Communications Microsystems for Spacecraft – Current Research and Future Systems

Henrik Kratz and Lars Stenmark

www.astc.material.uu.se
Outline

- Multifunctional Microsystems Applied on Communication Modules
- Current research at ÅSTC
- Front end of S-band module as an example
- Why silicon as a RF/mm-Wave substrate?
- Cross-disciplinary research
- Conclusions
Multifunctional Microsystem MMS – Applied on Communication Modules

Traditional RF system
 • Separate parts connected together with transmissions lines

Highly integrated RF modules
 • One RF module contains all necessary parts integrated

MMS Applied on RF modules
 • Extreme miniaturization
 • All necessary functions integrated
 • Thermal management
 • Communication module
 • Spectral admittance
 • And so on...

Diagram:
- Antenna
- Structural element
- Traditional Communication System
- Receiver
- Transmitter
- Transmission lines
- MMS Communications Microsystems
- Parameters implied by MMS
 • Correct spectral signature
 • Extreme integration
- Thermal management
Current Research at ÅSTC

- S-band Transmitter and Receiver modules with integrated thermal management
- Ka-band phased array with integrated thermal management
 - Transmission lines on membranes
 - RF through vias
 - Phase shifters
- Basic technology
 - Silicon as substrate
 - MST, MEMS
 - MMS
S-band Transmitter/Receiver with Integrated Thermal Control

The system consists of a 4 wafer bonded silicon wafer stack
S-band Transmitter/Receiver with Integrated Thermal Control

- Bulk thinned silicon, thermal coating, active MST heat management
- 20 grams, 68 mm square, 2 mm thickness
- Estimated RF-power 1.5W, Antenna gain 3.6dBi
Bonded top wafers manufactured

- Two bonded silicon wafers (each 525 µm thickness)
- Honeycomb support structure
- Simple SMA contact attachment for preliminary tests
Thinned Bulk Silicon Structure

- Reduced losses
- Lower dielectricity constant → more broadband device
- MST process, DRIE etched honeycomb pattern
- Dielectric value reduced from 11.9 to 3.8!
Integration of actuators and 'chips', or Why silicon?

- Well known micromechanical methods for producing very compact MCM modules using silicon as substrate
- E.g. Thin film connection of chips in etched pits (MCM):
 - Advantageous at high frequencies due to reduced parasitic impedances.
- Easy packaging (Si-Si bonding)
- Actuator integration
 - E.g. Paraffin as actuator in thermal switches in presented S-band module.
Cross-disciplinary Research

- Materials science
- Materials analysis
- Microwave technology
- Antenna analysis
- Device technology
- FPGA/microcontroller technology for stand alone ’smart’ microsystems
- and more...
Conclusions for future communications microsystems

- Low cost
- High redundancy
- New mission scenarios
- Few interconnects to outside ‘world’ (spacecraft)
Thanks for your attention!

- Questions?

 Smarter...
 Smaller...
 Lighter...
 Multifunctional...

... are the keywords for Communications Microsystems of the future

www.astc.material.uu.se