DDR/DDRII SDRAM Meeting - ESA/ESTEC March 13th 2006.

Radiation Evaluation of DDR/DDRII SDRAM Memories

by

EADS Astrium GmbH, Germany IDA TU Braunschweig, Germany Hirex Engineering, Toulouse, France European Space Agency/ESTEC, TEC-QCA, The Netherlands

- Memory Procurement Aspects
- **IDA (contracts with Astrium and ESA)**
 - Upgrade of Radiation Test Bed (memory tester)
 - Perform Radiation Testing

Hirex Engineering (contract with ESA)

- Sample Preparations
- Upgrade of Memory Test System
- Perform Radiation Testing

European Space Agency/ESTEC

- To Provide Test Facilities
- To Coordinate all activities

AGENDA - I.

ESA/ESTEC

- Welcome and Introduction

EADS Astrium

- Mass Memory Products for Space Applications
- Memory Procurement Aspects

IDA

- Radiation Test Bed (memory tester)
- Radiation Testing

Hirex Engineering

- Sample Preparations
- Memory Test System
- Radiation Testing

AGENDA - II.

ESA/ESTEC

- Test Facilities
- Test Samples/Test Conditions
- Radiation Test Plan/Time Frame
- Support Activities

EADS Astrium

- Memory Module Concepts and Development

1

TBD Presentations

- Other Mass Memory Related Activities (FLASH)
- Project Presentations

Radiation Evaluation of Components for Space Aapplications I.

- # TID Co-60 Testing
 - No device preparation required
- # Displacement damage and SEE Proton Testing
 - No device preparation required
- **# SEE Heavy ion Testing**
 - Device preparation required

Radiation Evaluation of Components for Space Applications – II.

Today, nearly all memories are assembled with centre bond pads and a lead frame on top of the die.

X-ray of Hitachi 256-Mbit SDRAM in 54-pin TSOP (plastic package).

Etched/re-bonded Preparation Method

- # Etched/re-bonded (Micron 128-Mbit and Hyundai 256-Mbit)
 - To Chemical etch the package
 - Remove the lead frame
 - Re-bond the bare die to a test board
 - Irradiation from the front

Back Thinning Preparation Method

- # Back thinned (Micron 128-Mbit and Hyundai 256-Mbit)
 - To thin the back of the package/die to about 50 µm
 - Main assembly remains untouched
 - Requires irradiation from the back
 - Accelerator lon penetration problem

3-D-Plus - Main Observations (Thinned Devices)

SEL Testing of 512 Mbit SDRAMs - July 2004.

- Samsung SEL at LET 40 MeV/(mg/cm²)/85°C.
- Infineon SEL at LET 40 MeV/(mg/cm²)/85°C/50°C
- Elpida no SEL at LET 80 MeV/(mg/cm²)/125°C (current jumps interpreted as SEFIs)

SEE Testing of Elpida 512 Mbit SDRAMs - Dec. 2003. – Th LET: SEU ~ 2.0/SEFI ~5.0 MeV/(mg/cm²)

SEE Testing of Samsung 512 Mbit SDRAMs - Dec. 2003. – Th LET: SEU ~ 6.0/SEFI ~8.0 MeV/(mg/cm²)

3-D-Plus - Main Observations (Die Re-bonded)

SEL Testing of 1 Gbit DDR SDRAMs - April 2005.

- Samsung no SEL at LET 80 MeV/(mg/cm²)/85°C.
- Micron no SEL at LET 80 MeV/(mg/cm²)/85°C.

SEFI Testing of 1 Gbit DDR SDRAMs - April 2005.

 Samsung and Micron no unrecoverable SEFI up to a LET of 80 MeV/(mg/cm²)/25°C.

SEU Testing of 1 Gbit DDR SDRAMs - April 2005.

Samsung and Micron both experienced a significant number of "Stuck Bits".

* * *

SEL Testing of 512 Mbit DDR SDRAMs - April 2005. – Samsung SEL at LET 80 MeV/(mg/cm²)/85°C

AGENDA - I.

ESA/ESTEC

- Welcome and Introduction

EADS Astrium

- Mass Memory Products for Space Applications
- Memory Procurement Aspects

IDA

- Radiation Test Bed (memory tester)
- Radiation Testing

Hirex Engineering

- Sample Preparations
- Memory Test System
- Radiation Testing

European Component Irradiation Facilities :

- # Proton Irradiation Facility (PIF), Paul Scherrer Institut, (PSI), Switzerland
- # Heavy-ion Irradiation Facility (HIF) UCL, Belgium
- # RADiation Effects Facility (RADEF) University of Jyväskylä, Finland
- # ESTEC Co-60 Facility (ECF) Noordwijk, The Netherlands

European Component Irradiation Facilities – PIF Proton Irradiation Facility, Paul Scherrer Institut (PSI).

PIF Main Features High/Low Energy

A) General

Flux/Dosimetry ~5 % absolute accuracy
HIF compatible sample frame is fixed on XY table
Irradiation take place in air

B) High Energy PIF

- •Energy range: 30 to 254 MeV
- •Initial Energies: 254, 100 and 60 MeV.
- •Maximum Proton flux (254 MeV): 2.5E8 p/cm2/sec
- •Beam spot ~90 mm diameter
- •Beam uniformity > 90 %

Ref.: DDR-DDR2-RHS 13 Mar 06.

European Component Irradiation Facilities – PIF Proton Irradiation Facility, Paul Scherrer Institut (PSI).

PIF Main Features

C) Low Energy PIF

 Initial Energies: 6 to 71 MeV •Maximum Proton flux : 5E8 p/cm2/sec •Beam spot ~50 mm diameter •Beam uniformity > 90 %

> Dr. Wojtek Hajdas, **Paul Scherrer Institut,**

CH-5232 Villigen, Switzerland Tel. 41-(0)56-310-4212 Wojtek.Hajdas@psi.ch

pif.web.psi.ch

ESTEC - Radiation Effects and Analysis Techniques Section

European Component Irradiation Facilities – HIF Heavy-ion Irradiation Facility – UCL, Belgium.

Ion Cocktail	Energy	Range	LET		
M/Q=4.94	MeV	µm Si	MeV(mg/cm²)		
¹⁰ B ²⁺	41	80	1.7		
¹⁵ N ³⁺	62	64	2.97		
²⁰ Ne ⁴⁺	78	45	5.85		
⁴⁰ Ar ⁸⁺	150	42	14.1		
⁸⁴ Kr ¹⁷⁺	316	43	34.0		
¹³² Xe ²⁶⁺	459	43	55.9		
UCL – Ion Cocktail #1 produced for ESA					

For more information, contact: Guy Berger University Chatholique de Louvain, Centre de Recherches du Cyclotron, B-1348 Louvain-la-Neuve, Belgium Tel. 32-(0)10-473225 Berger@cyc.ucl.ac.be

lon Cocktail M/Q=3.3	Energy MeV	Range μm Si	LET MeV(mg/cm²)		
¹³ C ⁴⁺	131	266	1.2		
²² Ne ⁷⁺	235	199	3.3		
²⁸ Si ⁸⁺	236	106	6.8		
⁴⁰ Ar ¹²⁺	372	119	10.1		
⁵⁸ Ni ¹⁸⁺	567	98	20.6		
⁸³ Kr ²⁵⁺	756	92	32.4		
UCL – Ion Cocktail #2 produced for ESA 2004					

www.cyc.ucl.ac.be

CSa ESTEC - Radiation Effects and Analysis Techniques Section

cesa

European Component Irradiation Facilities – RADEF RADiation Effects Facility – Jyväskylä, Finland.

Ion Cocktail M/Q=3.7	Energy MeV	Range μm Si	LET MeV(mg/cm²)	
¹⁵ N ⁴⁺	139	218	1.7	
²⁰ Ne ⁶⁺	186	149	3.5	
³⁰ Si ⁸⁺	278	132	6.0	
⁴⁰ Ar ¹²⁺	372	117	10.0	
⁵⁶ Fe ¹⁵⁺	523	99	18.0	
⁸² Kr ²²⁺	768	96	30.0	
¹³¹ Xe ³⁵⁺	1217	97	53.0	
JYFL – Ion Cocktail produced for ESA April 2005				

For more information, contact: Dr. Ari Virtanen University of Jyväskylä FIN-40014 Jyväskylä, Finland Tel. +358-(0)14-2602358

-2602358

<u>Ari.Virtanen@phys.jyu.fi</u>

www.phys.jyu.fi/research/applications/SEEstation/

ESTEC - Radiation Effects and Analysis Techniques Section

Ref. : DDR-DDR2-RHS_13_Mar_06.

Proton beam line----->

up to 65 MeV.

European Component Irradiation Facilities – ESTEC TID (Co-60).

Estec 2000 Ci Co-60 Facility

SDRAM

- 256 M-bit/512M-bit
- 3 manufacturer/3 types
- 15 pc/manufacturer

DDR

- 256M-bit/1G-bit
- 3 manufacturer/3 types
- 15 pc/manufacturer

DDR II

- 256M-bit/2G-bit
- 3 manufacturer/3 types
- 15 pc/manufacturer

DDR/DDRII SDRAM: Radiation Test (Initial proposed)

- **# SEE Heavy ion**
 - 3 Samples/Manufacturer/Type
 - Static Auto-refresh
 - Static Self-refresh
 - Dynamic
- # SEE Proton
 - 3 Samples/Manufacturer/Type
 - Static Auto-refresh
 - Static Self-refresh
 - Dynamic
- # TID (Co-60)
 - 5 + 1 Ref. Samples/Manufacturer/Type
 - TID Steps: 0, 10, 20, 30, 50, 70 & 100 Krad(Si)

To be completed in 2006

DDR/DDRII SDRAM: Support Activities

- # Tyndall National Institute, Ireland - Reverse Engineering of IC's
- # MBDA, UK

- Memory SEE Studies using Laser Techniques

- **# ONERA-DESP, France**
 - Study of Hard Errors (Stuck Bits) in Memories

