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General varactor concept

« Varactors can be built in F. = Kk,x
MEMS technology as: Movable< plate
« A capacitor where the gap
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Plate collapse (pull-1n)

In linear electro-mechanical
systems, equilibrium can
only be reached for values
x < d/3, the plate collapses

after this value has been
reached

This limitation restricts the
controllable capacitance
change
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Requirements

Process compatibility with Coventor RF-MEMS switch platform
« Design robust against fabrication tolerances
« Large capacitance tuning range

« Functional under normal operation conditions (temperature,
acceleration, ...)

» Full electrical isolation between control- and RF- signals
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Coventor switch process

« Varactor design should
be compatible with our
mature RF-MEMS gree e e
switch process which e Chaditatics aigap
Includes:

« A movable triple layer
(metal-dielectric-metal)
* Thick dielectric

 Metal interconnection
layers
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How to extend the displacement range ?

Wt
- If signal voltage << control Gas dampingl | < Spring k
voltage, a dual-gap I S
approach can be used: 771
Actuator air-gap should be > Vi = !
3 times the capacitor air-gap T
Signal
j A - electrode .

Control electrode

“Microelectromechanical capacitors for RF applications”,

H Nieminen, V Ermolov, K Nybergh, S Silanto and T Ryhénen,
J. Micromech. Microeng. 12 (2002) 177-186
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Quasi dual-gap

Wt
- If signal voltage << control Gas dampingl | < Spring k
voltage, a dual-gap I o
approach can be used: 7_/'
Actuator air-gap should be > Mi=s "
3 times the capacitor air-gap T
Signal
j A - electrode .

. _ Control electrode
* Quasi- dual approach is

equivalent, with a thick
dielectric in the actuator gap

Actuator Capacitor
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Design Overview

* A hexagonal shape was chosen for
symmetry reasons.

« Separation of the signal capacitor
and the actuator electrodes.

« Some mechanical isolation is
provided by suspending the
capacitor inside the actuated
peripheral frame.

 The angle between the membranes
and the tethers minimizes residual
stress effects
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Advantages of the hexagonal design

* The electrostatic force
Is well-distributed A N
around the central & N [ Capacior
capacitance plate | |

\ | .%E_ActuatOrS

 Residual and thermal
stresses have little
influence on the z-
position of the plate

" Residual stress
=120 MPa

z ’}\ Z Displacement
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Issues related to large areas

« Large structures (for
increased capacitance) are
too compliant for a proper
‘parallel-plate’ behavior

 The capacitance area is

deflected by almost half of
the total displacement

Displacement
before pull-in

 The large area also makes
difficult to have flat structures
in presence of stress-
gradients

! ‘Stress-gradient

L NN _ . sensitivity




How to minimize area-related effects ?

* A given capacitance
value can be reached
by using arrays of
iIdentical smaller
capacitors
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Area related-etfects

« A flatter capacitor is obtained
for a smaller device

» The capacitance plate
distorts only slightly

* The structure is also less-
sensitive to stress-gradients
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Simulated C(V) curve
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Simulation results

Characteristics Value
Chin 0.9 pF
Capacitance ratio >HIES
Maximum Control Voltage o0 V
Mechanical resonance frequency 22 kHz
Vibration sensitivity <0.5% /g
Stress sensitivity (related to operating temperature) | negligible
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Preliminary experimental results

* Diced samples show stiction

* Undiced samples are released and are
currently being measured
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3D-Interferometry on a diced sample
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Cutline (four sections)
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Conclusions

» A concept and detailed design for a high-
performance RF-MEMS varactor was
presented

 The varactor has been fabricated in
Coventor's RF-MEMS switch process

* Dicing step is being currently improved

 Measurements on un-diced samples are currently
being completed
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