Heavy ion LET in Silicon

Workgroup Final Report

Arto Javanainen, JYFL, Finland

This work was supported by:
The Academy of Finland under the
Finnish Centre of Excellence Programme 2006-2011
(Project No.213503)

and

European Space Agency (ESA/ESTEC contract No. 18197/04/NL/CP).

RADECS Thematic Workshop on European SEE Accelerators

- 26th of May 2005 in Jyväskylä
- In the Round Table discussions, questions were raised about the inconsistence in LET values
- Workgroup was formed
 - Members: Reno Harboe-Sørensen, Ari Virtanen, Wojtek Hajdas, Guy Berger and Arto Javanainen
 - Due to the stopping power expertise, JYFL/RADEF was chosen to run the experiments

Estimated LET values

- Inconsistent LET values (may) have been used in the past
- Values are estimated mainly by using semiempirical codes:
 - SRIM (various versions)
 - BNL LET Calculator (modified version of older TRIM/SRIM)
 - + Easy access (www), user-friendly interfaces, variety of different energy/ion/target combinations with reasonable accuracy
 - ± Semi-empirical → some experimental data and the rest is derived from the parameterized theory
 - Due to coarse experimental database, the heavy ion estimates may give inconsistent values
- Maximum deviation of ~10% between code estimates
 - "The heavier the ion, the higher the divergence"

Inconsistence in the estimations

Heavy ion LET Experiments

- Series of experiments: 2006-2008
 - Beam times were applied from the PAC
- New method developed for stopping measurements
 - B-TOF: Time-Of-Flight (res. <100ps) combined with magnetic dipole
- 7 ions measured:
 - ¹⁵N, ²⁰Ne, ³⁰Si, ⁴⁰Ar, ⁵⁶Fe, ⁸²Kr, ¹³¹Xe
 - RADEF heavy ion cocktail species
- Two Si-samples: ~1 μm and ~12 μm
- Energy range: from 0.2A MeV to 9.3A MeV
- Previously unpublished experimental data at this energy range for: Ne, Ar, Fe, Kr and Xe
- "Scientific outcome" ... so far:
 - 2 presentations in RADECS2006 (oral) and RADECS2008 (poster)
 - 2 publications in IEEE TNS

LET in Si

- Results and Comparison -

Energy = 9.3A MeV; $\sigma \text{LET}_{\text{MEAS}} < 3\%$

ION	LET _{MEAS} [MeV/mg/cm ²]	LET _{SRIM} [MeV/mg/cm²]	LET _{LETC} [MeV/mg/cm ²]
15 N	1.88	1.83 (-2.7%)	1.78 (-5.3%)
²⁰ Ne	3.64	3.63 (-0.3%)	3.52 (-3.1%)
³⁰ Si	6.73	6.40 (-4.9%)	6.50 (-3.3%)
⁴⁰ Ar	10.1	10.2 (+1.0%)	10.0 (-1.0%)
⁵⁶ Fe	18.5	18.6 (+0.5%)	18.3 (-1.1%)
⁸² Kr	30.2	32.2 (+6.6%)	30.0 (-0.7%)
¹³¹ Xe	55.3	60.0 (+8.5%)	52.8 (-4.5%)

Example data

LET behavior inside the Si-substrate - The Bragg curve -

"Enhanced" LET in Bragg peak

derived from the experimental data

ION	LET@ surface [MeV/mg/cm²]	LET @ Bragg peak [MeV/mg/cm²]	"Enhancement" factor
15 N	1.88	5.89 (192 μm) -6μm	3.13
²⁰ Ne	3.64	9.47 (139 μm) ±0μm	2.60
³⁰ Si	6.73	13.9 (116 μm) -4μm	2.07
⁴⁰ Ar	10.1	19.0 (99 μm) -6μm	1.88
⁵⁶ Fe	18.5	29.9 (75 μm) - 2μm	1.62
⁸² Kr	30.2	42.2 (68 μm) -1μm	1.40
¹³¹ Xe	55.3	68.0 (57 μm) +9μm	1.23

Conclusions

- LET values for various heavy ions (RADEF cocktail) in silicon has been experimentally defined
 - Previously unpublished data
- Values will be available in the RADEF website
 - http://www.jyu.fi/accelerator/radef
- Differences between "new" and "old" values up to 8.5%
- Future?
 - Simple calculator based on these results...
 - Measurements:
 - High energy heavy ions @ GANIL (Kr, Xe @ 40-70A MeV?)
 - More ions?, Other targets?, SiO₂, Ge, etc.? Need?

Acknowledgments

- "LET"-WORKGROUP
- Wladyslaw Trzaska, JYFL
- Mikko Sillanpää, JYFL
- Vladimir Lyapin, JYFL
- Jarek Perkowski, University of Lodz, Poland
- Tomek Malkiewicz, JYFL
- Harry Whitlow, JYFL
- Timo Sajavaara, JYFL
- Heikki Kettunen, JYFL
- liro Riihimäki, JYFL
- Manfred Mutterer, Darmstadt Univ. of Tech., Germany