

- **1 INTRODUCTION: PROJECT SCOPE & BACKGROUND**
- 2 SMART / INTELLIGENT MICROSYSTEMS & EXPLORERS
- **3 ASSESSMENT OF INTEGRATION TECHNOLOGIES**
- **4 MSM CONCEPT**
- **5 MSM DESIGN**
- **6 MSM ENVIRONMENT**
- **7 MSM INTEGRATION**
- 8 CONCLUSION: ROADMAP AND PROPOSALS

INTRODUCTION

BNSC ATS STUDY for MST integration in 2001-2002

THANKS A LOT TO:

- Jean-Claude TUAL, Astrium SAS, Velizy
- Jean Simonne, LAAS Toulouse, F (now out of it!)

THANKS ALSO TO:

- Carles Ferrer, CNR Barcelona, S
- Paul Kirby, Cranfield Uni., UK

ADDRESS INDUSTRIALISATION OF SPACE MST

- Everyone recognises MST is vital for Space
- But the industrialisation and qualification problems prove much harder than expected
- To accelerate and prepare for the change a review / design of integration technologies is useful

BACKGROUND

- Necessary to define new AIV processes, technologies & skills:
 - Qualification of devices
 - Micro-system design
 - Systems Industrialisation:
 - Integration

mai 03

filename

- Procurement

"SMART MICROSYSTEMS"

Highly integrated multi-sensor RAM components Main Sensors ADC Integrator - Different levels of "smartness" Calculator Main Actuators Engineering - Suitable for micro-explorers Outer Data output world - High-level output Basic SIP Comparator Connect FDIR Basic Smart Microsystem To S/C bus Self-test Advanced functions or Self-calibration Ancillary Sensors & actuators - Interface to SIP (ESA R&D) Advanced Wireless FDIR comms - Interface to Wireless Advanced Microsystem - Temperature compensated Temperature **Temperature Sensors** - Can include FDIR compensator Thermal control actuators in packaging Temperature-indenpendant Microsystem mai 03 5

filename

"SMART MICROSYSTEMS" IMPLEMENTATION

Composed of modular systems

- Used for intra-satellite remote sensing as well
 - Three integration/implementation possibilities for components:
 - System-on-a-chip
 - I MCM-bas approach

I Hybrids

mai 03

filename

INTEGRATION TECHNOLOGY - SOAC

- Ultra high integration and system effectiveness
- **No European effort for Space as of yet**

INTEGRATION TECHNOLOGY – MCM-BASED

- Available in Space Industry
- Proprietary technologies
- Need significant adaptation
- Package influences design

Courtesy of Astrium SAS

INTEGRATION TECHNOLOGY - HYBRIDS

- Available commercially
- Good turn-around
- Poor repeatability
- Plastic packaging maybe

Courtesy of BAe Systems

Courtesy of Astrium Gmbh

filename

INTEGRATION TECHNOLOGY – TRADE-OFF

Technology	SOAC	MST-MCM	Hybrids
Integration levels	High Highest with current technologies	Medium Much better than current levels	Low Only the miniaturisation
Technology readiness	Development No working prototype	Prototype Some similar products	Product Flight proven
Technical hard points	Integrated design Complex project	Process compatibility	None
Industrial readiness	Europe industry does not have capacity	MCM capacity Adaptation possible	Ready except for device procurement
Industrial hard points	Very large infrastructure required	Modification of MCM process & culture	None
Est. Develpt cost	> 1 M£	~ 500 k£	~ 200 k£
UK Space industry	Not accessible	Accessible in Astrium UK & F	Accessible in SMEs & labs
UK SMEs	Not researched for space	Not researched for space	Accessible
Time to market	10 years	7 years	3 years
General pros	Ultimate in microtechnology, most efficient system	Good compromise Gives much better integration wrt current systems anyway	Rapid development Easily integrated into current spacecraft
General cons	Very technical and still many hard points	Some development necessary	Not efficient Not easily industrialised

10 mai 03

MICRO-SYSTEM MODULE: COMPATIBILITY

INTERNAL COMPATIBILITY

CONSTRUCTION

- Plastic maybe difficult (outgassing)
- P < 500 mW is OK
- No EMC problems for DC devices

- May use m-brackets
- May use device packaging
- Height Maxi ~ 3.5 mm

ATTACHMENT

mai 03

filename

- Tolerance angle < 1mrad
- Al2O3 substrates
- AbleBond 84 adhesive

Gas	Density g/l	Viscosity mPa
Air	1.29	18.6
Nitrogen	1.25	17.9
Difference	3%	4%

EXTERNAL COMPATIBILITY

SPACE ENVIRONMENT

Comparative Temperature	S/C -40 C	S/C + 40 C
Flat chip	- 33.3	43.4
"I" profile	- 24.8	33.7

VIEWING EXTERNAL ENVIRONMENT

Courtesy of Aerospace Corporation

SYSTEM DESIGN COMPATIBILITY

RESULTS

ROADMAPS for each implementation

- Technology tree
- "Passive" and "Active" Roadmaps

MSM "Device Requirements documents"

- Draft list of requirements
- To be considered by device developers
- Used primarily as a basis for discussion

PROJECT PROPOSALS

CONCLUSIONS:

- In parallel to device reliability and qualification, industrialisation is necessary
- Necessary to use integration technologies available in European industry
- Design cycle impacted, adaptation of tools necessary
- Is technically feasible, but needs to be addressed

