Heavy ion LET in Silicon Workgroup Final Report Arto Javanainen, JYFL, Finland This work was supported by: The Academy of Finland under the Finnish Centre of Excellence Programme 2006-2011 (Project No.213503) and European Space Agency (ESA/ESTEC contract No. 18197/04/NL/CP). # RADECS Thematic Workshop on European SEE Accelerators - 26th of May 2005 in Jyväskylä - In the Round Table discussions, questions were raised about the inconsistence in LET values - Workgroup was formed - Members: Reno Harboe-Sørensen, Ari Virtanen, Wojtek Hajdas, Guy Berger and Arto Javanainen - Due to the stopping power expertise, JYFL/RADEF was chosen to run the experiments ## **Estimated LET values** - Inconsistent LET values (may) have been used in the past - Values are estimated mainly by using semiempirical codes: - SRIM (various versions) - BNL LET Calculator (modified version of older TRIM/SRIM) - + Easy access (www), user-friendly interfaces, variety of different energy/ion/target combinations with reasonable accuracy - ± Semi-empirical → some experimental data and the rest is derived from the parameterized theory - Due to coarse experimental database, the heavy ion estimates may give inconsistent values - Maximum deviation of ~10% between code estimates - "The heavier the ion, the higher the divergence" #### Inconsistence in the estimations ## **Heavy ion LET Experiments** - Series of experiments: 2006-2008 - Beam times were applied from the PAC - New method developed for stopping measurements - B-TOF: Time-Of-Flight (res. <100ps) combined with magnetic dipole - 7 ions measured: - ¹⁵N, ²⁰Ne, ³⁰Si, ⁴⁰Ar, ⁵⁶Fe, ⁸²Kr, ¹³¹Xe - RADEF heavy ion cocktail species - Two Si-samples: ~1 μm and ~12 μm - Energy range: from 0.2A MeV to 9.3A MeV - Previously unpublished experimental data at this energy range for: Ne, Ar, Fe, Kr and Xe - "Scientific outcome" ... so far: - 2 presentations in RADECS2006 (oral) and RADECS2008 (poster) - 2 publications in IEEE TNS ### LET in Si ## - Results and Comparison - Energy = 9.3A MeV; $\sigma \text{LET}_{\text{MEAS}} < 3\%$ | ION | LET _{MEAS}
[MeV/mg/cm ²] | LET _{SRIM}
[MeV/mg/cm²] | LET _{LETC} [MeV/mg/cm ²] | |-------------------|--|-------------------------------------|---| | 15 N | 1.88 | 1.83 (-2.7%) | 1.78 (-5.3%) | | ²⁰ Ne | 3.64 | 3.63 (-0.3%) | 3.52 (-3.1%) | | ³⁰ Si | 6.73 | 6.40 (-4.9%) | 6.50 (-3.3%) | | ⁴⁰ Ar | 10.1 | 10.2 (+1.0%) | 10.0 (-1.0%) | | ⁵⁶ Fe | 18.5 | 18.6 (+0.5%) | 18.3 (-1.1%) | | ⁸² Kr | 30.2 | 32.2 (+6.6%) | 30.0 (-0.7%) | | ¹³¹ Xe | 55.3 | 60.0 (+8.5%) | 52.8 (-4.5%) | ## **Example data** # LET behavior inside the Si-substrate - The Bragg curve - ## "Enhanced" LET in Bragg peak derived from the experimental data | ION | LET@ surface
[MeV/mg/cm²] | LET @ Bragg peak [MeV/mg/cm²] | "Enhancement" factor | |-------------------|------------------------------|----------------------------------|----------------------| | 15 N | 1.88 | 5.89 (192 μm) -6μm | 3.13 | | ²⁰ Ne | 3.64 | 9.47 (139 μm) ±0μm | 2.60 | | ³⁰ Si | 6.73 | 13.9 (116 μm) -4μm | 2.07 | | ⁴⁰ Ar | 10.1 | 19.0 (99 μm) -6μm | 1.88 | | ⁵⁶ Fe | 18.5 | 29.9 (75 μm) - 2μm | 1.62 | | ⁸² Kr | 30.2 | 42.2 (68 μm) -1μm | 1.40 | | ¹³¹ Xe | 55.3 | 68.0 (57 μm) +9μm | 1.23 | ### Conclusions - LET values for various heavy ions (RADEF cocktail) in silicon has been experimentally defined - Previously unpublished data - Values will be available in the RADEF website - http://www.jyu.fi/accelerator/radef - Differences between "new" and "old" values up to 8.5% - Future? - Simple calculator based on these results... - Measurements: - High energy heavy ions @ GANIL (Kr, Xe @ 40-70A MeV?) - More ions?, Other targets?, SiO₂, Ge, etc.? Need? ## Acknowledgments - "LET"-WORKGROUP - Wladyslaw Trzaska, JYFL - Mikko Sillanpää, JYFL - Vladimir Lyapin, JYFL - Jarek Perkowski, University of Lodz, Poland - Tomek Malkiewicz, JYFL - Harry Whitlow, JYFL - Timo Sajavaara, JYFL - Heikki Kettunen, JYFL - liro Riihimäki, JYFL - Manfred Mutterer, Darmstadt Univ. of Tech., Germany