

Development of Carbon Nanostructurebased Photonic and Multifunctional Materials for Space Applications

Gendron, S.; Kuzhelev, A.; Xiang Jiang, X.; Nikanpour, D. Canadian Space Agency, St-Hubert, Canada

> For 4th Round Table for MNT for Space May 20-22, 2003, ESTEC, Noordwijk, The Netherlands

Canadian Space Agence spatiale canadienne Agency_

Canada The Canadian Space Agency

David Florida Lab Chapman Space Centre

- HQ in Saint-Hubert, Quebec;
- A world class testing and integration facility - the David Florida Laboratory, located in Ottawa;
- Offices in Ottawa, Washington, **Houston and Paris:**
- **Responsible for managing Canada's** national space programs including participation at ESA;
- Staff of approx. 350 including scientists, engineers and administrators;
- Total yearly budget of \$300M.

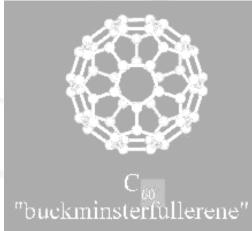
Who we are...

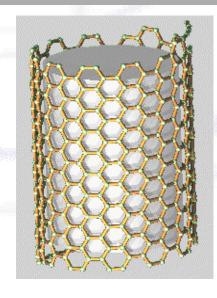
OUR MANDATE

- Development and application of space science and technology to meet Canadian needs;
- Development of an internationally competitive space industry.

Space Technology Materials & Thermal group

- Conduct in-house R & D projects in the area of advanced materials and thermal control technologies.
- To promote research collaboration among CSA, other organizations and industry in the area of material science and engineering to meet the needs of future Canadian space program.
- Conduct in-house R & D projects in thermal technologies and to provide simulated space environment for satellite sub-systems and component testing.

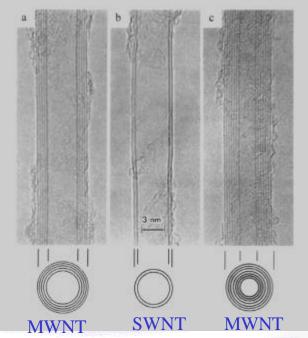




Carbon Nanotube

- Extended Fullerene
- Exceptional mechanical properties
- Exceptional electro-conductive properties
- Exceptional thermo-conductive properties
- Exceptional third order nonlinear optical susceptibility

CNT-based materials R & D activities at CSA

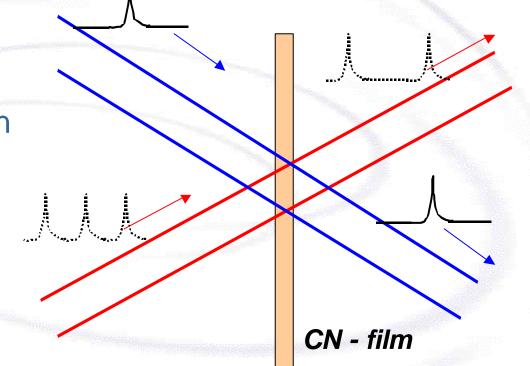

- Collaboration with INRS of University of Quebec in synthesis and production of carbon nanotubes
- Application of carbon nanotube material for fast alloptical switches
- Application of carbon nanotube doped liquid crystal for holographic beam control elements
- CNT-polymer composite in collaboration with IMI/NRC

Synthesis and production of Carbon nanotubes

INRS produces CNT using three processes: •Laser Ablation: > 1 g/day ➢ 75% SWNT •Atmospheric Plasma Torch: > 1 g/minute ➢ 25% SWNT •Ohmically Heated Carbon Paper: MWNT film deposition

High resolution transmission electron microscope showing the structures of carbon nanotubes (S. Iijima, 1991)

Application of carbon nanotube material for fast all-optical switches


- Exceptional nonlinear optical susceptibility of Carbon Nanotubes
 - High delocalization of π -electrons in CNs causes high $\chi^{(3)}$
 - Similar to advanced polymers
 (χ⁽³⁾ ~ 10⁻¹⁰ 10⁻⁹ esu).
 - Sub-picosecond decay time

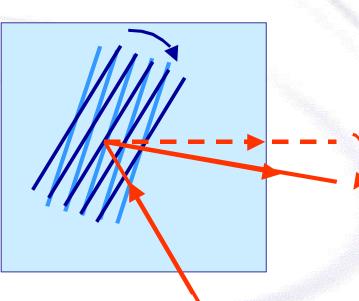
CNTs for all-optical switches

- High-bit-rate timedivision-multiplexing optical communication systems
- Optical-digital computing systems

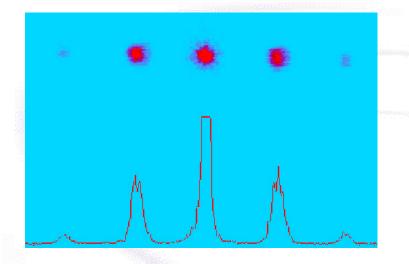
Application of carbon nanotube doped liquid crystal for holographic beam control elements

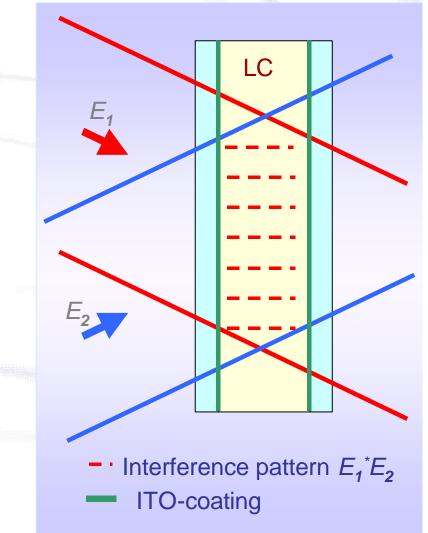
- As part of this activity at CSA is to develop a free space laser communication system
- Carbon nanotubes may enhance inertial optical nonlinearities of liquid crystal through a doping mechanism
- Extremely high optical nonlinearity as large as 20 cm²/Watt was demonstrated in the liquid crystals doped by carbon nanotubes

Applications of "giant" inertial nonlinearities

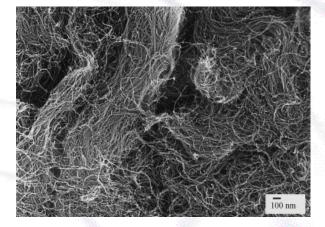

- Optical limiting
- Phase conjugation
 - Correction of phase distortions in communication lines, lasers, lidars and imaging
 - All-optical dynamic beam tracking/control
- Optical holographic memory

All-optical dynamic beam control


- Steering accomplished by light-induced dynamic hologram
- No mechanical inertia
- Reorientation time can be as low as few microseconds

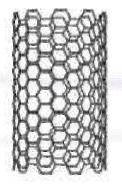


Hologram writing/reading at 1500 nm

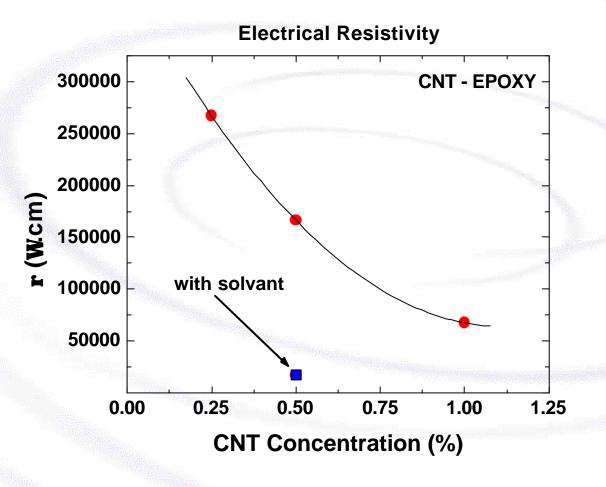

Diffraction of He-Ne beam (633 nm) by the hologram written by 1500 nm beams: center – not reflected part of reading beam 3, at the sides – reflected beam 4 (first and second orders of diffraction).

Canada

CNT-polymer composite

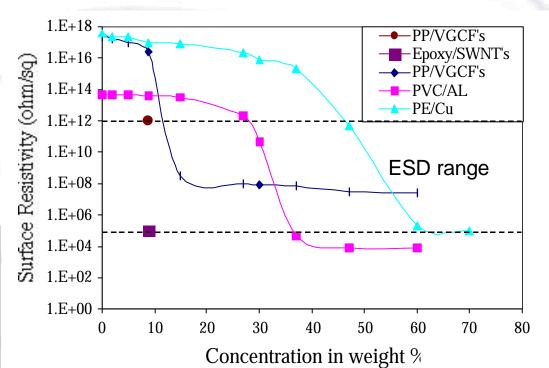

- Single-wall carbon nanotubes (SWCNT)
 O Produced by Steacie Institute, NRC
 O Laser grown
 O Purity: >95% CNT
- Epoxy matrix
 - Bisphenol A epoxy (Shell Epon 828)
 - Polyamine hardener (Shell Epicure 3046)

Catalytically-grown nanotube material


Material	D nm	TS GPa	TM GPa	Aspect ratio
SWNT	1	30	1000	n.a.
MWNT	2-50	26	1000	n.a.
NF	50-200	7	600	100-500

n.a. : not available

Electrical resistivity of CNT-Epoxy composite



Potential Space Applications of CNTpolymer Composite

- CNT conductive polymer - ESD and EMI Materials

Limitations of current ESD Materials:

- Instability
- No enhanced mechanical strength
- Requires deposition of conductive coating

CNT doped polymer thin film for inftatable membrane antennas

Potential Space Applications of CNTpolymer Composite

High performance structural material for spacecraft
 and payloads

Super strong and stiff structural material for launch vehicle and spacecraft

► Application in MEMS

Conclusions

- CNT based R&D holds promising potential applications in Photonic and Multifunctional Materials for space applications.
- CSA is looking forward to collaborate with other international partners in the area of CNT-based optical switches and on smart material applications.

Acknowledgements

 Prof. B. Stansfield, Institut National de la Recherche Scientifique, (INRS-Energie et Materiaux), Varennes, Quebec. Canada

 Dr. A. Gosh (formerly from MPB Communications, Montreal, Canada).

Canadian Space Agence spatiale Agency canadienne

CSA contacts: Stephane.Gendron@space.gc.ca

XimXiang.Jiang@space.gc.ca

Darius.Nikampour@space.gc.ca

