

$4^{\text {th }}$ Round Table on MNT - ESTEC Noordwijk 20/5/2003

Alenia interest in field of MEMS

- As a Company dedicated to space equipment for telecom, our main interest is toward those MEMS promising good RF performance, like Cavity Resonators, Varactors, RF Switches
- RF Switches have been studied for several years; many Electrostatically actuated SPST (Single Pole Single Through) Switches have been realized in IC technology.
- RF Switches offer good performance in respect of: linearity, power consumption, mass
- RF Switches are of interest if, in addition to electrical performance, they can achieve a high level of reliability and competitive cost
- A SPDT (Single Pole Double Through) RF Switch is being developed by Alenia in the frame of contract NR. 14628/NL/CK with ESTEC.

- Hernin

, ㅁaze

Technical requirement for the SPDT RF Switch

- Frequency range : 1 to 30 GHz
- Input RF power : 10 W minimum
- Insertion loss : 0.4 dB maximum
- Isolation : 50 dB minimum
- Return loss : 20 dB minimum
- Actuation voltage : 50 V maximum
- Temperature range : $-25^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$
- Switching time, power consumption : to be minimized

4alatia

ग"Izi.

ITII

 Noncos

$4^{\text {th }}$ Round Table on MNT - ESTEC Noordwijk 20/5/2003

Work organization for the development of a

 SPDT RF Switch- Alenia Spazio S.p.A. (ALS): prime contractor, also in charge of package assembly
- Technische Universität München (TUM), Istitüt für Hochfrequenztechnik: switch and switch matrix design, wafer layers design
- Università di Perugia (UNI-PG), Department of Electronics: electromagnetic simulation and design support
- Istituto di Ricerca Scientifica e Tecnologica del Trentino (IRST), Microsystem Division: fabrication process development, foundry service, mechanical simulation
- Consiglio Nazionale delle Ricerche (CNR), Microwave and Microsystem Laboratory : electrical testing and design support

111
s-

Quality Requirements for the SPDT RF Switch

- Number of cycles : 10^{6} minimum
- Lifetime by design : 10 years minimum
- Sine vibration: $20 \mathrm{~Hz}-2000 \mathrm{~Hz}$ at $20 \mathrm{~g}, 3$-axis, 4 minutes each axis
- Random Vibration :
- $20-100 \mathrm{~Hz}+3 \mathrm{~dB} /$ octave
$-100-200 \mathrm{~Hz} 1 \mathrm{~g}^{2} / \mathrm{Hz}$
$-200-2000 \mathrm{~Hz}-4 \mathrm{~dB} /$ octave
- Duration : 2.5 minutes
- Mechanical Shock : n. 5, $1500 \mathrm{~g}, 0.5 \mathrm{~ms}, \mathrm{y} 1$ axis
- Thermal Vacuum : 7 cycles, below $1.3 \times 10^{-6} \mathrm{hPa}$ (PSS-01-802)
- Radiation tolerance : up to 100 krads (target)

4haniz

In

$4^{\text {th }}$ Round Table on MNT - ESTEC Noordwijk 20/5/2003

2) Series SPST Switch:

- The central conductor is interrupted, the gap will be closed by the metal bridge when the switch is actuated. The contact is ohmic with a low bridge when the switch is actuated. The contact is ohmic with a low
resistance value; this will insure a low insertion loss when the switch is actuated.
- To avoid sticking problems the center conductor is not used as a actuation pad. Separate (two) pads are added instead.
- The same approach of having separate pads from the center conductor is used for the parallel switch
- Care has to be taken to achieve a good isolation of the RF signal path from the DC actuation pads and biasing lines. To this scope the biasing lines are made of polysilicon (230 Ω /).

IUII

vilise

,
$4^{\text {th }}$ Round Table on MNT - ESTEC Noordwijk 20/5/2003

Fabrication process requirements

Electrical specification:

- Actuation voltage $<50 \mathrm{~V}$
- Max input RF power >10W
- Structural requirements:
- HF sections: Air Bridges, CPW lines

LF sections: 50kohm resistors, DC block capacitors, connection ines for actuation signals

4. Alenia

,
$4^{\text {th }}$ Round Table on MNT - ESTEC Noordwijk 20/5/2003
Basic device structures of the RF-switch process

Conclusion:

- The achieved results on the insertion loss of the shunt switch gives good confidence the requirements can be encountered; the third design and foundry iteration, now underway, is needed to verify if the switch resonance (Off state) can be predicted, proving that the fabrication process and simulation match together
- The series switch is also expected to improve its insertion loss performance by using polysilicon dimples to help in obtaining a good electrical contact
- The LTCC micropackage shows satisfactory performance
- The SPDT Switch will be finally assembled in the package and subjected to a qualification program to assess the robustness of the design and developed technology

