCA is initialised as follows:

- The Virtual Channel Frame Counter has the value 0.
- The First Header Pointer is initialised to "all ones".
- The Poll Counter has the value 0.


Since the VCA BIST takes fewer CLK cycles than the VCM BIST, the VCA will always be ready when the VCM requires the first Transfer Frame (except for the unrealistic case when the VCA performs BIST and the VCM does not).

PAGE 26

ISSUE 1

FIGURE 3(d) - FUNCTIONAL DIAGRAM

FIGURE 3(e) - INPUT/OUTPUT PROTECTION NETWORKS

PAGE 27

ISSUE 1

2. APPLICABLE DOCUMENTS

The following documents form part of this specification and shall be read in conjunction with it:-

- (a) ESA/SCC Generic Specification No. 9000 for Integrated Circuits.
- (b) MIL-STD-883, Test Methods and Procedures for Micro-electronics.
- (c) ESA PSS-04-106, Packet Telemetry Standard.
- (d) ESA PSS-04-107, Packet Telecommand Standard.

3. TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS

For the purpose of this specification, the terms, definitions, abbreviations, symbols and units specified in ESA/SCC Basic Specification No. 21300 shall apply. In addition, the following abbreviation is used:-

V_{IC} - Input/Output Clamp Voltage.

4. REQUIREMENTS

4.1 GENERAL

The complete requirements for procurement of the integrated circuits specified herein are stated in this specification and ESA/SCC Generic Specification No. 9000 for Integrated Circuits. Deviations from the Generic Specification, applicable to this specification only, are listed in Para. 4.2.

Deviations from the applicable Generic Specification and this Detail Specification, formally agreed with specific Manufacturers on the basis that the alternative requirements are equivalent to the ESA/SCC requirements and do not affect the components' reliability, are listed in the appendices attached to this specification.

4.2 <u>DEVIATIONS FROM GENERIC SPECIFICATION</u>

4.2.1 <u>Deviations from Special In-process Controls</u>

- (a) Para. 5.2.2, Total Dose Irradiation Testing: Shall be performed during qualification and maintenance of qualification.
- (b) Para. 5.2.2, Total Dose Irradiation Testing: Shall be performed during procurement on a lot acceptance basis at the total dose irradiation level specified in the Purchase Order.

4.2.2 Deviations from Final Production Tests (Chart II)

None.

4.2.3 Deviations from Burn-in and Electrical Measurements (Chart III)

(a) Para. 7.1.1(a), "High Temperature Reverse Bias" test and subsequent electrical measurements related to this test shall be omitted.

4.2.4 Deviations from Qualification Tests (Chart IV)

None.

4.2.5 Deviations from Lot Acceptance Tests (Chart V)

None.

PAGE 28

ISSUE 1

4.3 <u>MECHANICAL REQUIREMENTS</u>

4.3.1 <u>Dimension Check</u>

The dimensions of the integrated circuits specified herein shall be checked. They shall conform to those shown in Figure 2.

4.3.2 Weight

The maximum weight of the integrated circuits specified herein shall be 5.0 grammes.

4.3.3 Terminal Strength

The requirements for terminal strength testing are specified in Section 9 of ESA/SCC Basic Specification No. 9000. The test conditions shall be as follows:-

Applied Force: 1.0 ± 0.1 Newtons, 3 bends at 45°.

4.4 MATERIALS AND FINISHES

The materials and finishes shall be as specified herein. Where a definite material is not specified, a material which will enable the integrated circuits specified herein to meet the performance requirements of this specification shall be used. Acceptance or approval of any constituent material does not guarantee acceptance of the finished product.

4.4.1 Case

The case shall be hermetically sealed and have a ceramic body and the lids shall be pre-form soldered.

4.4.2 Lead Material and Finish

The material shall be Type 'D' with Type '2' finish in accordance with the requirements of ESA/SCC Basic Specification No. 23500. (See Table 1(a) for Type Variants).

4.5 MARKING

4.5.1 General

The marking of all components delivered to this specification shall be in accordance with the requirements of ESA/SCC Basic Specification No. 21700. Each component shall be marked in respect of:-

- (a) Lead Identification.
- (b) The SCC Component Number.
- (c) Traceability Information.

4.5.2 <u>Lead Identification</u>

An index shall be located at the top of the package in the position defined in Note 1 to Figure 2 or, alternatively, a tab may be used to identify Pin No. 1. The pin numbering must be read with the index or tab on the left-hand side.

PAGE 29

ISSUE 1

05440050400

4.5.3 The SCC Component Number

Each component shall bear the SCC Component Number which shall be constituted and marked as follows:

	904400001DD	į
Detail Specification Number		
Type Variant (see Table 1(a))		
Testing Level (B or C, as applicable) ————————————————————————————————————		
Total Dose Irradiation Level (if applicable)		

The Total Dose Irradiation Level designation shall be added for those devices for which a sample has been successfully tested to the level in question. For these devices, a code shall be added in accordance with the requirements of ESA/SCC Basic Specification No. 22900.

4.5.4 Traceability Information

Each component shall be marked in respect of traceability information in accordance with the requirements of ESA/SCC Basic Specification No. 21700.

4.6 <u>ELECTRICAL MEASUREMENTS</u>

4.6.1 Electrical Measurements at Room Temperature

The parameters to be measured in respect of electrical characteristics are scheduled in Table 2. Unless otherwise specified, the measurements shall be performed at T_{amb} = +22 ±3 °C.

4.6.2 Electrical Measurements at High and Low Temperatures

The parameters to be measured at high and low temperatures are scheduled in Table 3. The measurements shall be performed at $T_{amb} = +125(+0-5)$ °C and -55(+5-0) °C respectively.

4.6.3 <u>Circuits for Electrical Measurements</u>

Circuits for use in performing electrical measurements listed in Tables 2 and 3 of this specification are shown in Figure 4.

4.7 BURN-IN TESTS

4.7.1 Parameter Drift Values

The parameter drift values applicable to burn-in are specified in Table 4 of this specification. Unless otherwise stated, measurements shall be performed at T_{amb} = +22 ±3 °C. The parameter drift values (Δ) applicable to the parameters scheduled, shall not be exceeded. In addition to these drift value requirements, the appropriate limit value specified for a given parameter in Table 2 shall not be exceeded.

4.7.2 Conditions for H.T.R.B. Burn-in

Not applicable.

4.7.3 Conditions for Power Burn-in

The requirements for Power Burn-in are specified in Section 7 of ESA/SCC Generic Specification No. 9000. The conditions for Power Burn-in shall be as specified in Table 5(b) of this specification.

4.7.4 <u>Electrical Circuits for H.T.R.B. Burn-in</u>

Not applicable.

4.7.5 Electrical Circuits for Power Burn-in

A circuit for use in performing the Power Burn-in test is shown in Figure 5(b) of this specification.

PAGE 30

ISSUE 1

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - d.c. PARAMETERS

No.	CHARACTERISTICS	SYMBOL	TEST METHOD	TEST	TEST CONDITIONS	LIM	ITS	UNIT
140.	CHARACTERISTICS	STWIDOL	MIL-STD 883	FIG.	(PINS UNDER TEST)	MIN	MAX	ONIT
to 8	V _{SS} and V _{DD} Continuity	<u>.</u>	•	4(a)	$I_{OUT} = 10\mu$ A $V_{DD} = V_{SS} = 0V$ (Pins 1-4-21-22-39-48-57-74 to 64 + 65)	•	100	mV
9	Functional Test 1 (Basic)	-	3014	•	Verify Device Operation with Load $V_{IL} = 0V, \ V_{IH} = 5.0V$ $V_{OL} = 1.0V, \ V_{OH} = 4.0V$ $I_{OUT} = \pm 2.0mA$ $C_L = 100pF \pm 20\%$ $V_{DD} = 5.0V, \ V_{SS} = 0V$ $Pattern = Note \ 1$	•	•	-
10	Functional Test 2 (Nominal Voltage)	-	3014	-	Verify Device Operation with Load V_{IL} , V_{IH} = Note 2 V_{OL} = 1.0V, V_{OH} = 4.0V I_{OUT} = \pm 2.0mA C_L = 100pF \pm 20% V_{DD} = 5.0V, V_{SS} = 0V Pattern = Note 2	-	-	-
11	Functional Test 3 (High Voltage)	-	3014	-	Verify Device Operation with Load $V_{IL},\ V_{IH} = \text{Note 2}$ $V_{OL} = 1.0V,\ V_{OH} = 4.5V$ $I_{OUT} = \pm 2.0\text{mA}$ $C_L = 100\text{pF} \pm 20\%$ $V_{DD} = 5.5V,\ V_{SS} = 0V$ $Pattern = \text{Note 2}$		-	-
12	Functional Test 4 (Low Voltage)	-	3014	-	Verify Device Operation with Load V_{IL} , V_{IH} = Note 2 V_{OL} = 1.0V, V_{OH} = 3.5V I_{OUT} = \pm 2.0mA C_L = 100pF \pm 20% V_{DD} = 4.5V, V_{SS} = 0V Pattern = Note 2	-	-	-
13	Quiescent Current	I _{DD}	3005	4(b)	$V_{IL} = 0V$, $V_{IH} = 5.5V$ $V_{DD} = 5.5V$, $V_{SS} = 0V$ All Outputs Open Note 3 (Pins 1 + 21 + 48 + 65)	. -	0.5	mA

PAGE 31

ISSUE 1

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - d.c. PARAMETERS (CONT'D)

No	CHARACTERISTICS	CVAADOL	TEST METHOD	TEST	TEST CONDITIONS	LIM	ITS	LINUT
No.	CHARACTERISTICS	SYMBOL	MIL-STD 883	FIG.	(PINS UNDER TEST)	MIN	MAX	UNIT
14 to 54	Input Current Low Level	Ę	3009	4(c)	$\begin{split} &V_{IN} \text{ (Under Test)} = 0V \\ &V_{IN} \text{ (Remaining Inputs)} = 5.5V \\ &V_{DD} = 5.5V, V_{SS} = 0V \\ &(\text{Pins 2-3-5-8-9-10-11-12-13-16-17-18-19-20-23-24-25-26-27-28-29-30-31-32-34-35-36-37-38-42-43-46-47-49-78-79-80-81-82-83-84)} \end{split}$	-	-1.0	μΑ
55 to 95	Input Current High Level	Ин	3009	4(d)	V_{IN} (Under Test) = 5.5V V_{IN} (Remaining Inputs) = 0V V_{DD} = 5.5V, V_{SS} = 0V (Pins 2-3-5-8-9-10-11-12-13-16-17-18-19-20-23-24-25-26-27-28-29-30-31-32-34-35-36-37-38-42-43-46-47-49-78-79-80-81-82-83-84)	-	1.0	μΑ
96 to 127	Output Voltage Low Level	V _{OL}	3007	4(e)	V_{IL} , V_{IH} = Note 2 I_{OL} = 4.0mA V_{DD} = 4.5V, V_{SS} = 0V Note 4 (Pins 6-7-15-33-40-41-44-45-50-51-52-53-54-55-56-58-59-60-61-62-63-66-67-68-69-70-71-72-73-75-76-77)	-	0.4	V
128 to 159	Output Voltage High Level 1	V _{ОН1}	3006	4(f)	V_{IL} , V_{IH} = Note 2 I_{OL} = -4.0mA V_{DD} = 4.5V, V_{SS} = 0V Note 4 (Pins 6-7-15-33-40-41-44-45-50-51-52-53-54-55-56-58-59-60-61-62-63-66-67-68-69-70-71-72-73-75-76-77)	3.9	-	>
160 to 191	Output Voltage High Level 2	V _{OH2}	3006	4(f)	$\begin{split} &V_{IL},\ V_{IH} = \text{Note 2} \\ &I_{OL} = -0.5\text{mA} \\ &V_{DD} = 4.5\text{V},\ V_{SS} = 0\text{V} \\ &\text{Note 4} \\ &(\text{Pins 6-7-15-33-40-41-44-45-50-51-52-53-54-55-56-58-59-60-61-62-63-66-67-68-69-70-71-72-73-75-76-77)} \end{split}$	4.2	-	>

PAGE 32

ISSUE 1

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - d.c. PARAMETERS (CONT'D)

No.	CHARACTERISTICS	SYMBOL	TEST METHOD	TEST	TEST CONDITIONS	LIM	ITS	UNIT
NO.	CHARACTERISTICS	STIVIBUL	MIL-STD 883	FIG.	(PINS UNDER TEST)	MIN	MAX	UNIT
192 to 209	Threshold Voltage Low Level 1 (TTL Inputs)	V _{THN1}	-	4(g)	V _{DD} = 4.5V, V _{SS} = 0V (Pins 2-3-5-50-51-52-53-54- 55-56-59-78-79-80-81-82-83- 84)	0.8	1	V
210 to 227	Threshold Voltage High Level 1 (TTL Inputs)	V _{THP1}	•	4(g)	V _{DD} = 4.5V, V _{SS} = 0V (Pins 2-3-5-50-51-52-53-54- 55-56-59-78-79-80-81-82-83- 84)	-	2.0	٧
228 to 257	Threshold Voltage Low Level 2 (CMOS Inputs)	V _{THN2}	•	4(g)	V_{DD} = 4.5V, V_{SS} = 0V (Pins 8-9-10-11-13-16-17-18-19-20-23-24-25-26-27-28-29-30-31-32-34-35-36-37-38-42-43-46-47-49)	1.3	-	V
258 to 287	Threshold Voltage High Level 2 (CMOS Inputs)	V _{THP2}	-	4(g)	V _{DD} = 4.5V, V _{SS} = 0V (Pins 8-9-10-11-13-16-17-18- 19-20-23-24-25-26-27-28-29- 30-31-32-34-35-36-37-38-42- 43-46-47-49)	-	3.2	٧
288	Threshold Voltage Low Level 3 (SCHMITT Trigger Input)	V _{THN3}	-	4(g)	V _{DD} = 4.5V, V _{SS} = 0V (Pin 12)	1.0	2.8	V
289	Threshold Voltage High Level 3 (SCHMITT Trigger Input)	V _{THP3}	-	4(g)	$V_{DD} = 4.5V$, $V_{SS} = 0V$ (Pin 12)	1.5	3.3	>
290	Hysteresis Voltage	V _H	-	4(h)	$V_{DD} = 4.5V, V_{SS} = 0V$ Note 5 (Pin 12)	0.5	ı	٧
291 to 308	Threshold Voltage Low Level 4 (TTL Inputs)	V _{THN4}	-	4(g)	V _{DD} = 5.5V, V _{SS} = 0V (Pins 2-3-5-50-51-52-53-54- 55-56-59-78-79-80-81-82-83- 84)	0.8	•	V
309 to 326	Threshold Voltage High Level 4 (TTL Inputs)	V _{THP4}	•	4(g)	V _{DD} = 5.5V, V _{SS} = 0V (Pins 2-3-5-50-51-52-53-54- 55-56-59-78-79-80-81-82-83- 84)	-	2.0	V

PAGE 33

ISSUE 1

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - d.c. PARAMETERS (CONT'D)

No	CHARACTERISTICS	SYMBOL	TEST METHOD	TEST	TEST CONDITIONS	LIM	ITS	UNIT
No.	CHARACTERISTICS	STIMBOL	MIL-STD 883	FIG.	(PINS UNDER TEST)	MIN	MAX	UNIT
327 to 366	Threshold Voltage Low Level 5 (CMOS Inputs)	V _{THN5}	-	4(g)	V _{DD} = 5.5V, V _{SS} = 0V (Pins 8-9-10-11-13-16-17-18- 19-20-23-24-25-26-27-28-29- 30-31-32-34-35-36-37-38-42- 43-46-47-49)	1.7	• • •	V
367 to 396	Threshold Voltage High Level 5 (CMOS Inputs)	V _{THP5}	-	4(g)	V _{DD} = 5.5V, V _{SS} = 0V (Pins 8-9-10-11-13-16-17-18- 19-20-23-24-25-26-27-28-29- 30-31-32-34-35-36-37-38-42- 43-46-47-49)	-	3.9	V
397	Threshold Voltage Low Level 6 (SCHMITT Trigger Input)	V _{THN6}	-	4(g)	V _{DD} = 5.5V, V _{SS} = 0V (Pin 12)	1.2	3.8	V
398	Threshold Voltage High Level 6 (SCHMITT Trigger Input)	V _{THP6}	-	4(g)	V _{DD} = 5.5V, V _{SS} = 0V (Pin 12)	1.7	4.3	V
399 to 471	Input/Output Clamp Voltage (to V _{SS})	V _{IC1}	3022	4(i)	$\begin{split} I_{IN} &= -100 \mu A \\ V_{DD} &= V_{SS} = 0 V \\ \text{(Pins 2-3-5-6-7-8-9-10-11-12-13-15-16-17-18-19-20-23-24-25-26-27-28-29-30-31-32-33-34-35-36-37-38-40-41-42-43-44-45-46-47-49-50-51-52-53-54-55-56-58-59-60-61-62-63-66-67-68-69-70-71-72-73-75-76-77-78-79-80-81-82-83-84) \end{split}$	-	-2.0	V
472 to 544	Input/Output Clamp Voltage (to V _{DD})	V _{IC2}	3022	4(i)	$\begin{split} I_{IN} &= 100 \mu A \\ V_{DD} &= V_{SS} = 0V \\ (\text{Pins } 2\text{-}3\text{-}5\text{-}6\text{-}7\text{-}8\text{-}9\text{-}10\text{-}11\text{-}12\text{-}} \\ 13\text{-}15\text{-}16\text{-}17\text{-}18\text{-}19\text{-}20\text{-}23\text{-}24\text{-}} \\ 25\text{-}26\text{-}27\text{-}28\text{-}29\text{-}30\text{-}31\text{-}32\text{-}33\text{-}} \\ 34\text{-}35\text{-}36\text{-}37\text{-}38\text{-}40\text{-}41\text{-}42\text{-}43\text{-}} \\ 44\text{-}45\text{-}46\text{-}47\text{-}49\text{-}50\text{-}51\text{-}52\text{-}53\text{-}} \\ 54\text{-}55\text{-}56\text{-}58\text{-}59\text{-}60\text{-}61\text{-}62\text{-}63\text{-}} \\ 66\text{-}67\text{-}68\text{-}69\text{-}70\text{-}71\text{-}72\text{-}73\text{-}75\text{-}} \\ 76\text{-}77\text{-}78\text{-}79\text{-}80\text{-}81\text{-}82\text{-}83\text{-}84) \end{split}$	-	2.0	>

PAGE 34

ISSUE 1

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - d.c. PARAMETERS (CONT'D)

No.	CHARACTERISTICS	SYMBOL	TEST METHOD	TEST	TEST CONDITIONS	LIMITS		UNIT
INO.	CHARACTERISTICS	STWIBOL	MIL-STD 883	FIG.	(PINS UNDER TEST)	MIN	MAX	ONIT
545 to 552	Output Leakage Current Third State (Low Level Applied)	lozL	3006	4(j)	V_{IN} (3-State Control) = Note 6 V_{OUT} = 0V V_{DD} = 5.5V, V_{SS} = 0V (Pins 50-51-52-53-54-55-56-59)	-	- 10	μА
553 to 560	Output Leakage Current Third State (High Level Applied)	lozh	3006	4(j)	V_{IN} (3-State Control) = Note 6 V_{OUT} = 5.5V V_{DD} = 5.5V, V_{SS} = 0V (Pins 50-51-52-53-54-55-56-59)	-	10	μА
561	Supply Current 1 (During BIST)	I _{DDS1}	3005	4(b)	$V_{IL} = 0V$, $V_{IH} = 5.5V$ $V_{DD} = 5.5V$, $V_{SS} = 0V$ f = 12.5MHz (Note 7)	•	55	mA
562	Supply Current 2 (During Normal Operation)	I _{DDS2}	3005	4(b)	$V_{IL} = 0V$, $V_{IH} = 5.5V$ $V_{DD} = 5.5V$, $V_{SS} = 0V$ f = 12.5MHz (Note 8)	-	45	mA

NOTES

1. During Functional Test 1:-

busy = 1.0 MHz, cslong = 1.25 MHz, csshort = 1.25 MHz, ert = 1.25 MHz, poclk = 1.25 MHz, poll = 1.25 MHz, solkl = 1.25 MHz, slft = 1.25 MHz, t1103 = 1.25 MHz, t207 = 1.25 MHz.

2. During Functional Tests 2, 3 and 4:-

Functional Test 2: $V_{IL} = 0.5V$, $V_{IH} = 4.5V$, Functional Test 3: $V_{IL} = 0.5V$, $V_{IH} = 5.0V$,

Functional Test 4: $V_{IL} = 0.5V$, $V_{IH} = 4.0V$,

busy = 10MHz, cslong = 12.5MHz, csshort = 12.5MHz, ert = 12.5MHz, poclk = 12.5MHz, poll = 12.5MHz, psft = 12.5MHz, s01 = 20MHz, sclkh = 12.5MHz, sclkl = 12.5MHz, slft = 12.5MHz, t1103 = 12.5MHz, t207 = 12.5MHz.

- 3. Measurement is performed with the device having been initialised using functional test pattern POLL, stopped at test vector 7. Total combined current for all V_{DD} Pins.
- 4. The output pin under test is configured into correct state for the measurement by using a functional test pattern on the inputs which produces a low or high at the pin, as appropriate.
- 5. Hysteresis is a calculated value from measurements for each pin from V_{THP3} V_{THN3} = V_H.
- 6. The device is configured using a functional test pattern so that the pin under test is in the Third-State condition for the measurement. The measurement includes the input currents I_{IL} and I_{IH}.
- 7. Test vectors 0 to 4990 of functional test pattern slft are used for measurement of IDDS1.
- 8. Test vectors 0 to 8236 of functional test pattern t1103 are used for measurement of I_{DDS2}.
- 9. Guaranteed but not tested. Characterised after major process changes.
- 10. Parameters tested go-no-go during Functional Tests 2, 3 and 4.

PAGE 35

ISSUE 1

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - a.c. PARAMETERS

No	CHARACTERISTICS	CVAADOL	TEST METHOD	TEST	TEST CONDITIONS	LIM	ITS	LINET
No.	CHARACTERISTICS	SYMBOL	MIL-STD 883	FIG.	(PINS UNDER TEST)	MIN	MAX	UNIT
563 to 601	Input Capacitance 1	C _{IN1}	3012	4(k)	V_{IN} (Not Under Test) = 0V $V_{DD} = V_{SS} = 0V$ Note 9 (Pins 2-3-5-8-9-10-11-12-13-16-17-18-19-20-23-24-25-26-27-28-29-30-31-32-34-35-36-37-38-42-43-46-47-49-50-51-52-53-54-55-56-59-78-79-80-81-82-83-84)	-	5.0	pF
602	Input Capacitance 2	C _{IN2}	3012	4(k)	V_{IN} (Not Under Test) = 0V $V_{DD} = V_{SS} = 0V$ Note 9 (Pin 13)	-	15	pF
603 to 605	Rise and Fall Time (TTL and CMOS Inputs)	t _r 1/t _f 1	3004	-	Note 9	-	100	ns
606 to 608	Rise and Fall Time (SCHMITT Trigger Input)	t _r 2/t _f 2	3004	-	Note 9	-	1.0	μs
609 to 611	RESET Activated	t _{RES}	3003	•	Note 10	4t _{BCK}	-	-
612 to 614	Clock Period for CLK	t _{CLK}	3003	.	Note 10	80	•	ns
615 to 617	Clock Low Pulse Width for CLK	t _{CLO}	3003	-	Note 10	40		ns
618 to 620	Clock High Pulse Width for CLK	t _{CHI}	3003	-	Note 10	40	. ,	ns
621 to 623	Clock Period for BITCLK	t _{BCK}	3003	-	Note 10	4t _{CLK}	-	-
624 to 626	Clock Low Pulse Width for BITCLK	t _{BLO}	3003	-	Note 10	4t _{CLO}	-	-
627 to 629	Clock High Pulse Width for BITCLK	t _{BHI}	3003	-	Note 10	4t _{CHI}	-	-

PAGE 36

ISSUE 1

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - a.c. PARAMETERS (CONT'D)

, l	CHARACTERISTICS	CVAADO	TEST METHOD	TEST	TEST CONDITIONS	LIM	ITS	UNIT
No.	CHARACTERISTICS	SYMBOL	MIL-STD 883	FIG.	(PINS UNDER TEST)	MIN	MAX	UNII
630 to 632	Clock Period for SCLK	t _{SCK}	3003	-	Note 10	t _{CLK} /2	1	-
633 to 635	Clock Low Pulse Width for SCLK	t _{SLO}	3003	-	Note 10	20	-	ns
636 to 638	Clock High Pulse Width for SCLK	^t shi	3003	-	Note 10	20	-	ns
639 to 641	CS Cycle Time	t ₁	3003	-	I_{OUT} ± 2.0 mA C_L = 100pF $\pm 20\%$ Note 10	4t _{CLK}	•	
642 to 644	VPD Active to CS Active	t ₂	3003	-	I_{OUT} ±2.0mA C _L = 100pF ±20% Note 10	5.0	-	ns
645 to 647	CS Pulse Width Activated	t ₃	3003	-	I_{OUT} ±2.0mA C _L = 100pF ±20% Note 10	30	-	ns
648 to 650	CS Pulse Width De-activated	t ₄	3003	<u>-</u>	l _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	30	-	ns
651 to 653	CS De-activated to VPD De-activated	t ₅	3003	•	I_{OUT} ±2.0mA C _L = 100pF ±20% Note 10	0	-	ns
654 to 656	VPD Pulse Width De-activated	t ₆	3003	-	I_{OUT} ± 2.0 mA $C_L = 100$ pF $\pm 20\%$ Note 10	2t _{CLK}	-	-
657 to 659	D Setup Time	t ₇	3003	-	I_{OUT} ± 2.0 mA C_L = 100pF $\pm 20\%$ Note 10	8.0	<u>-</u> -	ns
660 to 662	D Hold Time	t ₈	3003	-	I_{OUT} ± 2.0 mA C_L = 100pF $\pm 20\%$ Note 10	15	-	ns
663 to 665	CS De-activated to BUSY Activated	tg	3003	-	l _{OUT} ±2.0mA C _L = 100ρF ±20% Note 10	-	50	ns

PAGE 37

ISSUE 1

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - a.c. PARAMETERS (CONT'D)

			TEST METHOD	TEST	TEST CONDITIONS	LIM	TS	LINUT
No.	CHARACTERISTICS	SYMBOL	MIL-STD 883	FIG.	(PINS UNDER TEST)	MIN	MAX	UNIT
666 to 668	BUSY Pulse Width Activated	t ₁₀	3003	-	I _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	3t _{CLK}	4t _{CLK}	-
669 to 671	CS De-activated to VCAR De-activated	t ₁₁	3003	-	I _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	2.5 t _{CLK}	3.5 t _{CLK}	-
672 to 674	CLK Low to VCAR Valid	t ₁₂	3003	-	I _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	-	50	ns
675 to 677	ERT High to VCAR Low	t ₁₃	3003	-	I _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	-	50	ns
678 to 680	ERT Low to VCAR Valid	t ₁₄	3003	-	I _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	-	50	ns
681 to 683	SVALID High to SCLK High	t ₁₅	3003	-	l _{OUT} ± 2.0mA C _L = 100pF ± 20% Note 10	50	-	ns
684 to 686	SVALID Low	t ₁₆	3003	-	$I_{OUT} \pm 2.0$ mA $C_L = 100$ pF ± 20 % Note 10	50	-	ns
687 to 689	De-activated	t ₁₇	3003		I_{OUT} ±2.0mA C_{L} = 100pF ± 20% Note 10	2t _{CLK}	-	-
690 to 692	SIN Setup Time	t ₁₈	3003	-	I_{OUT} ± 2.0mA C_L = 100pF ± 20% Note 10	5.0	-	ns
693 to 695		t ₁₉	3003	-	I _{OUT} ±2.0mA C _L = 100pF ± 20% Note 10	15	<u>-</u>	ns
696 to	CLK High to RA Valid	t ₂₀	3003	-	I _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	-	50	ns
699 to 701	CLK Low to RCS Valid	t ₂₁	3003	-	I_{OUT} ± 2.0mA C_L = 100pF ± 20% Note 10	-	52	ns

PAGE 38

ISSUE 1

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - a.c. PARAMETERS (CONT'D)

Na	CHARACTERISTICS	SYMBOL	TEST METHOD	TEST	TEST CONDITIONS	LIM	ITS	UNIT
No.	CHARACTERISTICS	SAMBOL	MIL-STD 883	FIG.	(PINS UNDER TEST)	MIN	MAX	UNIT
702 to 704	CLK Low to R/W Low	t ₂₂	3003	-	I_{OUT} ±2.0mA C_L = 100pF ±20% Note 10	-	52	ns
705 to 707	CLK Low to R/W High	t ₂₃	3003	-	I_{OUT} ± 2.0 mA $C_L = 100$ pF $\pm 20\%$ Note 10	-	52	ns
708 to 710	CLK Low to OE Low	t ₂₄	3003	-	I _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	-	52	ns
711 to 713	CLK Low to OE High	t ₂₅	3003	-	I_{OUT} ± 2.0 mA $C_L = 100$ pF $\pm 20\%$ Note 10	-	52	ns
714 to 716	CLK Low to RD Write Data Valid	t ₂₆	3003	-	l _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	-	56	ns
717 to 719	CLK High to RD 3-State	t ₂₇	3003	-	$I_{OUT} \pm 5.0$ mA $C_L = 100$ pF $\pm 20\%$ Note 10	-	40	ns
720 to 722	Read Data Setup Time	t ₂₈	3003	-	I _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	19	-	ns
723 to 725	OE/RCS High to RD Invalid	t ₂₉	3003	-	l _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	0	-	ns
726 to 728	ERT High to RA, RCS, R/W, OE, RD 3-State	t ₃₀	3003	-	I _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	-	30	ns
729 to 731	ERT Low to RA, RCS, R/W, OE, RD Valid	t ₃₁	3003	-	I_{OUT} ±2.0mA C_L = 100pF ±20% Note 10	-	30	ns
732 to 734	CLK Low to ERR Valid	t ₃₂	3003		$I_{OUT} \pm 2.0$ mA $C_L = 100$ pF $\pm 20\%$ Note 10	-	50	ns
735 to 737	ERT High to ERR Low	t ₃₃	3003	-	$I_{OUT} \pm 2.0 \text{mA}$ $C_L = 100 \text{pF} \pm 20\%$ Note 10	-	43	ns
738 to 740	ERT Low to ERR Valid	t ₃₄	3003	-	I _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	-	43	ns

PAGE 39

ISSUE 1

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - a.c. PARAMETERS (CONT'D)

	OLIADA OTEDIOTION	0)414001	TEST METHOD	TEST	TEST CONDITIONS	LIM	ITS	UNIT
No.	CHARACTERISTICS	SYMBOL	MIL-STD 883	FIG.	(PINS UNDER TEST)	MIN	MAX	UNIT
741 to 743	ERT High to RTS Low	t ₃₅	3003	-	I _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	-	39	ns
744 to 746	ERT Low to RTS Valid	t ₃₆	3003	-	I _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	•	39	ns
747 to 749	CLK High to RTS Stable	t ₃₇	3003	-	I _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	-	52	ns
750 to 752	CTS Setup Time	t ₃₈	3003	-	I _{OUT} ±2.0mA C _L = 100pF ± 20% Note 10	6.0	-	ns
753 to 755	CLK High to PVCF Stable	t ₃₉	3003	-	l _{OUT} ±2.0mA C _L = 100pF ±20% Note 10		48	ns
756 to 758	POLL Setup Time	t ₄₀	3003	-	I _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	5.0	-	ns
759 to 761	POLL Hold Time	t ₄₁	3003	-	I _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	10	-	ns
762 to 764	CLK High to TIME Active	t ₄₂	3003	-	I _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	÷	50	ns
765 to 767	CLK High to RANDOM Valid	t ₄₃	3003	-	I _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	-	50	ns
768 to 770	IFILL Setup Time	t ₄₄	3003	-	I _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	10	-	ns
771 to 773	IFILL Hold Time	t ₄₅	3003	-	I _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	5.0	-	ns

PAGE 40

ISSUE 1

TABLE 3(a) - ELECTRICAL MEASUREMENTS AT HIGH TEMPERATURE - d.c. PARAMETERS

			TEST METHOD	TEST	TEST CONDITIONS	LIM	ITS	UNIT
No.	CHARACTERISTICS	SYMBOL	MIL-STD 883	FIG.	(PINS UNDER TEST)	MIN	MAX	UNIT
9	Functional Test 1 (Basic)	-	3014	-	Verify Device Operation with Load $V_{IL} = 0V, \ V_{IH} = 5.0V$ $V_{OL} = 1.0V, \ V_{OH} = 4.0V$ $I_{OUT} = \pm 2.0mA$ $C_L = 100pF \pm 20\%$ $V_{DD} = 5.0V, \ V_{SS} = 0V$ $Pattern = Note \ 1$	-	•	-
10	Functional Test 2 (Nominal Voltage)	-	3014	-	Verify Device Operation with Load $V_{IL}, V_{IH} = \text{Note 2}$ $V_{OL} = 1.0V, V_{OH} = 4.0V$ $I_{OUT} = \pm 2.0\text{mA}$ $C_L = 100\text{pF} \pm 20\%$ $V_{DD} = 5.0V, V_{SS} = 0V$ $Pattern = \text{Note 2}$	•	1	-
11	Functional Test 3 (High Voltage)	-	3014	-	Verify Device Operation with Load $V_{IL}, \ V_{IH} = \text{Note 2}$ $V_{OL} = 1.0V, \ V_{OH} = 4.5V$ $I_{OUT} = \pm 2.0\text{mA}$ $C_L = 100\text{pF} \pm 20\%$ $V_{DD} = 5.5V, \ V_{SS} = 0V$ $Pattern = \text{Note 2}$	-	-	-
12	Functional Test 4 (Low Voltage)	-	3014	-	Verify Device Operation with Load $V_{IL},\ V_{IH} = \text{Note 2}$ $V_{OL} = 1.0V,\ V_{OH} = 3.5V$ $I_{OUT} = \pm 2.0\text{mA}$ $C_L = 100\text{pF} \pm 20\%$ $V_{DD} = 4.5V,\ V_{SS} = 0V$ $Pattern = \text{Note 2}$	-	<u>.</u>	-
13	Quiescent Current	l _{DD}	3005	4(b)	$V_{IL} = 0V$, $V_{IH} = 5.5V$ $V_{DD} = 5.5V$, $V_{SS} = 0V$ All Outputs Open Note 3 (Pins 1 + 21 + 48 + 65)	-	4.5	mA

PAGE 41

ISSUE 1

TABLE 3(a) - ELECTRICAL MEASUREMENTS AT HIGH TEMPERATURE - d.c. PARAMETERS (CONT'D)

No	CHARACTERISTICS	SYMBOL	TEST METHOD	TEST	TEST CONDITIONS	LIM	ITS	UNIT
No.	CHARACTERISTICS	STIMBOL	MIL-STD 883	FIG.	(PINS UNDER TEST)	MIN	MAX	UNIT
14 to 54	Input Current Low Level	l _I L	3009	4(c)	V_{IN} (Under Test) = 0V V_{IN} (Remaining Inputs) = 5.5V V_{DD} = 5.5V, V_{SS} = 0V (Pins 2-3-5-8-9-10-11-12-13-16-17-18-19-20-23-24-25-26-27-28-29-30-31-32-34-35-36-37-38-42-43-46-47-49-78-79-80-81-82-83-84)	·	- 1.0	Αц
55 to 95	Input Current High Level	ЦΗ	3009	4(d)	V_{IN} (Under Test) = 5.5V V_{IN} (Remaining Inputs) = 0V V_{DD} = 5.5V, V_{SS} = 0V (Pins 2-3-5-8-9-10-11-12-13-16-17-18-19-20-23-24-25-26-27-28-29-30-31-32-34-35-36-37-38-42-43-46-47-49-78-79-80-81-82-83-84)	-	1.0	Ац
96 to 127	Output Voltage Low Level	V _{OL}	3007	4(e)	$\begin{aligned} &V_{IL}, \ V_{IH} = \text{Note 2} \\ &I_{OL} = 4.0 \text{mA} \\ &V_{DD} = 4.5 \text{V}, \ V_{SS} = 0 \text{V} \\ &\text{Note 4} \\ &(\text{Pins 6-7-15-33-40-41-44-45-50-51-52-53-54-55-56-58-59-60-61-62-63-66-67-68-69-70-71-72-73-75-76-77)} \end{aligned}$	•	0.4	V
128 to 159	Output Voltage High Level 1	V _{OH1}	3006	4(f)	V_{IL} , V_{IH} = Note 2 I_{OL} = -4.0mA V_{DD} = 4.5V, V_{SS} = 0V Note 4 (Pins 6-7-15-33-40-41-44-45-50-51-52-53-54-55-56-58-59-60-61-62-63-66-67-68-69-70-71-72-73-75-76-77)	3.9	-	V
160 to 191	Output Voltage High Level 2	V _{OH2}	3006	4(f)	V_{IL} , V_{IH} = Note 2 I_{OL} = -0.5 mA V_{DD} = 4.5 V, V_{SS} = 0 V Note 4 (Pins 6-7-15-33-40-41-44-45-50-51-52-53-54-55-56-58-59-60-61-62-63-66-67-68-69-70-71-72-73-75-76-77)	4.2	-	V

PAGE 42

ISSUE 1

TABLE 3(a) - ELECTRICAL MEASUREMENTS AT HIGH TEMPERATURE - d.c. PARAMETERS (CONT'D)

		0.44501	TEST METHOD	TEST	TEST CONDITIONS	LIM	ITS	
No.	CHARACTERISTICS	SYMBOL	MIL-STD 883	FIG.	(PINS UNDER TEST)	MIN	MAX	UNIT
192 to 209	Threshold Voltage Low Level 1 (TTL Inputs)	V _{THN1}	-	4(g)	V _{DD} = 4.5V, V _{SS} = 0V (Pins 2-3-5-50-51-52-53-54- 55-56-59-78-79-80-81-82-83- 84)	0.8	-	V
210 to 227	Threshold Voltage High Level 1 (TTL Inputs)	V _{THP1}	-	4(g)	V _{DD} = 4.5V, V _{SS} = 0V (Pins 2-3-5-50-51-52-53-54- 55-56-59-78-79-80-81-82-83- 84)	-	2.0	٧
228 to 257	Threshold Voltage Low Level 2 (CMOS Inputs)	V _{THN2}	-	4(g)	V _{DD} = 4.5V, V _{SS} = 0V (Pins 8-9-10-11-13-16-17-18- 19-20-23-24-25-26-27-28-29- 30-31-32-34-35-36-37-38-42- 43-46-47-49)	1.3	-	>
258 to 287	Threshold Voltage High Level 2 (CMOS Inputs)	V _{THP2}	-	4(g)	V _{DD} = 4.5V, V _{SS} = 0V (Pins 8-9-10-11-13-16-17-18- 19-20-23-24-25-26-27-28-29- 30-31-32-34-35-36-37-38-42- 43-46-47-49)	-	3.2	>
288	Threshold Voltage Low Level 3 (SCHMITT Trigger Input)	V _{THN3}	-	4(g)	$V_{DD} = 4.5V, V_{SS} = 0V$ (Pin 12)	1.0	2.8	V
289	Threshold Voltage High Level 3 (SCHMITT Trigger Input)	· V _{THP3}	-	4(g)	V _{DD} = 4.5V, V _{SS} = 0V (Pin 12)	1.5	3.3	V
290	Hysteresis Voltage	V _H	-	4(h)	V _{DD} = 4.5V, V _{SS} = 0V Note 5 (Pins 12)	0.5	•	٧
291 to 308	Threshold Voltage Low Level 4 (TTL Inputs)	V _{THN4}	-	4 (g)	V _{DD} = 5.5V, V _{SS} = 0V (Pins 2-3-5-50-51-52-53-54- 55-56-59-78-79-80-81-82-83- 84)	0.8	- .	V
309 to 326	Threshold Voltage High Level 4 (TTL Inputs)	V _{THP4}	-	4(g)	V _{DD} = 5.5V, V _{SS} = 0V (Pins 2-3-5-50-51-52-53-54- 55-56-59-78-79-80-81-82-83- 84)	-	2.0	V

PAGE 43

ISSUE 1

TABLE 3(a) - ELECTRICAL MEASUREMENTS AT HIGH TEMPERATURE - d.c. PARAMETERS (CONT'D)

No.	CHARACTERISTICS	SYMBOL	TEST METHOD	TEST	TEST CONDITIONS	LIM	ITS	UNIT
INO.	CHARACTERISTICS	SYMBOL	MIL-STD 883	FIG.	(PINS UNDER TEST)	MIN	MAX	UNIT
327 to 366	Threshold Voltage Low Level 5 (CMOS Inputs)	V _{THN5}	-	4(g)	V _{DD} = 5.5V, V _{SS} = 0V (Pins 8-9-10-11-13-16-17-18- 19-20-23-24-25-26-27-28-29- 30-31-32-34-35-36-37-38-42- 43-46-47-49)	1.7	-	V
367 to 396	Threshold Voltage High Level 5 (CMOS Inputs)	V _{THP5}	- 	4(g)	V _{DD} = 5.5V, V _{SS} = 0V (Pins 8-9-10-11-13-16-17-18- 19-20-23-24-25-26-27-28-29- 30-31-32-34-35-36-37-38-42- 43-46-47-49)		3.9	V
397	Threshold Voltage Low Level 6 (SCHMITT Trigger Input)	V _{THN6}	•	4(g)	V _{DD} = 5.5V, V _{SS} = 0V (Pin 12)	1.2	3.8	٧
398	Threshold Voltage High Level 6 (SCHMITT Trigger Input)	V _{THP6}	•	4(g)	$V_{DD} = 5.5V$, $V_{SS} = 0V$ (Pin 12)	1.7	4.3	V
399 to 471	Input/Output Clamp Voltage (to V _{SS})	V _{IC1}	3022	4(i)	$\begin{split} I_{IN} &= -100 \mu A \\ V_{DD} &= V_{SS} = 0V \\ (Pins 2-3-5-6-7-8-9-10-11-12-13-15-16-17-18-19-20-23-24-25-26-27-28-29-30-31-32-33-34-35-36-37-38-40-41-42-43-44-45-46-47-49-50-51-52-53-54-55-56-58-59-60-61-62-63-66-67-68-69-70-71-72-73-75-76-77-78-79-80-81-82-83-84) \end{split}$	-	-2.0	V
472 to 544	Input/Output Clamp Voltage (to V _{DD})	V _{IC2}	3022	4(i)	I_{IN} = 100 μ A V_{DD} = V_{SS} = 0V (Pins 2-3-5-6-7-8-9-10-11-12-13-15-16-17-18-19-20-23-24-25-26-27-28-29-30-31-32-33-34-35-36-37-38-40-41-42-43-44-45-46-47-49-50-51-52-53-54-55-56-58-59-60-61-62-63-66-67-68-69-70-71-72-73-75-76-77-78-79-80-81-82-83-84)	-	2.0	V

PAGE 44

ISSUE 1

TABLE 3(a) - ELECTRICAL MEASUREMENTS AT HIGH TEMPERATURE - d.c. PARAMETERS (CONT'D)

No	CHARACTERISTICS	SYMBOL	TEST METHOD	TEST	TEST CONDITIONS	LIM	ITS	UNIT
No.	CHARACTERISTICS	STIVIBUL	MIL-STD 883	FIG.	(PINS UNDER TEST)	MIN	MAX	ONIT
545 to 552	Output Leakage Current Third State (Low Level Applied)	l _{OZL}	3006	4(j)	V_{IN} (3-State Control) = Note 6 V_{OUT} = 0V V_{DD} = 5.5V, V_{SS} = 0V (Pins 50-51-52-53-54-55-56-59)		-20	μА
553 to 560	Output Leakage Current Third State (High Level Applied)	Гогн	3006	4(j)	V_{IN} (3-State Control) = Note 6 V_{OUT} = 5.5V V_{DD} = 5.5V, V_{SS} = 0V (Pins 50-51-52-53-54-55-56-59)	-	20	μА
561	Supply Current 1 (During BIST)	I _{DDS1}	3005	4(b)	$V_{IL} = 0V$, $V_{IH} = 5.5V$ $V_{DD} = 5.5V$, $V_{SS} = 0V$ f = 12.5MHz (Note 7)	-	60	mA
562	Supply Current 2 (During Normal Operation)	I _{DDS2}	3005	4(b)	$V_{IL} = 0V$, $V_{IH} = 5.5V$ $V_{DD} = 5.5V$, $V_{SS} = 0V$ f = 12.5MHz (Note 8)	-	50	mA

PAGE 45

ISSUE 1

TABLE 3(a) - ELECTRICAL MEASUREMENTS AT HIGH TEMPERATURE - a.c. PARAMETERS

No	CLIADACTEDICTION	CVMDOL	TEST METHOD	TEST	TEST CONDITIONS	LIM	ITS	LINUT
No.	CHARACTERISTICS	SYMBOL	MIL-STD 883	FIG.	(PINS UNDER TEST)	MIN	MAX	UNIT
603 to 605	Rise and Fall Time (TTL and CMOS Inputs)	t _r 1/t _f 1	3004	-	Note 9	- 	100	ns
606 to 608	Rise and Fall Time (SCHMITT Trigger Input)	t _r 2/t _f 2	3004	-	Note 9	•	1.0	μs
609 to 611	RESET Activated	t _{RES}	3003	-	Note 10	4t _{BCK}	-	-
612 to 614	Clock Period for CLK	t _{CLK}	3003	-	Note 10	80	•	ns
615 to 617	Clock Low Pulse Width for CLK	t _{CLO}	3003	-	Note 10	40	-	ns
618 to 620	Clock High Pulse Width for CLK	t _{CHI}	3003	-	Note 10	40	-	ns
621 to 623	Clock Period for BITCLK	t _{BCK}	3003	-	Note 10	4t _{CLK}	-	-
624 to 626	Clock Low Pulse Width for BITCLK	t _{BLO}	3003	=	Note 10	4t _{CLO}	-	-
627 to 629	Clock High Pulse Width for BITCLK	tвні	3003	•	Note 10	4t _{CHI}	-	-
630 to 632	Clock Period for SCLK	t _{SCK}	3003	-	Note 10	t _{CLK} /2	-	
633 to 635	Clock Low Pulse Width for SCLK	tslo	3003	-	Note 10	20	-	ns
636 to 638	Clock High Pulse Width for SCLK	t _{SHI}	3003	-	Note 10	20	-	ns
639 to 641	CS Cycle Time	t ₁	3003	-	I_{OUT} ± 2.0 mA $C_L = 100$ pF $\pm 20\%$ Note 10	4t _{CLK}	-	-

PAGE 46

ISSUE 1

TABLE 3(a) - ELECTRICAL MEASUREMENTS AT HIGH TEMPERATURE - a.c. PARAMETERS (CONT'D)

No.	CHARACTERISTICS	SYMBOL	TEST METHOD	TEST	TEST CONDITIONS	LIM	ITS	LINUT
INO.	CHARACTERISTICS	SAMBOL	MIL-STD 883	FIG.	(PINS UNDER TEST)	MIN	MAX	UNIT
642 to 644	VPD Active to CS Active	t ₂	3003	•	I _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	5.0	-	ns
645 to 647	CS Pulse Width Activated	t ₃	3003	-	I _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	30	-	ns
648 to 650	CS Pulse Width De-activated	t ₄	3003	-	I _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	30	-	ns
651 to 653	CS De-activated to VPD De-activated	t ₅	3003	-	I _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	0	-	ns
654 to 656	VPD Pulse Width De-activated	t ₆	3003	-	I _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	2t _{CLK}	-	-
657 to 659	D Setup Time	t ₇	3003	-	I _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	8.0	-	ns
660 to 662	D Hold Time	t ₈	3003	-	l _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	15	•	ns
663 to 665	CS De-activated to BUSY Activated	tg ···	3003	· -	I _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	-	50	ns
666 to 668	BUSY Pulse Width Activated	t ₁₀	3003	-	I _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	3t _{CLK}	4t _{CLK}	•
669 to 671	CS De-activated to VCAR De-activated	t ₁₁	3003	-	I _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	2.5 t _{CLK}	3.5 t _{CLK}	-
672 to 674	CLK Low to VCAR Valid	t ₁₂	3003	-	I_{OUT} ± 2.0 mA C_L = 100pF $\pm 20\%$ Note 10	-	50	ns
675 to 677	ERT High to VCAR Low	t ₁₃	3003	-	I _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	-	50	ns
678 to 680	ERT Low to VCAR Valid	t ₁₄	3003	-	I _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	-	50	ns

PAGE 47

ISSUE 1

TABLE 3(a) - ELECTRICAL MEASUREMENTS AT HIGH TEMPERATURE - a.c. PARAMETERS (CONT'D)

Na	CHARACTERICTION	0)/140/01	TEST METHOD	TEST	TEST CONDITIONS	LIM	ITS	
No.	CHARACTERISTICS	SAMBOL	MIL-STD 883	FIG.	(PINS UNDER TEST)	MIN	MAX	UNIT
681 to 683	SVALID High to SCLK High	t ₁₅	3003	-	l _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	50	• • • • • • • • • • • • • • • • • • •	ns
684 to 686	SCLK High to SVALID Low	t ₁₆	3003	-	l _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	50	-	ns
687 to 689	SVALID Pulse Width De-activated	t ₁₇	3003	*	l _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	2t _{CLK}	-	-
690 to 692	SIN Setup Time	t ₁₈	3003	*	l _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	5.0		ns
693 to 695	SIN Hold Time	t ₁₉	3003	•	I _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	15	-	ns
696 to 698	CLK High to RA Valid	t ₂₀	3003	•	I _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	-	50	ns
699 to 701	CLK Low to RCS Valid	t ₂₁	3003	-	I _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	-	52	ns
702 to 704	CLK Low to R/W Low	t ₂₂	3003	-	I _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	· •	52	ns
705 to 707	CLK Low to R/W High	t ₂₃	3003	-	l _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	-	52	ns
708 to 710	CLK Low to OE Low	t ₂₄	3003	-	I _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	-	52	ns
711 to 713	CLK Low to OE High	t ₂₅	3003	-	I _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	-	52	ns
714 to 716	CLK Low to RD Write Data Valid	t ₂₆	3003	-	I _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	•	56	ns
717 to 719	CLK High to RD 3-State	t ₂₇	3003	+	I_{OUT} ±5.0mA C_L = 100pF ± 20% Note 10	-	40	ns

PAGE 48

ISSUE 1

TABLE 3(a) - ELECTRICAL MEASUREMENTS AT HIGH TEMPERATURE - a.c. PARAMETERS (CONT'D)

N	OLIA DA OTEDIOTION	0)44501	TEST METHOD	TEST	TEST CONDITIONS	LIM	IITS	LIAUT
No.	CHARACTERISTICS	SYMBOL	MIL-STD 883	FIG.	(PINS UNDER TEST)	MIN	MAX	UNIT
720 to 722	Read Data Setup Time	t ₂₈	3003	<u>.</u>	$I_{OUT} \pm 2.0 \text{mA}$ $C_L = 100 \text{pF} \pm 20\%$ Note 10	19	-	ns
723 to 725	OE/RCS High to RD Invalid	t ₂₉	3003	•	l _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	0	-	ns
726 to 728	ERT High to RA, RCS, R/W, OE, RD 3-State	t ₃₀	3003	-	I _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	•	30	ns
729 to 731	ERT Low to RA, RCS, R/W, OE, RD Valid	t ₃₁	3003	-	$I_{OUT} \pm 2.0 \text{mA}$ $C_L = 100 \text{pF} \pm 20\%$ Note 10	-	30	ns
732 to 734	CLK Low to ERR Valid	t ₃₂	3003	-	l _{OUT} ±2.0mA C _L = 100pF ± 20% Note 10	-	50	ns
735 to 737	ERT High to ERR Low	t ₃₃	3003	-	I _{OUT} ±2.0mA C _L = 100pF ± 20% Note 10	-	43	ns
738 to 740	ERT Low to ERR Valid	t ₃₄	3003	-	I _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	-	43	ns
741 to 743	ERT High to RTS Low	. t ₃₅	3003	-	I _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	-	39	ns
744 to 746	ERT Low to RTS Valid	t ₃₆	3003	<u>-</u>	I _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	-	39	ns
747 to 749	CLK High to RTS Stable	t ₃₇	3003	<u>-</u>	l _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	-	52	ns
750 to 752	CTS Setup Time	t ₃₈	3003	-	$I_{OUT} \pm 2.0$ mA $C_L = 100$ pF $\pm 20\%$ Note 10	6.0	-	ns
753 to 755	CLK High to PVCF Stable	t ₃₉	3003	-	I_{OUT} ±2.0mA C_L = 100pF ±20% Note 10	-	48	ns
756 to 758	POLL Setup Time	t ₄₀	3003	-	l _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	5.0	-	ns

PAGE 49

ISSUE 1

TABLE 3(a) - ELECTRICAL MEASUREMENTS AT HIGH TEMPERATURE - a.c. PARAMETERS (CONT'D)

No.	CHARACTERISTICS	SYMBOL	TEST METHOD	TEST	TEST CONDITIONS	LIMITS	ITS	UNIT
140.	OHANAO I ENISTIOS	STIVIBUL	MIL-STD 883	FIG.	(PINS UNDER TEST)	MIN	MAX	UNIT
759 to 761	POLL Hold Time	t ₄₁	3003	-	I _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	10	-	ns
762 to 764	CLK High to TIME Active	t ₄₂	3003	-	I _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	-	50	ns
765 to 767	CLK High to RANDOM Valid	t ₄₃	3003	•	I _{OUT} ±2.0mA C _L =100pF±20% Note 10	-	50	ns
768 to 770	IFILL Setup Time	t ₄₄	3003	-	I_{OUT} ±2.0mA C_L = 100pF ±20% Note 10	10	-	ns
771 to 773	IFILL Hold Time	t ₄₅	3003	-	I _{OUT} ± 2.0mA C _L = 100pF ± 20% Note 10	5.0	-	ns

PAGE 50

ISSUE 1

TABLE 3(b) - ELECTRICAL MEASUREMENTS AT LOW TEMPERATURE - d.c. PARAMETERS

N	OLIADAOTEDIOTION	0)/14501	TEST METHOD	TEST	TEST CONDITIONS	LIM	ITS	1.15.1177
No.	CHARACTERISTICS	SYMBOL	MIL-STD 883	FIG.	(PINS UNDER TEST)	MIN	MAX	UNIT
9	Functional Test 1 (Basic)	-	3014	-	Verify Device Operation with Load $V_{IL} = 0V, \ V_{IH} = 5.0V$ $V_{OL} = 1.0V, \ V_{OH} = 4.0V$ $I_{OUT} = \pm 2.0mA$ $C_L = 100pF \pm 20\%$ $V_{DD} = 5.0V, \ V_{SS} = 0V$ $Pattern = Note \ 1$	-	•	-
10	Functional Test 2 (Nominal Voltage)	-	3014	-	Verify Device Operation with Load $V_{IL}, V_{IH} = \text{Note } 2$ $V_{OL} = 1.0V, V_{OH} = 4.0V$ $I_{OUT} = \pm 2.0\text{mA}$ $C_L = 100\text{pF} \pm 20\%$ $V_{DD} = 5.0V, V_{SS} = 0V$ Pattern = Note 2	-	-	-
11	Functional Test 3 (High Voltage)	-	3014	-	Verify Device Operation with Load $V_{IL}, V_{IH} = \text{Note } 2$ $V_{OL} = 1.0V, V_{OH} = 4.5V$ $I_{OUT} = \pm 2.0\text{mA}$ $C_L = 100\text{pF} \pm 20\%$ $V_{DD} = 5.5V, V_{SS} = 0V$ $Pattern = \text{Note } 2$	•	•	ı
12	Functional Test 4 (Low Voltage)	-	3014	-	Verify Device Operation with Load $V_{IL}, V_{IH} = \text{Note } 2$ $V_{OL} = 1.0V, V_{OH} = 3.5V$ $I_{OUT} = \pm 2.0\text{mA}$ $C_L = 100\text{pF} \pm 20\%$ $V_{DD} = 4.5V, V_{SS} = 0V$ Pattern = Note 2	-	•	-
13	Quiescent Current	l _{DD}	3005	4(b)	$V_{IL} = 0V$, $V_{IH} = 5.5V$ $V_{DD} = 5.5V$, $V_{SS} = 0V$ All Outputs Open Note 3 (Pins 1 + 21 + 48 + 65)	-	0.5	mA

PAGE 51

ISSUE 1

TABLE 3(b) - ELECTRICAL MEASUREMENTS AT LOW TEMPERATURE - d.c. PARAMETERS (CONT'D)

No.	CHARACTERISTICS	SYMBOL	TEST METHOD	TEST	TEST CONDITIONS	LIM	ITS	UNIT
INO.	CHARACTERISTICS	STMBOL	MIL-STD 883	FIG.	(PINS UNDER TEST)	MIN	MAX	UNIT
14 to 54	Input Current Low Level		3009	4(c)	V_{IN} (Under Test) = 0V V_{IN} (Remaining Inputs) = 5.5V V_{DD} = 5.5V, V_{SS} = 0V (Pins 2-3-5-8-9-10-11-12-13- 16-17-18-19-20-23-24-25-26- 27-28-29-30-31-32-34-35-36- 37-38-42-43-46-47-49-78-79- 80-81-82-83-84)	•	-1.0	μΑ
55 to 95	Input Current High Level	Ин	3009	4(d)	V_{IN} (Under Test) = 5.5V V_{IN} (Remaining Inputs) = 0V V_{DD} = 5.5V, V_{SS} = 0V (Pins 2-3-5-8-9-10-11-12-13-16-17-18-19-20-23-24-25-26-27-28-29-30-31-32-34-35-36-37-38-42-43-46-47-49-78-79-80-81-82-83-84)	•	1.0	μΑ
96 to 127	Output Voltage Low Level	V _{OL}	3007	4(e)	V_{IL} , V_{IH} = Note 2 I_{OL} = 4.0mA V_{DD} = 4.5V, V_{SS} = 0V Note 4 (Pins 6-7-15-33-40-41-44-45-50-51-52-53-54-55-56-58-59-60-61-62-63-66-67-68-69-70-71-72-73-75-76-77)	•	0.4	V
128 to 159	Output Voltage High Level 1	V _{OH1}	3006	4(f)	V_{IL} , V_{IH} = Note 2 I_{OL} = -4.0mA V_{DD} = 4.5V, V_{SS} = 0V Note 4 (Pins 6-7-15-33-40-41-44-45-50-51-52-53-54-55-56-58-59-60-61-62-63-66-67-68-69-70-71-72-73-75-76-77)	3.9		V
160 to 191	Output Voltage High Level 2	V _{OH2}	3006	4(f)	V_{IL} , V_{IH} = Note 2 I_{OL} = -0.5mA V_{DD} = 4.5V, V_{SS} = 0V Note 4 (Pins 6-7-15-33-40-41-44-45-50-51-52-53-54-55-56-58-59-60-61-62-63-66-67-68-69-70-71-72-73-75-76-77)	4.2	-	V

PAGE 52

ISSUE 1

TABLE 3(b) - ELECTRICAL MEASUREMENTS AT LOW TEMPERATURE - d.c. PARAMETERS (CONT'D)

No.	CHARACTERISTICS	SYMBOL	TEST METHOD	TEST	TEST CONDITIONS	LIM	ITS	LINUT
INO.	CHARACTERISTICS	STIMBUL	MIL-STD 883	FIG.	(PINS UNDER TEST)	MIN	MAX	UNIT
192 to 209	Threshold Voltage Low Level 1 (TTL Inputs)	V _{THN1}	<u>-</u>	4(g)	V _{DD} = 4.5V, V _{SS} = 0V (Pins 2-3-5-50-51-52-53-54- 55-56-59-78-79-80-81-82-83- 84)	0.8	-	V
210 to 227	Threshold Voltage High Level 1 (TTL Inputs)	V _{THP1}	-	4(g)	V _{DD} = 4.5V, V _{SS} = 0V (Pins 2-3-5-50-51-52-53-54- 55-56-59-78-79-80-81-82-83- 84)	-	2.0	V
228 to 257	Threshold Voltage Low Level 2 (CMOS Inputs)	V _{THN2}	-	4(g)	V _{DD} = 4.5V, V _{SS} = 0V (Pins 8-9-10-11-13-16-17-18- 19-20-23-24-25-26-27-28-29- 30-31-32-34-35-36-37-38-42- 43-46-47-49)	1.3	-	V
258 to 287	Threshold Voltage High Level 2 (CMOS Inputs)	V _{THP2}	•	4(g)	V _{DD} = 4.5V, V _{SS} = 0V (Pins 8-9-10-11-13-16-17-18- 19-20-23-24-25-26-27-28-29- 30-31-32-34-35-36-37-38-42- 43-46-47-49)	•	3.2	V
288	Threshold Voltage Low Level 3 (SCHMITT Trigger Input)	V _{THN3}	-	4(g)	$V_{DD} = 4.5V, V_{SS} = 0V$ (Pin 12)	1.0	2.8	V
289	Threshold Voltage High Level 3 (SCHMITT Trigger Input)	V _{THP3}	· ·	4(g)	$V_{DD} = 4.5V, V_{SS} = 0V$ (Pin 12)	1.5	3.3	V
290	Hysteresis Voltage	V _H	<u>-</u>	4(h)	V _{DD} = 4.5V, V _{SS} = 0V Note 5 (Pin 12)	0.5	1	V
291 to 308	Threshold Voltage Low Level 4 (TTL Inputs)	V _{THN4}	-	4(g)	V _{DD} = 5.5V, V _{SS} = 0V (Pins 2-3-5-50-51-52-53-54- 55-56-59-78-79-80-81-82-83- 84)	0.8		V
309 to 326	Threshold Voltage High Level 4 (TTL Inputs)	V _{THP4}	-	4(g)	V _{DD} = 5.5V, V _{SS} = 0V (Pins 2-3-5-50-51-52-53-54- 55-56-59-78-79-80-81-82-83- 84)	-	2.0	V

PAGE 53

ISSUE 1

TABLE 3(b) - ELECTRICAL MEASUREMENTS AT LOW TEMPERATURE - d.c. PARAMETERS (CONT'D)

No.	CHARACTERISTICS	SYMBOL	TEST METHOD	TEST	TEST CONDITIONS	LIM	IITS	LINUT
INO.	CHARACTERISTICS	STINIBOL	MIL-STD 883	FIG.	(PINS UNDER TEST)	MIN	MAX	UNIT
327 to 366	Threshold Voltage Low Level 5 (CMOS Inputs)	V _{THN5}	-	4(g)	V _{DD} = 5.5V, V _{SS} = 0V (Pins 8-9-10-11-13-16-17-18- 19-20-23-24-25-26-27-28-29- 30-31-32-34-35-36-37-38-42- 43-46-47-49)	1.7	-	V
367 to 396	Threshold Voltage High Level 5 (CMOS Inputs)	V _{THP5}	-	4(g)	V _{DD} = 5.5V, V _{SS} = 0V (Pins 8-9-10-11-13-16-17-18- 19-20-23-24-25-26-27-28-29- 30-31-32-34-35-36-37-38-42- 43-46-47-49)	-	3.9	V
397	Threshold Voltage Low Level 6 (SCHMITT Trigger Input)	V _{THN6}	-	4(g)	$V_{DD} = 5.5V$, $V_{SS} = 0V$ (Pin 12)	1.2	3.8	V
398	Threshold Voltage High Level 6 (SCHMITT Trigger Input)	V _{THP6}	-	4(g)	$V_{DD} = 5.5V$, $V_{SS} = 0V$ (Pin 12)	1.7	4.3	V
399 to 471	Input/Output Clamp Voltage (to V _{SS})	V _{IC1}	3022	4(i)	$\begin{split} I_{\text{IN}} &= -100 \mu \text{A} \\ V_{\text{DD}} &= V_{\text{SS}} = 0 \text{V} \\ \text{(Pins 2-3-5-6-7-8-9-10-11-12-13-15-16-17-18-19-20-23-24-25-26-27-28-29-30-31-32-33-34-35-36-37-38-40-41-42-43-44-45-46-47-49-50-51-52-53-54-55-56-58-59-60-61-62-63-66-67-68-69-70-71-72-73-75-76-77-78-79-80-81-82-83-84)} \end{split}$	-	-2.0	V
472 to 544	Input/Output Clamp Voltage (to V _{DD})	V _{IC2}	3022	4(i)	$\begin{split} I_{IN} &= 100 \mu A \\ V_{DD} &= V_{SS} = 0V \\ \text{(Pins 2-3-5-6-7-8-9-10-11-12-13-15-16-17-18-19-20-23-24-25-26-27-28-29-30-31-32-33-34-35-36-37-38-40-41-42-43-44-45-46-47-49-50-51-52-53-54-55-56-58-59-60-61-62-63-66-67-68-69-70-71-72-73-75-76-77-78-79-80-81-82-83-84) \end{split}$	-	2.0	V

PAGE 54

ISSUE 1

TABLE 3(b) - ELECTRICAL MEASUREMENTS AT LOW TEMPERATURE - d.c. PARAMETERS (CONT'D)

No.	CHARACTERISTICS	SYMBOL	TEST METHOD	TEST	TEST CONDITIONS	LIM	ITS	UNIT
NO.	OHANACTENISTICS	STIVIBOL	MIL-STD 883	FIG.	(PINS UNDER TEST)	MIN	MAX	
545 to 552	Output Leakage Current Third State (Low Level Applied)	lozl	3006	4(j)	V_{IN} (3-State Control) = Note 6 V_{OUT} = 0V V_{DD} = 5.5V, V_{SS} = 0V (Pins 50-51-52-53-54-55-56-59)	-	-10	μА
553 to 560	Output Leakage Current Third State (High Level Applied)	Іоzн	3006	4(j)	V_{IN} (3-State Control) = Note 6 V_{OUT} = 5.5V V_{DD} = 5.5V, V_{SS} = 0V (Pins 50-51-52-53-54-55-56-59)	-	10	μА
561	Supply Current 1 (During BIST)	I _{DDS1}	3005	4(b)	$V_{IL} = 0V$, $V_{IH} = 5.5V$ $V_{DD} = 5.5V$, $V_{SS} = 0V$ f = 12.5MHz (Note 7)	-	55	mA
562	Supply Current 2 (During Normal Operation)	I _{DDS2}	3005	4(b)	$V_{IL} = 0V$, $V_{IH} = 5.5V$ $V_{DD} = 5.5V$, $V_{SS} = 0V$ f = 12.5MHz (Note 8)	-	45	mA

PAGE 55

ISSUE 1

TABLE 3(b) - ELECTRICAL MEASUREMENTS AT LOW TEMPERATURE - a.c. PARAMETERS

	CHARACTERISTICS	SYMBOL	TEST METHOD	TEST	TEST CONDITIONS	LIM	ITS	UNIT
No.	CHARACTERISTICS	SAMBOL	MIL-STD 883	FIG.	(PINS UNDER TEST)	MIN	MAX	UNII
603 to 605	Rise and Fall Time (TTL and CMOS Inputs)	t _r 1/t _f 1	3004	-	Note 9	-	100	ns
606 to 608	Rise and Fall Time (SCHMITT Trigger Input)	t _r 2/t _f 2	3004	-	Note 9	-	1.0	μs
609 to 611	RESET Activated	t _{RES}	3003	-	Note 10	4t _{BCK}	-	•
612 to 614	Clock Period for CLK	t _{CLK}	3003	-	Note 10	80	-	ns
615 to 617	Clock Low Pulse Width for CLK	t _{CLO}	3003	-	Note 10	40	•	ns
618 to 620	Clock High Pulse Width for CLK	tсні	3003	-	Note 10	40	•	ns
621 to 623	Clock Period for BITCLK	t _{BCK}	3003	- -	Note 10	4t _{CLK}	-	-
624 to 626	Clock Low Pulse Width for BITCLK	t _{BLO}	3003	<u>-</u>	Note 10	4t _{CLO}	. .	~
627 to 629	Clock High Pulse Width for BITCLK	t _{BHI}	3003	-	Note 10	4t _{CHI}	-	-
630 to 632	Clock Period for SCLK	t _{SCK}	3003	-	Note 10	t _{CLK} /2		-
633 to 635	Clock Low Pulse Width for SCLK	t _{SLO}	3003	-	Note 10	20	-	ns
636 to 638	Clock High Pulse Width for SCLK	t _{SHI}	3003	-	Note 10	20	-	ns
639 to 641	CS Cycle Time	t ₁	3003	-	I_{OUT} ± 2.0 mA C_L = 100pF $\pm 20\%$ Note 10	4t _{CLK}	1	-

PAGE 56

ISSUE 1

TABLE 3(b) - ELECTRICAL MEASUREMENTS AT LOW TEMPERATURE - a.c. PARAMETERS (CONT'D)

Na	CHARACTERISTICS	0.440.01	TEST METHOD	TEST	TEST CONDITIONS	LIM	IITS	
No.	CHARACTERISTICS	SYMBOL	MIL-STD 883	FIG.	(PINS UNDER TEST)	MIN	MAX	UNIT
642 to 644	VPD Active to CS Active	t ₂	3003	-	$I_{OUT} \pm 2.0$ mA $C_{L} = 100$ pF $\pm 20\%$ Note 10	5.0	-	ns
645 to 647	CS Pulse Width Activated	t ₃	3003	-	I _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	30	-	ns
648 to 650	CS Pulse Width De-activated	t ₄	3003	-	I_{OUT} ± 2.0mA C _L = 100pF ± 20% Note 10	30		ns
651 to 653	CS De-activated to VPD De-activated	t ₅	3003	-	I _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	0	-	ns
654 to 656	VPD Pulse Width De-activated	t ₆	3003	-	I _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	2t _{CLK}	1	-
657 to 659	D Setup Time	t ₇	3003	-	I _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	8.0	-	ns
660 to 662	D Hold Time	t ₈	3003	-	l _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	15	-	ns
663 to 665	CS De-activated to BUSY Activated	- tg	3003	-	I _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	-	50	ns
666 to 668	BUSY Pulse Width Activated	t ₁₀	3003	-	I _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	3t _{CLK}	4t _{CLK}	-
669 to 671	CS De-activated to VCAR De-activated	t ₁₁	3003	-	I _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	2.5 t _{CLK}	3.5 t _{CLK}	-
672 to 674	CLK Low to VCAR Valid	t ₁₂	3003	-	$I_{OUT} \pm 2.0 \text{mA}$ $C_L = 100 \text{pF} \pm 20\%$ Note 10	-	50	ns
675 to 677	ERT High to VCAR Low	t ₁₃	3003	.	I _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	-	50	ns
678 to 680	ERT Low to VCAR Valid	t ₁₄	3003	-	I_{OUT} ± 2.0 mA $C_L = 100$ pF $\pm 20\%$ Note 10	-	50	ns

PAGE 57

ISSUE 1

TABLE 3(b) - ELECTRICAL MEASUREMENTS AT LOW TEMPERATURE - a.c. PARAMETERS (CONT'D)

No.	CHARACTERISTICS	SYMBOL	TEST METHOD	TEST	TEST CONDITIONS	LIM	ITS	UNIT
INO.	CHARACTERISTICS	STIMBUL	MIL-STD 883	FIG.	(PINS UNDER TEST)	MIN	MAX	UNIT
681 to 683	SVALID High to SCLK High	t ₁₅	3003		I_{OUT} ±2.0mA C_L = 100pF ±20% Note 10	50	-	ns
684 to 686	SCLK High to SVALID Low	t ₁₆	3003	-	I_{OUT} ± 2.0mA C_L = 100pF ± 20% Note 10	50	-	ns
687 to 689	SVALID Pulse Width De-activated	t ₁₇	3003	-	I _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	2t _{CLK}	-	-
690 to 692	SIN Setup Time	t ₁₈	3003	•	I _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	5.0	-	ns
693 to 695	SIN Hold Time	t ₁₉	3003	-	I _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	15	-	ns
696 to 698	CLK High to RA Valid	t ₂₀	3003	-	I _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	*	50	ns
699 to 701	CLK Low to RCS Valid	t ₂₁	3003	-	l _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	-	52	ns
702 to 704	CLK Low to R/W Low	t ₂₂	3003		I _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	•	52	ns
705 to 707	CLK Low to R/W High	t ₂₃	3003	-	$I_{OUT} \pm 2.0$ mA $C_L = 100$ pF ± 20 % Note 10	-	52	ns
708 to 710	CLK Low to OE Low	t ₂₄	3003	-	I _{OUT} ±2.0mA C _L = 100pF ± 20% Note 10	-	52	ns
711 to 713	CLK Low to OE High	t ₂₅	3003	-	I _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	-	52	ns
714 to 716	CLK Low to RD Write Data Valid	t ₂₆	3003	-	I _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	-	56	ns
717 to 719	CLK High to RD 3-State	t ₂₇	3003	-	I_{OUT} ±5.0mA C_L = 100pF ± 20% Note 10	-	40	ns

PAGE 58

ISSUE 1

TABLE 3(b) - ELECTRICAL MEASUREMENTS AT LOW TEMPERATURE - a.c. PARAMETERS (CONT'D)

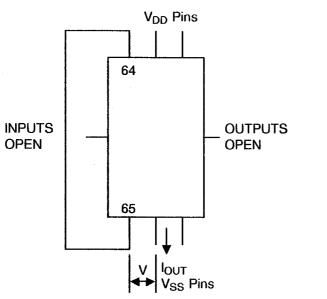
No.	CHARACTERISTICS	SYMBOL	TEST METHOD	TEST	TEST CONDITIONS	LIM	IITS	UNIT
IVO.	CHARACTERISTICS	STIMBOL	MIL-STD 883	FIG.	(PINS UNDER TEST)	MIN	MAX	UNIT
720 to 722	Read Data Setup Time	t ₂₈	3003	-	I_{OUT} ±2.0mA C _L = 100pF ±20% Note 10	19		ns
723 to 725	OE/RCS High to RD Invalid	t ₂₉	3003	-	l _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	0	-	ns
726 to 728	ERT High to RA, RCS, R/W, OE, RD 3-State	t ₃₀	3003	-	l _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	-	30	ns
729 to 731	ERT Low to RA, RCS, R/W, OE, RD Valid	t ₃₁	3003	-	I _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	-	30	ns
732 to 734	CLK Low to ERR Valid	t ₃₂	3003	-	l _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	-	50	ns
735 to 737	ERT High to ERR Low	t ₃₃	3003	-	l _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	-	43	ns
738 to 740	ERT Low to ERR Valid	t ₃₄	3003	-	I _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	-	43	ns
741 to 743	ERT High to RTS Low	t ₃₅	3003	-	I _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	-	39	ns
744 to 746	ERT Low to RTS Valid	t ₃₆	3003	-	l _{OUT} ±2.0mA C _L = 100pF ±20% Note 10		39	ns
747 to 749	CLK High to RTS Stable	t ₃₇	3003	-	l _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	-	52	ns
750 to 752	CTS Setup Time	t ₃₈	3003	-	$I_{OUT} \pm 2.0 \text{mA}$ $C_L = 100 \text{pF} \pm 20\%$ Note 10	6.0	-	ns
753 to 755	CLK High to PVCF Stable	t ₃₉	3003	-	l _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	-	48	ns
756 to 758	POLL Setup Time	t ₄₀	3003	-	I_{OUT} ± 2.0 mA $C_L = 100$ pF $\pm 20\%$ Note 10	5.0	-	ns

PAGE 59

ISSUE 1

TABLE 3(b) - ELECTRICAL MEASUREMENTS AT LOW TEMPERATURE - a.c. PARAMETERS (CONT'D)

No.	CHARACTERISTICS	SYMBOL	TEST METHOD MIL-STD 883	TEST FIG.	TEST CONDITIONS (PINS UNDER TEST)	LIMITS		UNIT
NO.						MIN	MAX	ONIT
759 to 761	POLL Hold Time	t ₄₁	3003	-	I_{OUT} ± 2.0 mA $C_L = 100$ pF $\pm 20\%$ Note 10	10		ns
762 to 764	CLK High to TIME Active	t ₄₂	3003	-	l _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	-	50	ns
765 to 767	CLK High to RANDOM Valid	t ₄₃	3003	-	I _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	-	50	ns
768 to 770	IFILL Setup Time	t ₄₄	3003	-	I _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	10	-	ns
771 to 773	IFILL Hold Time	t ₄₅	3003	-	I _{OUT} ±2.0mA C _L = 100pF ±20% Note 10	5.0	-	ns


PAGE 60

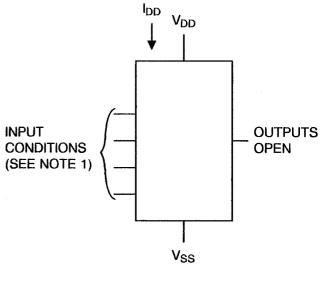
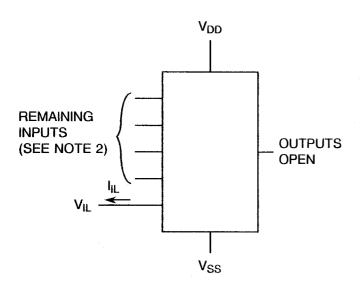

ISSUE 1

FIGURE 4 - CIRCUITS FOR ELECTRICAL MEASUREMENTS

FIGURE 4(a) - V_{SS}, V_{DD} CONTINUITY

FIGURE 4(b) - QUIESCENT CURRENT

NOTES


1. Each power pin tested separately.

NOTES

1. Input conditions as per Table 2.

FIGURE 4(c) - INPUT CURRENT LOW LEVEL

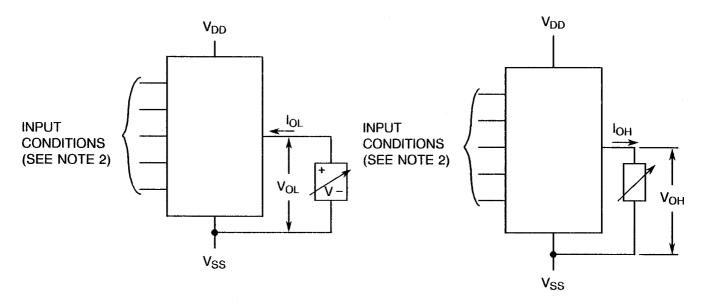
FIGURE 4(d) - INPUT CURRENT HIGH LEVEL

NOTES

- 1. Each input to be tested separately.
- 2. Input conditions as per Table 2.

NOTES

- 1. Each input to be tested separately.
- 2. Input conditions as per Table 2.

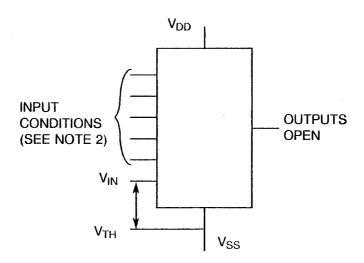

PAGE 61

ISSUE 1

FIGURE 4 - CIRCUITS FOR ELECTRICAL MEASUREMENTS (CONTINUED)

FIGURE 4(e) - OUTPUT VOLTAGE LOW LEVEL

FIGURE 4(f) - OUTPUT VOLTAGE HIGH LEVEL


NOTES

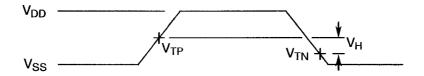
- 1. Each output to be tested separately.
- 2. Input conditions as per Table 2.

NOTES

- 1. Each output to be tested separately.
- 2. Input conditions as per Table 2.

FIGURE 4(g) - THRESHOLD VOLTAGE

NOTES


- 1. Each input to be tested separately.
- 2. Input conditions as per Table 2.

PAGE 62

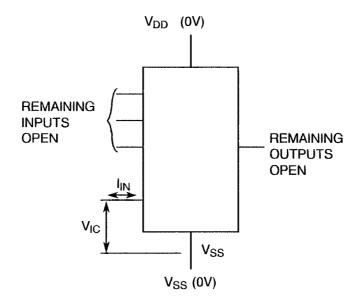

ISSUE 1

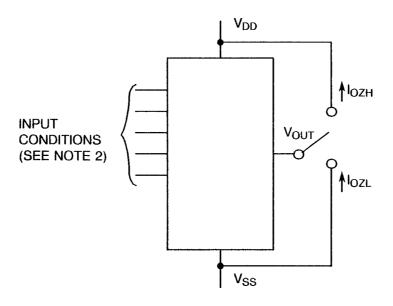
FIGURE 4 - CIRCUITS FOR ELECTRICAL MEASUREMENTS (CONTINUED)

FIGURE 4(h) - HYSTERESIS VOLTAGE

FIGURE 4(i) - INPUT/OUTPUT CLAMP VOLTAGE

NOTES

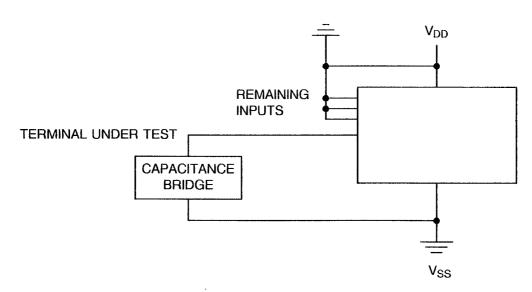
1. Each input and output to be tested separately.



PAGE 63

ISSUE 1

FIGURE 4 - CIRCUITS FOR ELECTRICAL MEASUREMENTS (CONTINUED)


FIGURE 4(j) - OUTPUT LEAKAGE CURRENT THIRD STATE

NOTES

- 1. Each output to be tested separately.
- 2. Input conditions as per Table 2.

FIGURE 4(k) - INPUT CAPACITANCE

NOTES

- 1. Test frequency = 1.0MHz.
- 2. Each input and input/output is to be tested separately.

PAGE 64

ISSUE 1

TABLE 4 - PARAMETER DRIFT VALUES

No.	CHARACTERISTICS	SYMBOL	SPEC. AND/OR TEST METHOD	TEST CONDITIONS	CHANGE LIMITS (Δ)	UNIT
13	Quiescent Current	l _{DD}	As per Table 2	As per Table 2	± 250	μΑ
14 to 54	Input Current Low Level	Ι _Ι L	As per Table 2	As per Table 2	± 200	nA
55 to 95	Input Current High Level	l _{iH}	As per Table 2	As per Table 2	±200	nA
96 to 127	Output Voltage Low Level	V _{OL}	As per Table 2	As per Table 2	± 200	mV
128 to 159	Output Voltage High Level 1	V _{OH1}	As per Table 2	As per Table 2	± 300	mV
545 to 552	Output Leakage Current Third State (Low Level Applied)	l _{OZL}	As per Table 2	As per Table 2	± 2.0	μА
553 to 560	Output Leakage Current Third State (High Level Applied)	l _{OZH}	As per Table 2	As per Table 2	±2.0	μА

PAGE 65

ISSUE 1

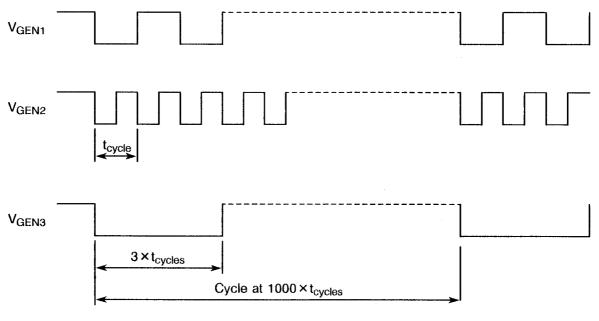
TABLE 5(a) - CONDITIONS FOR HIGH TEMPERATURE REVERSE BIAS BURN-IN

Not applicable.

TABLE 5(b) - CONDITIONS FOR POWER BURN-IN AND OPERATING LIFE TESTS

No.	CHARACTERISTICS	SYMBOL	CONDITION	UNIT
1	Ambient Temperature	T _{amb}	+ 125(+ 0 – 5)	°C
2	Outputs - (Pins 6-7-15-33-40-41-44-45- 58-60-61-62-63-66-67-68-69- 70-71-72-73-75-76-77)	V _{OUT}	V _{DD} /2	V
3	Input - (Pin 16)	V _{IN}	V_{DD}	V
4	Input - (Pin 17)	V _{IN}	V _{SS}	٧
5	Inputs - (Pin 2-3-5-8-9-10-11-18-19-20-23-24-25-26-27-28-29-30-31-32-34-35-36-37-38-42-43-46-47-49-50-51-52-53-54-55-56-59-78-79-80-81-82-83-84)	V _{IN}	V _{GEN1}	Vac
6	Input - (Pin 12)	V _{IN}	V_{GEN3}	Vac
7	Input - (Pin 13)	V _{IN}	V_{GEN2}	Vac
8	Pulse Voltage	V_{GEN}	0V to V _{DD}	Vac
9	Pulse Frequency Square Wave	f _{GEN1} f _{GEN2}	f _{GEN2} /2 250k 50% Duty Cycle	Hz
10	Pulse Square Wave	GEN3	Pulse width at lower level =3 cycles of GEN2 repeated after 1000 cycles of GEN2	-
11	Positive Supply Voltage (Pins 1-21-48-65)	V _{DĐ}	5.5(+ 0 – 0.5)	V
12	Negative Supply Voltage (Pins 4-22-39-57-64-74)	V _{SS}	0	V

NOTES: See Page 66.


PAGE 66

ISSUE 1

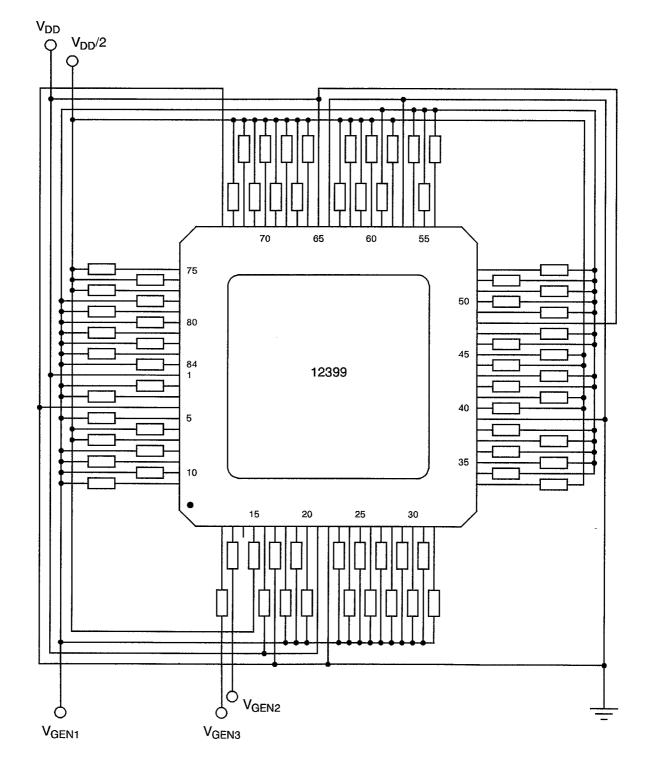
TABLE 5(b) - CONDITIONS FOR POWER BURN-IN AND OPERATING LIFE TESTS (CONT'D)

NOTES

1. Input Protection Resistor = Output Load = $10k\Omega$.

 $t_{cycle} = 4.0 \mu s.$

Rev. 'A'


PAGE 67

ISSUE 1

FIGURE 5(a) - ELECTRICAL CIRCUIT FOR HIGH TEMPERATURE REVERSE BIAS BURN-IN

Not applicable.

FIGURE 5(b) - ELECTRICAL CIRCUIT FOR POWER BURN-IN AND OPERATING LIFE TESTS

PAGE 68

ISSUE 1

4.8 <u>ENVIRONMENTAL AND ENDURANCE TESTS (CHARTS IV AND V OF ESA/SCC GENERIC SPECIFICATION NO. 9000)</u>

4.8.1 <u>Electrical Measurements on Completion of Environmental Tests</u>

The parameters to be measured on completion of environmental tests are scheduled in Table 6. Unless otherwise stated, the measurements shall be performed at $T_{amb} = +22 \pm 3$ °C.

4.8.2 <u>Electrical Measurements at Intermediate Points during Endurance Tests</u>

The parameters to be measured at intermediate points during endurance tests are as scheduled in Table 6 of this specification. Unless otherwise stated, the measurements shall be performed at $T_{amb} = +22 \pm 3$ °C.

4.8.3 <u>Electrical Measurements on Completion of Endurance Tests</u>

The parameters to be measured on completion of endurance testing are as scheduled in Table 6 of this specification. Unless otherwise stated, the measurements shall be performed at T_{amb} = +22 ±3 °C.

4.8.4 Conditions for Operating Life Tests

The requirements for operating life testing are specified in Section 9 of ESA/SCC Generic Specification No. 9000. The conditions for operating life testing shall be as specified in Table 5(b) of this specification.

4.8.5 Electrical Circuits for Operating Life Tests

Circuits for use in performing the operating life tests are shown in Figure 5(b) of this specification.

4.8.6 Conditions for High Temperature Storage Test

The requirements for the high temperature storage test are specified in ESA/SCC Generic Specification No. 9000. The temperature to be applied shall be the maximum storage temperature specified in Table 1(b) of this specification.

4.9 TOTAL DOSE IRRADIATION TESTING

4.9.1 <u>Application</u>

If specified in Para. 4.2.1 of this specification, total dose irradiation testing shall be performed in accordance with the requirements of ESA/SCC Basic Specification No. 22900.

4.9.2 Bias Conditions

Continuous bias shall be applied during irradiation testing as shown in Figure 6.

4.9.3 Electrical Measurements

The parameters to be measured prior to irradiation exposure are scheduled in Table 2 of this specification. Only devices which meet the requirements of Table 2 shall be scheduled in the test sample.

The parameters to be measured during and on completion of irradiation testing are scheduled in Table 7 of this specification.

PAGE 69

ISSUE 1

TABLE 6 - ELECTRICAL MEASUREMENTS ON COMPLETION OF ENVIRONMENTAL TESTS AND AT INTERMEDIATE POINTS AND ON COMPLETION OF ENDURANCE TESTING

	CHARACTERISTICS	SYMBOL	SPEC. AND/OR TEST METHOD	TEST CONDITIONS	LIMITS		
No.					MIN.	MAX.	UNIT
9	Functional Test 1 (Basic)	-	As per Table 2	As per Table 2	-	-	-
10	Functional Test 2 (Nominal Voltage)	-	As per Table 2	As per Table 2	-	-	 -
11	Functional Test 3 (High Voltage)	-	As per Table 2	As per Table 2	-	-	-
12	Functional Test 4 (Low Voltage)	-	As per Table 2	As per Table 2	-	-	-
13	Quiescent Current	l _{DD}	As per Table 2	As per Table 2	-	0.5	mA
14 to 54	Input Current Low Level	l _{IL}	As per Table 2	As per Table 2	-	-1.0	μА
55 to 95	Input Current High Level	l _{IH}	As per Table 2	As per Table 2	-	1.0	μА
96 to 127	Output Voltage Low Level	V _{OL}	As per Table 2	As per Table 2	-	0.4	V
128 to 159	Output Voltage High Level 1	V _{OH1}	As per Table 2	As per Table 2	3.9	-	V
160 to 191	Output Voltage High Level 2	V _{OH2}	As per Table 2	As per Table 2	4.2	-	٧
192 to 209	Threshold Voltage Low Level 1 (TTL Inputs)	V _{THN1}	As per Table 2	As per Table 2	0.8	-	V
210 to 227	Threshold Voltage High Level 1 (TTL Inputs)	V _{THP1}	As per Table 2	As per Table 2	-	2.0	V
228 to 257	Threshold Voltage Low Level 2 (CMOS Inputs)	V _{THN2}	As per Table 2	As per Table 2	1.3	-	V
258 to 287	Threshold Voltage. High Level 2 (CMOS Inputs)	V _{THP2}	As per Table 2	As per Table 2	-	3.2	V
288	Threshold Voltage Low Level 3 (SCHMITT Trigger Input)	V _{THN3}	As per Table 2	As per Table 2	1.0	2.8	V

PAGE 70

ISSUE 1

TABLE 6 - ELECTRICAL MEASUREMENTS ON COMPLETION OF ENVIRONMENTAL TESTS AND AT INTERMEDIATE POINTS AND ON COMPLETION OF ENDURANCE TESTING (CONT'D)

No.	CHARACTERISTICS	SYMBOL	SPEC. AND/OR	TEST	LIMITS		UNIT
INO.	CHARACTERISTICS	STIVIBUL	TEST METHOD	CONDITIONS	MIN.	MAX.	ONI
289	Threshold Voltage High Level 3 (SCHMITT Trigger Input)	V _{THP3}	As per Table 2	As per Table 2	1.5	3.3	V
290	Hysteresis Voltage	V _H	As per Table 2	As per Table 2	0.5	-	٧
291 to 308	Threshold Voltage Low Level 4 (TTL Inputs)	V _{THN4}	As per Table 2	As per Table 2	0.8	-	V
309 to 326	Threshold Voltage High Level 4 (TTL Inputs)	V _{THP4}	As per Table 2	As per Table 2	<u>-</u>	2.0	٧
327 to 366	Threshold Voltage Low Level 5 (CMOS Inputs)	V _{THN5}	As per Table 2	As per Table 2	1.7	-	V
367 to 396	Threshold Voltage High Level 5 (CMOS Inputs)	V _{THP5}	As per Table 2	As per Table 2	-	3.9	V
397	Threshold Voltage Low Level 6 (SCHMITT Trigger Input)	V _{THN6}	As per Table 2	As per Table 2	1.2	3.8	V
398	Threshold Voltage High Level 6 (SCHMITT Trigger Input)	V _{THP6}	As per Table 2	As per Table 2	1.7	4.3	٧
399 to 471	Input/Output Clamp Voltage (to V _{SS})	V _{IC1}	As per Table 2	As per Table 2	-	-2.0	V
472 to 544	Input/Output Clamp Voltage (to V _{DD})	V _{IC2}	As per Table 2	As per Table 2	-	2.0	V
545 to 552	Output Leakage Current Third State (Low Level Applied)	l _{OZL}	As per Table 2	As per Table 2	-	- 10	μА
553 to 560	Output Leakage Current Third State (High Level Applied)	l _{OZH}	As per Table 2	As per Table 2	-	10	μА
561	Supply Current 1 (During BIST)	l _{DDS1}	As per Table 2	As per Table 2	-	60	mA
562	Supply Current 2 (During Normal Operation)	I _{DDS2}	As per Table 2	As per Table 2		15	mA

PAGE 71

ISSUE 1

No.	CHARACTERISTICS	SYMBOL	SPEC. AND/OR	TEST	LIM	IITS	UNIT
NO.	CHARACTERISTICS	STINIBUL	TEST METHOD	CONDITIONS	MIN.	MAX.	UNIT
609 to 611	RESET Activated	t _{RES}	As per Table 2	As per Table 2	4t _{BCK}	-	-
612 to 614	Clock Period for CLK	t _{CLK}	As per Table 2	As per Table 2	80	<u>-</u>	ns
615 to 617	Clock Low Pulse Width for CLK	t _{CLO}	As per Table 2	As per Table 2	40	-	ns
618 to 620	Clock High Pulse Width for CLK	t _{CHI}	As per Table 2	As per Table 2	40	-	ns
621 to 623	Clock Period for BITCLK	t _{BCK}	As per Table 2	As per Table 2	4t _{CLK}	-	-
624 to 626	Clock Low Pulse Width for BITCLK	t _{BLO}	As per Table 2	As per Table 2	4t _{CLO}	-	-
627 to 629	Clock High Pulse Width for BITCLK	t _{BHI}	As per Table 2	As per Table 2	4t _{CHI}	-	-
630 to 632	Clock Period for SCLK	t _{SCK}	As per Table 2	As per Table 2	t _{CLK} /2	-	-
633 to 635	Clock Low Pulse Width for SCLK	t _{SLO}	As per Table 2	As per Table 2	20	-	ns
636 to 638	Clock High Pulse Width for SCLK	t _{SHI}	As per Table 2	As per Table 2	20	<u>-</u> -	ns
639 to 641	CS Cycle Time	t ₁	As per Table 2	As per Table 2	4t _{CLK}	-	-
642 to 644	VPD Active to CS Active	t ₂	As per Table 2	As per Table 2	5.0	-	ns
645 to 647	CS Pulse Width Activated	· t ₃	As per Table 2	As per Table 2	30	-	ns
648 to 650	CS Pulse Width De-activated	t ₄	As per Table 2	As per Table 2	30	-	ns

PAGE 72

ISSUE 1

Ma	CHARACTERISTICS	SYMBOL	SPEC. AND/OR	TEST	LIMITS		UNIT
No.	CHARACTERISTICS	STIMBUL	TEST METHOD	CONDITIONS	MIN.	MAX.	UNIT
651 to 653	CS De-activated to VPD De-activated	t ₅	As per Table 2	As per Table 2	0	-	ns
654 to 656	VPD Pulse Width De-activated	t ₆	As per Table 2	As per Table 2	2t _{CLK}	-	-
657 to 659	D Setup Time	t ₇	As per Table 2	As per Table 2	8.0	-	ns
660 to 662	D Hold Time	t ₈	As per Table 2	As per Table 2	15	-	ns
663 to 665	CS De-activated to BUSY Activated	tg	As per Table 2	As per Table 2	-	50	ns
666 to 668	BUSY Pulse Width Activated	t ₁₀	As per Table 2	As per Table 2	3t _{CLK}	4t _{CLK}	-
669 to 671	CS De-activated to VCAR De-activated	t ₁₁	As per Table 2	As per Table 2	2.5 t _{CLK}	3.5 t _{CLK}	-
672 to 674	CLK Low to VCAR Valid	t ₁₂	As per Table 2	As per Table 2	-	50	ns
675 to 677	ERT High to VCAR Low	t ₁₃	As per Table 2	As per Table 2	-	50	ns
678 to 680	ERT Low to VCAR Valid	t ₁₄	As per Table 2	As per Table 2	-	50	ns
681 to 683	SVALID High to SCLK High	t ₁₅	As per Table 2	As per Table 2	50	-	ns
684 to 686	SCLK High to SVALID Low	t ₁₆	As per Table 2	As per Table 2	50	-	ns
687 to 689	SVALID Pulse Width De-activated	· t ₁₇	As per Table 2	As per Table 2	2t _{CLK}	+	-
690 to 692	SIN Setup Time	t ₁₈	As per Table 2	As per Table 2	5.0	-	ns

PAGE 73

ISSUE 1

	CUADACTEDICTIOS	OVANDOL	SPEC. AND/OR	TEST	LIM	IITS	UNIT
No.	CHARACTERISTICS	SYMBOL	TEST METHOD	CONDITIONS	MIN.	MAX.	OIVIT
693 to 695	SIN Hold Time	t ₁₉	As per Table 2	As per Table 2	15	-	ns
696 to 698	CLK High to RA Valid	t ₂₀	As per Table 2	As per Table 2	-	50	ns
699 to 701	CLK Low to RCS Valid	t ₂₁	As per Table 2	As per Table 2	-	52	ns
702 to 704	CLK Low to R/W Low	t ₂₂	As per Table 2	As per Table 2	-	52	ns
705 to 707	CLK Low to R/W High	t ₂₃	As per Table 2	As per Table 2	-	52	ns
708 to 710	CLK Low to OE Low	t ₂₄	As per Table 2	As per Table 2	•	52	ns
711 to 713	CLK Low to OE High	t ₂₅	As per Table 2	As per Table 2	-	52	ns
714 to 716	CLK Low to RD Write Data Valid	t ₂₆	As per Table 2	As per Table 2	-	56	ns
717 to 719	CLK High to RD 3-State	t ₂₇	As per Table 2	As per Table 2	-	40	ns
720 to 722	Read Data Setup Time	t ₂₈	As per Table 2	As per Table 2	19	-	ns
723 to 725	OE/RCS High to RD Invalid	t ₂₉	As per Table 2	As per Table 2	0	-	ns
726 to 728	ERT High to RA, RCS, R/W, OE, RD 3-State	t ₃₀	As per Table 2	As per Table 2	-	30	ns
729 to 731	ERT Low to RA, RCS, R/W, OE, RD Valid	· t ₃₁	As per Table 2	As per Table 2	-	30	ns
732 to 734	CLK Low to ERR Valid	t ₃₂	As per Table 2	As per Table 2	-	50	ns

PAGE 74

ISSUE 1

	0	0)/14501	SPEC. AND/OR	TEST	LIM	ITS	UNIT
No.	CHARACTERISTICS	SYMBOL	TEST METHOD	CONDITIONS	MIN.	MAX.	CIVIT
735 to 737	ERT High to ERR Low	t ₃₃	As per Table 2	As per Table 2	-	43	ns
738 to 740	ERT Low to ERR Valid	t ₃₄	As per Table 2	As per Table 2	-	43	ns
741 to 743	ERT High to RTS Low	t ₃₅	As per Table 2	As per Table 2	-	39	ns
744 to 746	ERT Low to RTS Valid	t ₃₆	As per Table 2	As per Table 2	-	39	ns
747 to 749	CLK High to RTS Stable	t ₃₇	As per Table 2	As per Table 2	-	52	ns
750 to 752	CTS Setup Time	t ₃₈	As per Table 2	As per Table 2	6.0	-	ns
753 to 755	CLK High to PVCF Stable	t ₃₉	As per Table 2	As per Table 2	-	48	ns
756 to 758	POLL Setup Time	t ₄₀	As per Table 2	As per Table 2	5.0	-	ns
759 to 761	POLL Hold Time	t ₄₁	As per Table 2	As per Table 2	10	-	ns
762 to 764	CLK High to TIME Active	t ₄₂	As per Table 2	As per Table 2	-	50	ns
765 to 767	CLK High to RANDOM Valid	t ₄₃	As per Table 2	As per Table 2	-	50	ns
768 to 770	IFILL Setup Time	t ₄₄	As per Table 2	As per Table 2	10	-	ns
771 to 773	IFILL Hold Time	· t ₄₅	As per Table 2	As per Table 2	5.0	-	ns

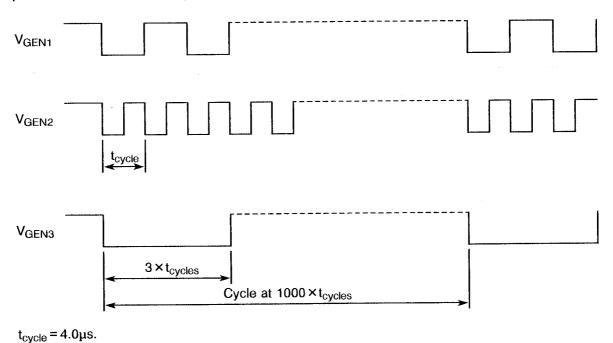
PAGE 75

ISSUE 1

FIGURE 6 - BIAS CONDITIONS FOR IRRADIATION TESTING

No.	CHARACTERISTICS	SYMBOL	CONDITION	UNIT
1	Ambient Temperature	T _{amb}	+ 125(+ 0 5)	°C
2	Outputs - (Pins 6-7-15-33-40-41-44-45- 58-60-61-62-63-66-67-68-69- 70-71-72-73-75-76-77)	V _{OUT}	V _{DD} /2 .	٧
3	Input - (Pin 16)	V _{IN}	$V_{ m DD}$	٧
4	Input - (Pin 17)	V _{IN}	V_{SS}	٧
5	Inputs - (Pins 2-3-5-8-9-10-11-18-19-20-23-24-25-26-27-28-29-30-31-32-34-35-36-37-38-42-43-46-47-49-50-51-52-53-54-55-56-59-78-79-80-81-82-83-84)	V _{IN}	V _{GEN1}	Vac
6	Input - (Pin 12)	V _{IN}	V _{GEN3}	Vac
7	Input - (Pin 13)	V _{IN}	V_{GEN2}	Vac
8	Pulse Voltage	V_{GEN}	0V to V _{DD}	Vac
9	Pulse Frequency Square Wave	f _{GEN1} f _{GEN2}	f _{GEN2} /2 250k 50% Duty Cycle	Hz
10	Pulse Square Wave	GEN3	Pulse width at lower level = 3 cycles of GEN2 repeated after 1000 cycles of GEN2	-
11	Positive Supply Voltage (Pins 1-21-48-65)	V _{DD}	5.5(+ 0 – 0.5)	V
12	Negative Supply Voltage (Pins 4-22-39-57-64-74)	V _{SS}	0	V

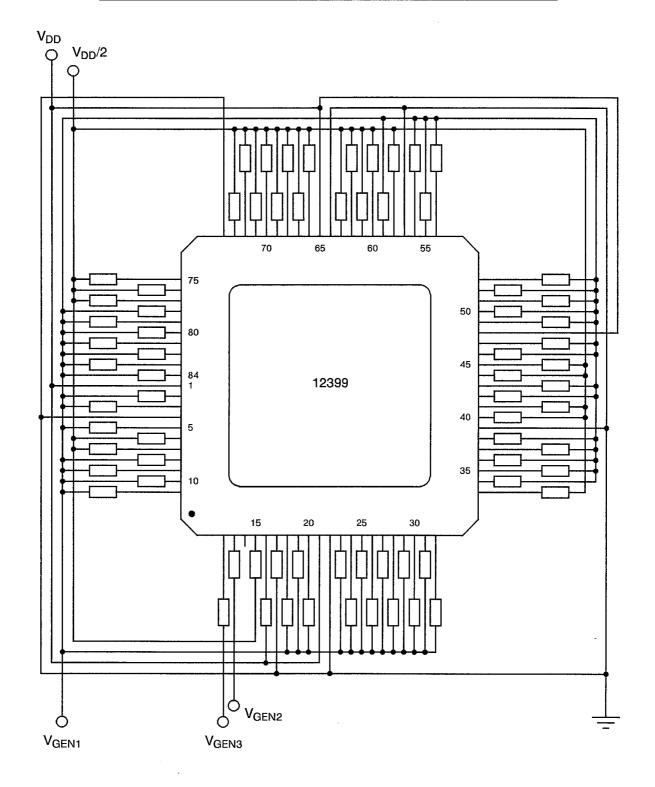
NOTES: See Page 76.


PAGE 76

ISSUE 1

FIGURE 6 - BIAS CONDITIONS FOR IRRADIATION TESTING (CONT'D)

NOTES



Rev. 'A'

PAGE 77

ISSUE 1

FIGURE 6 - BIAS CONDITIONS FOR IRRADIATION TESTING (CONT'D)

PAGE 78

ISSUE 1

	OLIA DA OTEDIOTICO	0)/(AFDO)	SPEC. AND/OR	TEST	LIV	IITS	UNIT
No.	CHARACTERISTICS	SYMBOL	TEST METHOD	CONDITIONS	MIN.	MAX.	UNII
9	Functional Test 1 (Basic)	-	As per Table 2	As per Table 2	-	-	•
10	Functional Test 2 (Nominal Voltage)	-	As per Table 2	As per Table 2	-	-	••
11	Functional Test 3 (High Voltage)	-	As per Table 2	As per Table 2	-	_	-
12	Functional Test 4 (Low Voltage)	-	As per Table 2	As per Table 2	-	-	-
13	Quiescent Current	l _{DD}	As per Table 2	As per Table 2	-	3.5	mA
14 to 54	Input Current Low Level	Iμ	As per Table 2	As per Table 2	-	-1.0	μA
55 to 95	Input Current High Level	ΙΗ	As per Table 2	As per Table 2	-	1.0	μА
96 to 127	Output Voltage Low Level	V _{OL}	As per Table 2	As per Table 2	-	0.4	V
128 to 159	Output Voltage High Level 1	V _{OH1}	As per Table 2	As per Table 2	3.9	-	٧
160 to 191	Output Voltage High Level 2	V _{OH2}	As per Table 2	As per Table 2	4.2	-	V
192 to 209	Threshold Voltage Low Level 1 (TTL Inputs)	V _{THN1}	As per Table 2	As per Table 2	0.8	-	٧
210 to 227	Threshold Voltage High Level 1 (TTL Inputs)	V _{THP1}	As per Table 2	As per Table 2	-	2.0	V
228 to 257	Threshold Voltage Low Level 2 (CMOS Inputs)	V _{THN2}	As per Table 2	As per Table 2	1.3	-	V
258 to 287	Threshold Voltage High Level 2 (CMOS Inputs)	V _{THP2}	As per Table 2	As per Table 2		3.2	V
288	Threshold Voltage Low Level 3 (SCHMITT Trigger Input)	V _{ТНNЗ}	As per Table 2	As per Table 2	1.0	2.8	V

PAGE 79

ISSUE 1

	OLIA DA OTEDIOTICO	OVANDOL	SPEC. AND/OR	TEST	LIM	IITS	UNIT
No.	CHARACTERISTICS	SYMBOL	TEST METHOD	CONDITIONS	MIN.	MAX.	UNIT
289	Threshold Voltage High Level 3 (SCHMITT Trigger Input)	V _{THP3}	As per Table 2	As per Table 2	1.5	3.3	V
290	Hysteresis Voltage	V _H	As per Table 2	As per Table 2	0.5	-	٧
291 to 308	Threshold Voltage Low Level 4 (TTL Inputs)	V _{THN4}	As per Table 2	As per Table 2	0.8	-	V
309 to 326	Threshold Voltage High Level 4 (TTL Inputs)	V _{THP4}	As per Table 2	As per Table 2	-	2.0	V
327 to 366	Threshold Voltage Low Level 5 (CMOS Inputs)	V _{THN5}	As per Table 2	As per Table 2	1.7	-	V
367 to 396	Threshold Voltage High Level 5 (CMOS Inputs)	V _{THP5}	As per Table 2	As per Table 2	-	3.9	V
397	Threshold Voltage Low Level 6 (SCHMITT Trigger Input)	V _{THN6}	As per Table 2	As per Table 2	1.2	3.8	V
398	Threshold Voltage High Level 6 (SCHMITT Trigger Input)	V _{THP6}	As per Table 2	As per Table 2	1.7	4.3	V
399 to 471	Input/Output Clamp Voltage (to V _{SS})	V _{IC1}	As per Table 2	As per Table 2	-	-2.0	V
472 to 544	Input/Output Clamp Voltage (to V _{DD})	V _{IC2}	As per Table 2	As per Table 2	-	2.0	V
545 to 552	Output Leakage Current Third State (Low Level Applied)	lozL	As per Table 2	As per Table 2	-	-20	μA
553 to 560	Output Leakage Current Third State (High Level Applied)	lozн	As per Table 2	As per Table 2	-	20	μA
561	Supply Current 1 (During BIST)	I _{DDS1}	As per Table 2	As per Table 2	-	60	mA
562	Supply Current 2 (During Normal Operation)	I _{DDS2}	As per Table 2	As per Table 2	-	15	mA

PAGE 80

ISSUE 1

Introduction (2014)								
Ma	CHADACTEDISTICS	SYMBOL	SPEC. AND/OR	TEST	LIMITS		UNIT	
No.	CHARACTERISTICS	SAMBOL	TEST METHOD	CONDITIONS	MIN.	MAX.	CIVIT	
609 to 611	RESET Activated	t _{RES}	As per Table 2	As per Table 2	4t _{BCK}	*	•	
612 to 614	Clock Period for CLK	t _{CLK}	As per Table 2	As per Table 2	80	•	ns	
615 to 617	Clock Low Pulse Width for CLK	t _{CLO}	As per Table 2	As per Table 2	40	-	ns	
618 to 620	Clock High Pulse Width for CLK	t _{СНІ}	As per Table 2	As per Table 2	40	-	ns	
621 to 623	Clock Period for BITCLK	^t BCK	As per Table 2	As per Table 2	4t _{CLK}	•	-	
624 to 626	Clock Low Pulse Width for BITCLK	^t BLO	As per Table 2	As per Table 2	4t _{CLO}		-	
627 to 629	Clock High Pulse Width for BITCLK	t _{ВНІ}	As per Table 2	As per Table 2	4t _{CHI}		-	
630 to 632	Clock Period for SCLK	t _{SCK}	As per Table 2	As per Table 2	t _{CLK} /2	-	-	
633 to 635	Clock Low Pulse Width for SCLK	t _{SLO}	As per Table 2	As per Table 2	20	-	ns	
636 to 638	Clock High Pulse Width for SCLK	^t shi	As per Table 2	As per Table 2	20		ns	
639 to 641	CS Cycle Time	t ₁	As per Table 2	As per Table 2	4t _{CLK}	-	-	
642 to 644	VPD Active to CS Active	t ₂	As per Table 2	As per Table 2	5.0	-	ns	
645 to 647	CS Pulse Width Activated	t ₃	As per Table 2	As per Table 2	30	-	ns	
648 to 650	CS Pulse Width De-activated	t ₄	As per Table 2	As per Table 2	30	-	ns	

PAGE 81

ISSUE 1

No	CHARACTERISTICS	SYMBOL	SPEC. AND/OR	TEST	LIM	IITS	UNIT
No.	CHARACTERISTICS	STIMBUL	TEST METHOD	CONDITIONS	MIN.	MAX.	UNIT
651 to 653	CS De-activated to VPD De-activated	t ₅	As per Table 2	As per Table 2	0	~	ns
654 to 656	VPD Pulse Width De-activated	t ₆	As per Table 2	As per Table 2	2t _{CLK}	-	-
657 to 659	D Setup Time	t ₇	As per Table 2	As per Table 2	8.0	-	ns
660 to 662	D Hold Time	t ₈	As per Table 2	As per Table 2	15	-	ns
663 to 665	CS De-activated to BUSY Activated	t ₉	As per Table 2	As per Table 2	-	50	ns
666 to 668	BUSY Pulse Width Activated	t ₁₀	As per Table 2	As per Table 2	3t _{CLK}	4t _{CLK}	•
669 to 671	CS De-activated to VCAR De-activated	t ₁₁	As per Table 2	As per Table 2	2.5 t _{CLK}	3.5 t _{CLK}	-
672 to 674	CLK Low to VCAR Valid	t ₁₂	As per Table 2	As per Table 2	-	50	ns
675 to 677	ERT High to VCAR Low	t ₁₃	As per Table 2	As per Table 2	-	50	ns
678 to 680	ERT Low to VCAR Valid	t ₁₄	As per Table 2	As per Table 2	-	50	ns
681 to 683	SVALID High to SCLK High	t ₁₅	As per Table 2	As per Table 2	50	-	ns
684 to 686	SCLK High to SVALID Low	t ₁₆	As per Table 2	As per Table 2	50	-	ns
687 to 689	SVALID Pulse Width De-activated	· t ₁₇	As per Table 2	As per Table 2	2t _{CLK}	-	-
690 to 692	SIN Setup Time	t ₁₈	As per Table 2	As per Table 2	5.0	-	ns

PAGE 82

ISSUE 1

No.	CHARACTERISTICS	SYMBOL	SPEC. AND/OR	TEST	LIM	IITS	UNIT
INO.	CHARACTERISTICS	STIMBUL	TEST METHOD	CONDITIONS	MIN.	MAX.	UNIT
693 to 695	SIN Hold Time	t ₁₉	As per Table 2	As per Table 2	15	-	ns
696 to 698	CLK High to RA Valid	t ₂₀	As per Table 2	As per Table 2	-	50	ns
699 to 701	CLK Low to RCS Valid	t ₂₁	As per Table 2	As per Table 2	-	52	ns
702 to 704	CLK Low to R/W Low	t ₂₂	As per Table 2	As per Table 2	-	52	ns
705 to 707	CLK Low to R/W High	t ₂₃	As per Table 2	As per Table 2	-	52	ns
708 to 710	CLK Low to OE Low	t ₂₄	As per Table 2	As per Table 2	-	52	ns
711 to 713	CLK Low to OE High	t ₂₅	As per Table 2	As per Table 2	-	52	ns
714 to 716	CLK Low to RD Write Data Valid	t ₂₆	As per Table 2	As per Table 2	-	56	ns
717 to 719	CLK High to RD 3-State	t ₂₇	As per Table 2	As per Table 2	-	40	ns
720 to 722	Read Data Setup Time	t ₂₈	As per Table 2	As per Table 2	19	-	ns
723 to 725	OE/RCS High to RD Invalid	t ₂₉	As per Table 2	As per Table 2	0	-	ns
726 to 728	ERT High to RA, RCS, R/W, OE, RD 3-State	t ₃₀	As per Table 2	As per Table 2	en en en en	30	ns
729 to 731	ERT Low to RA, RCS, R/W, OE, RD Valid	· t ₃₁	As per Table 2	As per Table 2	-	30	ns
732 to 734	CLK Low to ERR Valid	t ₃₂	As per Table 2	As per Table 2	*	50	ns

PAGE 83

ISSUE 1

No.	CHARACTERISTICS	SYMBOL	SPEC. AND/OR	TEST	LIM	IITS	UNIT
INO.	CHARACTERISTICS	STIMBOL	TEST METHOD	CONDITIONS	MIN.	MAX.	UNII
735 to 737	ERT High to ERR Low	t ₃₃	As per Table 2	As per Table 2	-	43	ns
738 to 740	ERT Low to ERR Valid	t ₃₄	As per Table 2	As per Table 2	-	43	ns
741 to 743	ERT High to RTS Low	t ₃₅	As per Table 2	As per Table 2	-	39	ns
744 to 746	ERT Low to RTS Valid	t ₃₆	As per Table 2	As per Table 2	-	39	ns
747 to 749	CLK High to RTS Stable	t ₃₇	As per Table 2	As per Table 2	-	52	ns
750 to 752	CTS Setup Time	t ₃₈	As per Table 2	As per Table 2	6.0	-	ns
753 to 755	CLK High to PVCF Stable	t ₃₉	As per Table 2	As per Table 2	-	48	ns
756 to 758	POLL Setup Time	t ₄₀	As per Table 2	As per Table 2	5.0	-	ns
759 to 761	POLL Hold Time	t ₄₁	As per Table 2	As per Table 2	10	-	ns
762 to 764	CLK High to TIME Active	t ₄₂	As per Table 2	As per Table 2	-	50	ns
765 to 767	CLK High to RANDOM Valid	t ₄₃	As per Table 2	As per Table 2	-	50	ns
768 to 770	IFILL Setup Time	t ₄₄	As per Table 2	As per Table 2	10	-	ns
771 to 773	IFILL Hold Time	. t ₄₅	As per Table 2	As per Table 2	5.0	-	ns

Rev. 'A'

PAGE 84 ISSUE 1

APPENDIX 'A'

Page 1 of 2

AGREED DEVIATIONS FOR MITEL (S)

ITEMS AFFECTED	DESCRIPTION OF DEVIATIONS					
Para. 4.2.2	Paragraph 4.4 - Marking (plus Serialisation for Level B):					
	May be performed to follow Paragraph 9.3 (Encapsulation).					
	Paragraph 9.1 - Visual Inspection					
	MIL-STD-883C, Method 2010.10, Paragraph 3.1.3:					
	Scribing and die defects, "high magnification":					
	Clauses c and d shall not be applicable for the device. Instead, the following criteria shall be used:					
	- No device shall be acceptable if it exhibits cracks that:-					
	(a) Come closer than 0.25mil to any operating metallisation or other functional circuit element.					
	(b) Exceed 3.0mil in length pointing toward any operating metallisation or other functional circuit element.					
	 For areas which are metallised, MIL-STD-883C, Method 2010.10, Paragraph 3.1.3 d is applicable without exception. 					
Para. 4.2.3	Paragraph 9.12 - Radiographic Inspection					
	(a) ESA/SCC Basic Specification No. 20990, Paragraph 4.1:					
	Inspection for foreign particles, voids and seal defects only may be performed.					
	(b) Para. 9.9.2, Electrical Measurements at High and Low Temperatures: Ma performed after Paras. 9.8.1 and 9.8.2, Seal Test.					
Para's 4.2.4 and 4.2.5	Paragraph 9.18 - Solderability					
	(a) A manually controlled dipping device may be used.					

The following test patterns may be used:-

1. PRODUCTION TEST PATTERN

30k of test vectors are used for the production test of the VCA. The test is combined from 6 different test stimuli: Pad-to-chip-test (88 test vectors), production selftest (5017 test vectors), s01-1 of the compliance matrix (3270 test vectors), functional-test-207 (3440 test vectors), functional-test-1103 (10k test vectors).

The pad-to-chip-test checks the path: External chip input pin \rightarrow VCA core \rightarrow [Input Register] \rightarrow internal Output Registers \rightarrow VCA output pin.

N.B. Some static input pins are not buffered in input registers.

The production selftest is the selftest with toggling output pads except for the PVCF and RTS pins.

The s01 - 1 is taken from the compliance matrix. It runs in serial input mode and CLKMODE = "1". One frame is read in and the first 8 octets are given out by the PVCF pin.

PAGE 85

ISSUE 1

APPENDIX 'A'

Page 2 of 2

Functional – test – 207 is a test with idle packet insertion, frame inputs and outputs, where PPROG = "1"; FECW = "1"; OPCF = "1"; LEN = "0"; SYNCF = "0"; SECHEAD = "1"; PKTVER = "0"; PKTORD = "0".

Functional – test – 1103 is a test with idle packet insertion, frame inputs and outputs, where PPROG = "1"; FECW = "1"; OPCF = "1"; LEN = "3"; SYNCF = "0"; SECHEAD = "1"; PKTVER = "0"; PKTORD = "0".

Para – test is a parametric test. All inputs, except ERT, including RD (input direction), are logical and combined. The input level sweeps very slowly (against gate delay time) to its alternate state and then slowly returns to test the input buffers.

The strategy for production test is to first run the production – selftest and then run a number of functional test programmes after production BIST is completed. In contrast to the selftest in production – selftest, all outputs are externally visible to increase the fault coverage and to decrease the simulation time for a BIST run. After the production test BIST (production – selftest) is finished, 4 functional test programmes are applied to the VCA inputs to detect faults not covered by the BIST. Since the BIST has already detected 89.7% of faults, the additional fault runs were applied as incremental fault runs, only simulating the remaining undetected faults. All the additional patterns start with reset and are independent from each other.

2. FUNCTIONAL TEST PATTERNS

TEST NAME	NUMBER OF TEST VECTORS
busy	108
cslong	74
csshort	959
ert	20
poclk	931
poll	11453
psft	4997
s01	1856
sclkh	99
sclkl	99
slft	4589
t1103	9999
t207	3439