

european space agency agence spatiale européenne

Pages 1 to 52

CHARGE COUPLED DEVICES, SILICON,

PHOTOSENSITIVE, AREA ARRAY, IMAGE SENSOR,

512 LINES × 512 PIXELS, FRONT ILLUMINATED,

FRAME TRANSFER, MULTI PINNED PHASES

BASED ON TYPE TH7890M

ESA/SCC Detail Specification No. 9610/002

space components coordination group

		Approved by				
Issue/Rev.	Date	SCCG Chairman	ESA Director General or his Deputy			
Issue 1	June 2002	71.200	Hom -			

PAGE 2

ISSUE 1

DOCUMENTATION CHANGE NOTICE

Rev. Letter	Rev. Date	Approve DCR No		
Letter	Date	Reference	ltern	DCR No
in the state of th				
onnonnonnon	***************************************			
2000	00000000			
				90000000000000000000000000000000000000
	Nerodenic			
0000				
000000000000000000000000000000000000000				
STATE OF THE PERSONS ASSESSED.				
000000				
SOCIO DE COMPOSITORIO DE COMPO				
MANAGEMENT				
				·
				70 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -
	***************************************	20000000000000000000000000000000000000	90000000000000000000000000000000000000	000000000000000000000000000000000000000

PAGE 3

ISSUE 1

TABLE OF CONTENTS

1.	GENERAL	Page 5
1.1	Scope	5
1.2	Component Type Variants	5
1.3	Maximum Ratings	5
1.4	Parameter Derating Information	5
1.5	Physical Dimensions and Geometrical Characteristics	5
1.6	Pin Assignment	5
1.7	Timing Diagrams	5
1.8	Functional Diagram	5
1.9	Handling Precautions	5
1.10	Input Protection Networks	5
2.	APPLICABLE DOCUMENTS	22
3.	TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS	22
4.	REQUIREMENTS	22
4.1	General	22
4.2	Deviations from Generic Specification	22
4.2.1	Deviations from Special In-process Controls	22
4.2.2	Deviations from Final Production Tests	22
4.2.3	Deviations from Burn-in Tests	22
4.2.4	Deviations from Qualification Tests	23
4.2.5	Deviations from Lot Acceptance Tests	23
4.3	Mechanical Requirements	23
4.3.1	Dimension Check	23
4.3.2	Geometrical Characteristics	23
4.3.3	Weight	23
4.3.4	Terminal Strength	23
4.4	Materials and Finishes	23
4.4.1	Case	23
4.4.2	Lead Material and Finish	23
4.4.3	Window	23
4.5	Marking	24
4.5.1	General	24
4.5.2 4.5.3	Lead Identification The SCC Component Number	24
4.5.4	The SCC Component Number	24
4.6	Traceability Information	25
4.6.1	Electrical and Electro-optical Measurements	25
4.6.2	Electrical and Electro-optical Measurements at Reference Temperature	25
4.6.3	Electrical and Electro-optical Measurements at High and Low Temperatures	25
4.7	Circuits for Electrical and Electro-optical Measurements Burn-in Tests	25
4.7.1	Parameter Drift Values	25
4.7.1	Conditions for High Temperature Reverse Bias Burn-in	25
4.7.3	Conditions for Power Burn-in	25
4.7.4	Electrical Circuits for High Temperature Reverse Bias Burn-in	_ 25
4.7.5	Electrical Circuits for Power Burn-in	25
4.8	Environmental and Endurance Tests	25
4.8.1	Electrical and Electro-optical Measurements on Completion of Environmental Tests	43
4.8.2	Electrical and Electro-optical Measurements at Intermediate Points during Endurance T	ests 43

PAGE 4 ISSUE 1

400		Page
4.8.3 4.8.4	Electrical and Electro-optical Measurements on Completion of Endurance Tests Conditions for Operating Life Tests	43
4.8.5	Electrical Circuits for Operating Life Tests	43 43
4.8.6	Conditions for High Temperature Storage Test	43
4.9	Total Dose Irradiation Testing	43
4.9.1	Application	43
4.9.2	Bias Conditions	43
4.9.3	Electrical and Electro-optical Measurements	43
TABLE	<u>s</u>	
1(a)	Type Variant Summary	6
40.1	Type Variant Detailed Information	47
1(b)	Maximum Ratings	6
1(c) 2	Format for individual Tables 1(a) Floatrical and Floatre entire! Managements at Reference Temporative	7
3	Electrical and Electro-optical Measurements at Reference Temperature Electrical and Electro-optical Measurements at High and Low Temperatures	26
4	Parameter Drift Values	33 40
5(a)	Conditions for High Temperature Reverse Bias Burn-in	41
5(b)	Conditions for Power Burn-in and Operating Life Tests	41
6	Electrical and Electro-optical Measurements on Completion of Environmental Tests and at	44
7	Intermediate Points and on Completion of Endurance Testing	40
,	Electrical and Electro-optical Measurements During and on Completion of Irradiation Testing	46
FIGURE		
1	Parameter Derating Information	6
2	Physical Dimensions	11
3(a)	Pin Assignment	14
3(b)	Timing Diagrams	15
3(c) 3(d)	Functional Diagram Input Protection Networks	21
4	Circuits for Electrical and Electro-optical Measurements	21 34
5(a)	Electrical Circuit for High Temperature Reverse Bias Burn-in	34 42
5(b)	Electrical Circuit for Power Burn-in and Operating Life Tests	42
6	Bias Conditions for Irradiation Testing	45

APPENDICES (Applicable to specific Manufacturers only) None.

PAGE

ISSUE 1

5

1. GENERAL

1.1 SCOPE

This specification details the ratings, physical, geometrical, electrical and electro-optical characteristics, test and inspection data for a silicon Photosensitive Area Array CCD Image Sensor, 512 Lines x 512 Pixels, Front illuminated, frame transfer, multi-pinned phases, based on Type TH7890M. It shall be read in conjunction with ESA/SCC Generic Specification No. 9020, the requirements of which are supplemented herein.

1.2 COMPONENT TYPE VARIANTS

A list of the type variants of the basic area array CCD image sensor specified herein, which are also covered by this specification, are given in "Table 1(a) - Type Variant Summary".

For each type variant, the full electro-optical, electrical and geometrical characteristics are given in individual "Tables 1(a) - Type Variant Detailed Information" at the end of this specification.

The contents of the individual Tables 1(a) shall be as shown in Table 1(c).

The specific characteristics shall be negotiated between the Manufacturer and the Orderer. The Manufacturer shall then apply to the ESA/SCC Secretariat for a type variant number for each individual basic area array CCD image sensor concerned, by sending a finalised Table 1(a) which shall also be copied to the Qualifying Space Agency (QSA).

For information concerning Variant 01, see ESA/SCC Generic Specification No. 9020, Para. 4.1.1.

1.3 MAXIMUM RATINGS

The maximum ratings, which shall not be exceeded at any time during use or storage, applicable to the components specified herein, are as scheduled in Table 1(b).

1.4 PARAMETER DERATING INFORMATION (FIGURE 1)

Not applicable.

1.5 PHYSICAL DIMENSIONS AND GEOMETRICAL CHARACTERISTICS

The physical dimensions and geometrical characteristics of the components specified herein are shown in Figures 2(a) and 2(b).

1.6 PIN ASSIGNMENT

As per Figure 3(a).

1.7 TIMING DIAGRAMS

As per Figure 3(b).

1.8 FUNCTIONAL DIAGRAM

As per Figure 3(c).

1.9 HANDLING PRECAUTIONS

The component is susceptible to damage by electro-static discharge. Therefore, suitable precautions shall be employed for protection during all phases of manufacture, testing, packaging, shipment and any handling.

These components are categorised as Class 1 with a Minimum Critical Path Failure Voltage of 400 Volts.

1.10 <u>INPUT PROTECTION NETWORKS</u>

Protection networks shall be incorporated into each input as shown in Figure 3(d).

PAGE 6

TABLE 1(a) - TYPE VARIANT SUMMARY

VARIANT	REFERENCE TEMPERATURE (T _{ref} °C)	OPERATING TEMPERATURE RANGE (T _{op} °C)	TIMING DIAGRAM (FIGURE 3(b)) (TD)	SPECTRAL RANGE FOR WINDOW OPTICAL COATING WOC (nm)	
01	+22±3	-20 to +85	TD1	400 to 900	
02	-20±3	40 to +85	TD1	400 to 900	
03	-20±3	-20±3	TD1	400 to 900	

NOTES

1. Full electrical and electro-optical characteristics are given in the individual Tables 1(a) at the end of this specification.

TABLE 1(b) - MAXIMUM RATINGS

No.	CHARACTERISTICS	SYMBOL	MAXIMUM RATINGS	UNITS	REMARKS
1	Range of applied voltages (vs VSS)	~	-0.3 to +17	V	Note 1
2	Range of applied voltages (vs VSS)	~	-16 to +16	V	Note 2
3	Range of applied voltages (vs VSS)	u	-0.3 to +18	V	Note 3
4	Range of applied voltages (vs VSS)	~	-0.3 to +20	V	Note 4
5	Input Current	I _{IN}	15	mA	Note 6
6	Device Dissipation	***************************************	160	mW	Note 5
7	Storage Temperature Range	T _{stg}	55 to + 150	°C	000000000000000000000000000000000000000
8	Operating Temperature Range	T _{op}	-40 to +85	°C	TBC
9	Soldering Temperature	T_{sol}	+ 260	°C	\$

NOTES

- On ØR, VGS.
- 2. On ØM_{4B}, ØM_{4A}, ØM_{1B}, ØM_{1A}, ØP_{2B}, ØL₁, ØL₂, ØM, ØM_{2B}, ØM_{2A}, ØM_{3B}, ØM_{3A}, ØP_{4B}, ØP_{2A}, ØP_{3B}, ØP_{3A}, ØP_{1A}, ØP_{1B}, ØP_{4A}. Voltage difference between each pins should be below 17V. Maximum swing should be below 17V.
- 3. On VDR, VDP. Voltage difference between ØM and VDP should be below 20V.
- 4. On VDD.
- 5. Output amplifier only. Max output amplifier dissipation = 20V x IDD(Top)max = 160mW.
- 6. Output amplifier only. Shorting the video output to VSS or VDD, even temporarily, can permanently damage the output amplifier.

FIGURE 1 - PARAMETER DERATING INFORMATION

Not applicable.

PAGE 7

ISSUE 1

TABLE 1(c) - FORMAT FOR INDIVIDUAL TABLES 1(a)

TABLE 1(a) - TYPE VARIANT DETAILED INFORMATION

TYPE VARIANT No.

A L	OLIADAOTEDIOTICO	0.44501	LIN	1ITS		00000000000000000000000000000000000000
No.	CHARACTERISTICS	SYMBOL	MIN.	MAX.	UNITS	REMARKS
1	Operating Temperature Range	T _{op}	***************************************		°C	***************************************
2	Reference Temperature	T _{ref}			°C	00000000000000000000000000000000000000
3	Flatness of Image Area	Р		**************************************	μm	
4	Spectral Range for Optical Coating on Window	WOC			nm	Note 1
5	Timing Diagram	αт	000000000000000000000000000000000000000		-	Note 2
6	Power Supply Current 1	l _{DD1}	***************************************	***************************************	mA	Note 3
7	Power Supply Current 2	I _{DD2}		***************************************	mA	Note 3
8	Power Supply Current 2 over T _{op}	I _{DD2} (T _{op})			mA	Note 3
9	DC Output Level	V_{Ref}	30000000000000000000000000000000000000		V	
10	Output Impedance	Z _S	20120111000000000000000000000000000000		Ω	Note 4
11	Saturation Voltage for the lmage Area	V_{SAT}			mV	99996999999999999999999999999999999999
12	Vertical Charge Transfer Inefficiency	VCTI	animinaning (1990)		%	Note 5
13	Horizontal Charge Transfer Inefficiency	НСТІ	***************************************	OPERSONAL PROPERTY OF THE PROP	%	Note 5
14	Average Dark Signal	VDS	94444444444444440000000000000000000000	***************************************	mV	Note 6
15	Average Dark Signal over T _{op}	VDS(T _{op})	MARION MINISTRATOR O O O O O O O O O O O O O O O O O O	***************************************	mV	Note 6
16	Dark Signal Non-uniformity, standard deviation σ	DSNU(σ)	Manaaaaaaaaaaaaaaaaaaaaa	одооооооооооооооооооооооо	mV	Note 7
17	Number of Dark Signal Defects beyond a3 limit	Ndef3	***************************************	OSCIO	~	Note 7
18	Number of Dark Signal Defects beyond a4 limit	Ndef4	000000000000000000000000000000000000000	**************************************	-	. <u>N</u> ote 7

NOTES: See Page 10.

PAGE

ISSUE 1

TABLE 1(c) - FORMAT FOR INDIVIDUAL TABLES 1(a) (CONTINUED)

TABLE 1(a) - TYPE VARIANT DETAILED INFORMATION (CONTINUED)

TYPE VARIANT No.

No.	CHARACTERISTICS	CVM 4D/OI	LIN	1ITS	LINITO	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
NO.	CHARACTERISTICS	SYMBOL	MIN.	MAX.	- UNITS	REMARKS	
19	DSNU Limit for Ndef3	аЗ			mV	Note 7	
20	DSNU Limit for Ndef4	a4			mV	Note 7	
21	Responsivity	R			V/µJ/cm²	Note 8	
22	Responsivity over Top	R(T _{op})	***************************************	**************************************	V/μJ/cm²	Note 8	
23	Photoresponse Non- uniformity, standard deviation o	PRNU(σ)	99999999999999999999999999999999999999		%	Note 9	
24	Number of PRNU Defects beyond a1 Limit	Ndef1	######################################		-	Note 9	
25	Number of PRNU Defects beyond a2 Limit	Ndef2	***************************************		-	Note 9	
26	PRNU Limit for Ndef1	a1	***************************************		%	Note 9	
27	PRNU Limit for Ndef2	a2	***************************************		%	Note 9	
28	Spectral Responsivity in Optical Band B1	R(B1)	00001000000000000000000000000000000000	***************************************	V/µJ/cm²	Note 10	
29	Spectral Responsivity in Optical Band B2	R(B2)	MINIMARKKIISSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS		V/µJ/cm²	Note 10	
30	Spectral Responsivity in Optical Band B3	R(B3)	00000000000000000000000000000000000000		V/µJ/cm²	Note 10	
31	Spectral Responsivity in Optical Band B4	R(B4)	***************************************		V/µJ/cm²	Note 10	
32	Spectral Responsivity in Optical Band B5	R(B5)	***************************************		V/µJ/cm²	Note 10	
33	Spectral Responsivity in Optical Band B6	R(B6)	######################################	***************************************	V/µJ/cm²	Note 10	
34	Spectral Responsivity in Optical Band B7	R(B7)	000000000000000000000000000000000000000	***************************************	V/µJ/cm²	Note 10	
35	Linearity Error	LE	00000000000000000000000000000000000000		%	· Note 11	

NOTES: See Page 10.

PAGE 9

ISSUE 1

TABLE 1(c) - FORMAT FOR INDIVIDUAL TABLES 1(a) (CONTINUED)

TABLE 1(a) - TYPE VARIANT DETAILED INFORMATION (CONTINUED)

TYPE VARIANT No.

No.	CHARACTERISTICS	SYMBOL	LIM	IITS	L IN 1177 (7)	DENAL SIZE	
INO.	CHARACTERISTICS	STIVIBUL	MIN.	MAX.	UNITS	REMARKS	
36	Temporal Noise	V _N	**************************************		μV	Note 12	
37	Offset Voltage	V_{Offset}			mV	RANKARRABARRARRARRARRARRARRARRARRARRARRARRAR	
38	Amplitude of Reset Feedthrough	V _{Reset}	***************************************		mV	99999999999999999999999999999999999999	
39	Reference Level Settling Time	t _{D-Ref}	***************************************		ns	Note 13	
40	Reference Level Duration	[‡] U-Ref	***************************************		ns	Note 13	
41	Reference Level Error Band	ΔU_{Ref}			mV	Note 13	
42	Signal Level Settling Time	^t D-Signal	MARKANIANIANIANIANIANIANIANIANIANIANIANIANIA		ns	Note 13	
43	Signal Level Duration	^t U-Signal	Ministra (1888)		ns	Note 13	
44	Signal Level Error Band	ΔU _{Signal}	00000000000000000000000000000000000000	***************************************	mV	Note 13	
45	Electrode Capacitance	СфР	989986966666000000000000000000000000000	***************************************	pF	79977777777799999999999999999999999999	
46	Electrode Capacitance	СфМ		18995888886888000000000000000000000000000	pF	00000000000000000000000000000000000000	
47	Electrode Capacitance	C <i>ф</i> L			pF	**************************************	
48	Electrode Capacitance	C <i>∲</i> R		000000000000000000000000000000000000000	pF	00000000000000000000000000000000000000	
49	Charge to Voltage Conversion Factor	CVF	225650000000000000000000000000000000000	000000000000000000000000000000000000000	μV/e	Note 14	

NOTES: See Page 10.

PAGE 10

ISSUE 1

TABLE 1(c) - FORMAT FOR INDIVIDUAL TABLES 1(a) (CONTINUED)

NOTES

- 1. The reflectance for each side of the window shall be specified inside the spectral range for optical coating.
- 2. The timing diagram TD1 or TD2, as specified in Table 1(a), shall be used for all measurements.
- I_{DD1} measurement shall be static, I_{DD2} measurement shall be dynamic, I_{DD2(Top)} measurement shall be dynamic and all shall be specified in Table 1(a).
- 4. The values of R and C used for output impedance measurement shall be defined in Table 1(a).
- 5. The measurement is based on uniform illumination ESA/SCC Basic Specification No. 25000, Para. 6.12.2(a).
- 6. VDS is measured on the last lines of the image area.
- 7. The slope effect included.
- 8. The responsivity is measured under uniform illumination with BG38 optical filter.
- 9. The PRNU is measured under uniform illumination with BG38 filter.
- 10. The optical bands shall be specified in terms of centre wavelength and bandwidth at 50% of transmission peak.
- 11. The measurement is made under uniform illumination with a BG38 optical filter. The output signal range used for linearity error calculation shall be defined in Table 1(a).
- 12. The measurement is based on two successive acquisitions of the same row.
- 13. For output signal waveform measurements, see Figure 4(h).
- 14. The CVF is measured by sampling on 5 devices per wafer lot, but not on deliverable devices.

PAGE 11

ISSUE 1

FIGURE 2 - PHYSICAL DIMENSIONS

FIGURE 2(a) - PHYSICAL DIMENSIONS

SYMBOL	MILLIN	N/OTEO	
STVIDOL	MIN	MAX	NOTES
A	13.32	13.52	
A1	4.57	Тур.	
b1	0.46	Typ.	
В	2.97	3.63	
C	4.11	5.01	
D	31.25	31.85	
D1	29.5	Ö Тур.	
е	2.54	Тур.	
e1	20.3	2 Typ.	
F	26.26	26.74	. 1
F1	23 T	yp.	
G	21.3	21.5	
Х	16.50		
r	0.5 x		
β	2.0 x		

PAGE 12

ISSUE 1

FIGURE 2 - PHYSICAL DIMENSIONS (CONTINUED)

FIGURE 2(b) - GEOMETRICAL CHARACTERISTICS

No.	lo. CHARACTERISTIC		LIM	ITS	UNIT	REMARKS	
140.	OFFICE	SYMBOL	MIN.	MAX.	OIVIT	NEWANNO	
1	Flatness of Image Area	Р		30	μm	Note 4	
2 3	Position of the Centre of Image Area	X Y	13320 21300	13520 21500	μm	Note 5	
4	Image Plane Orientation	θ	- 0.5	+ 0.5	o	Note 6	
5	Optical Distance between lmage Plane and Window	Z	1.5	2.0	mm	Note 7	
6	Parallelism between Image Plane and Window	TILT	- 100	+ 100	μm	Note 8	
7	Image Plane Dimensions	L W	8685 8685	8725 8725	μm	Note 9	

NOTES: See Page 13.

PAGE 13

ISSUE 1

FIGURE 2 - PHYSICAL DIMENSIONS (CONTINUED)

NOTES TO FIGURES 2(a) AND 2(b)

- 1. Photosensitive Area Centre.
- 2. Mechanical references.
- 3. Index area: a large chamfer located adjacent to Pin A1 and the ESD symbol.
- 4. Measured on a 100% basis.
- 5. Measured on a 100% basis.
- 6. θ = site angle. Measured by sampling on 5 devices per lot.
- 7. Measured by sampling on 5 devices per lot.
- 8. Measured by sampling on 5 devices per lot.
- 9. Measured by sampling on 5 devices per lot. The pixels are square and the size of each pixel is equal to $17\mu m \times 17\mu m$.

PAGE 14 ISSUE 1

FIGURE 3(a) - PIN ASSIGNMENT

11 10 9 8							
4 3 2 1 A	В	c	D	 ☐ F	G	П	J

PIN No.	SYMBOL	DESIGNATION
A1, E11, J1	V _{SS}	Substrate Bias, Ground
A2	ϕ R	Reset Clock
A8, A9 J3, J4 J8, J9 A3, A4	φM1 φM2 φM3 φM4	Memory-Zone Clock
A10	V_{DP}	Protection Drain Bias
J10	$V_{\rm SSP}$	ESD Protections Bias
J2	ϕ M	Memory Zone to Shift Register Clock
F11, G11 A11, B11 C11, D11 H11, J11	φΡ1 φΡ2 φΡ3 φΡ4	lmage-zone Clock
G1 H1	φL1 φL2	Readout Register Clock
F1	V_{GS}	Output Gate Bias
E1	V_{DR}	Reset Drain Supply
D1	V _S	Output Amplifier Substrate Bias
C1	Vos	Video Output
B1	V _{DD}	Output Amplifier Drain Supply

PAGE 15

ISSUE 1

FIGURE 3(b) - TIMING DIAGRAM

TD1

FRAME TIMING DIAGRAM

PAGE 16

ISSUE 1

FIGURE 3(b) - TIMING DIAGRAM (CONTINUED)

LINE TIMING DIAGRAM

a: 16 prescan pixels

b: 20 isolation pixels

c: 512 useful pixels

NOTES

1. See output timing diagram for readout register and reset clock at 4MHz.

PAGE 17

ISSUE 1

FIGURE 3(b) - TIMING DIAGRAM (CONTINUED)

VERTICAL TRANSFER (IMAGE TO MEMEORY ZONE TRANSFER)

PAGE 18

ISSUE -

FIGURE 3(b) - TIMING DIAGRAM (CONTINUED)

IMAGE ZONE TO MEMORY VERTICAL TRANSFER (500kHz FREQUENCY)

OUTPUT TIMING DIAGRAM FOR READOUT REGISTER AND RESET CLOCK AT 4MHz

Cross-over of complementary clocks diaL1, diaL2 between 30% and 70% of their maximum amplitude.

PAGE 19

ISSUE 1

FIGURE 3(c) - FUNCTIONAL DIAGRAM

The image and memory area consist of:

- 526 lines (10 lines for the shaded zone of the optical shield + 512 useful lines + 4 isolation lines).
- A video line is made of 548 stages: 16 prescan elements + 20 isolation pixels + 512 useful pixels.

PAGE 20

ISSUE 1

FIGURE 3(c) - FUNCTIONAL DIAGRAM (CONTINUED)

FIGURE 3(d) - INPUT PROTECTION NETWORKS

Due to MPP mode, input protection network are only available on PIN ϕ R, VGS, VDR, VDP, VDD.

PAGE 21

ISSUE

2. <u>APPLICABLE DOCUMENTS</u>

The following documents form part of this specification and shall be read in conjunction with it:-

- (a) ESA/SCC 25000, Electrical-Optical tests for CCDs.
- (b) ESA/SCC Generic Specification No. 9020 for Charge Coupled Devices, Silicon Photosensitive.
- (c) DIN3140, "MAβ-und Toleranzangaben für Optikeinzelteile; oberflächenbeschichtungen" (Description of dimensions and tolerances for optical components; indication for coatings).

3. TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS

For the purpose of this specification, the terms, definitions, abbreviations, symbols and units specified in ESA/SCC Basic Specification No. 21300 shall apply.

4. REQUIREMENTS

4.1 GENERAL

The complete requirements for procurement of the components specified herein are stated in this specification and ESA/SCC Generic Specification No. 9020 for Charge Coupled Devices. Deviations from the Generic Specification, applicable to this specification only, are listed in Para. 4.2.

Deviations from the applicable Generic Specification and this Detail Specification, formally agreed with specific Manufacturers on the basis that the alternative requirements are equivalent to the ESA/SCC requirements and do not affect the components' reliability, are listed in the appendices attached to this specification.

4.2 <u>DEVIATIONS FROM GENERIC SPECIFICATION</u>

4.2.1 <u>Deviations from Special In-process Controls</u>

- (a) Para. 5.2.2, Total Dose Irradiation Testing: Shall be performed during qualification and maintenance of qualification.
- (b) Para. 5.2.2, Total Dose Irradiation Testing: If specified in a Purchase Order, shall be performed during procurement on a lot acceptance basis at the total dose irradiation level specified in the Purchase Order.
- (c) $C\phi Pi$, $C\phi Mi$, $C\phi Li$, $C\phi M$, and $C\phi R$ are measured by sampling 3 devices per wafer lot, but not on deliverable devices.
- (d) CVF is measured by sampling 5 devices per wafer lot, but not on deliverable devices.

4.2.2 Deviations from Final Production Tests (Chart II)

- (a) Para. 9.6, the acceleration during constant accelerating test shall not exceed 5.0Kg.
- (b) Para. 9.8, the pressure during seal test shall not exceed 3kg/cm².
- (c) Para. 9.8.1, Leak Rate: 5×10-7 atm/cm3/sec.

4.2.3 <u>Deviations from Burn-in Tests (Chart III)</u>

- (a) Para. 7.1.1(a), "High Temperature Reverse Bias (H.T.R.B.)" test and subsequent electrical measurements related to this test shall not be performed.
- (b) Para. 9.8, the pressure during seal test shall not exceed 3kg/cm².
- (c) Para. 9.8.1, Leak Rate: 5 × 10 7 atm/cm³/sec.

PAGE 22

ISSUE

4.2.4 Deviations from Qualification Tests (Chart IV)

- (a) Para. 9.6, the acceleration during constant accelerating test shall not exceed 10Kg.
- (b) Para. 9.8, the pressure during seal test shall not exceed 3kg/cm².
- (c) Para. 9.8.1, Leak Rate: 5×10-7 atm/cm³/sec.

4.2.5 <u>Deviations from Lot Acceptance Tests (Chart V)</u>

- (a) Para. 9.6, the acceleration during constant accelerating test shall not exceed 10Kg.
- (b) Para. 9.8, the pressure during seal test shall not exceed 3kg/cm².
- (c) Para. 9.8.1, Leak Rate: 5×10-7 atm/cm³/sec.

4.3 <u>MECHANICAL REQUIREMENTS</u>

4.3.1 Dimension Check

The dimensions of the components specified herein shall be checked. They shall conform to those shown in Figure 2(a).

4.3.2 Geometrical Characteristics

The geometrical characteristics of the components specified herein shall be checked. They shall conform to those shown in Figure 2(b).

4.3.3 Weight

The maximum weight of the components specified herein shall be 15 grammes.

4.3.4 <u>Terminal Strength</u>

The requirements for terminal strength testing are specified in Section 9 of ESA/SCC Generic Specification No. 9020.

4.4 MATERIALS AND FINISHES

The materials and finishes shall be as specified herein. Where a definite material is not specified, a material which will enable the components specified herein to meet the performance requirements of this specification shall be used. Acceptance or approval of any constituent material does not guarantee acceptance of the finished product.

4.4.1 <u>Case</u>

The case shall be hermetically sealed and have a ceramic body and glass window. The flatness of the underside of package shall be better than 0.1mm/cm, measured between edges, across the complete surface.

4.4.2 <u>Lead Material and Finish</u>

For lead material shall be Type 'G' with Type '7' finish in accordance with the requirements of ESA/SCC Basic Specification No. 23500.

4.4.3 Window

Window material shall be sapphire. The optical quality of the window including coating, if required for both sides, shall be better than as defined in DIN3140.

PAGE 23 ISSUE 1

- A Zone is the non shanded zone.
- No specification for outside of B Zone.
- No defect larger than 10 000um2 inside of B Zone.
- Inclusion/scratch: 10um max. in A Zone.
- No chips or cracks inside of B Zone.
- Parallelism: better than 200 arcs seconds.
- Surface flatness: better than 4 circular fringes at 633nm.

4.5 MARKING

4.5.1 General

The marking of all components delivered to this specification shall be in accordance with the requirements of ESA/SCC Basic Specification No. 21700, and the following paragraphs. When the component is too small to accommodate all of the marking specified, as much as space permits shall be marked and the marking information, in full, shall accompany the component in its primary package.

The information to be marked and the order of precedence, shall be as follows:-

- (a) Lead Identification.
- (b) The SCC Component Number.
- (c) Traceability Information.

4.5.2 Lead Identification

An index shall be located at the top of the package in the position defined in Note 1 to Figure 2(a). The pin numbering must be read with the index on the left-hand side.

4.5.3 The SCC Component Number

Each component shall bear the SCC Component Number which shall be constituted and marked as follows:

961000201BE

Detail Specification Number

Type Variant (see Table 1(a))

Testing Level (B or C, as applicable)

Total Dose Irradiation Level (if applicable)

The Total Dose Irradiation Level designation shall be added for those devices for which a sample has been successfully tested to the level in question. For these devices, a code letter shall be added in accordance with the requirements of ESA/SCC Basic Specification No. 22900.

PAGE 24

ISSUE -

4.5.4 Traceability Information

Each component shall be marked in respect of traceability information in accordance with the requirements of ESA/SCC Basic Specification No. 21700.

4.6 <u>ELECTRICAL AND ELECTRO-OPTICAL MEASUREMENTS</u>

4.6.1 <u>Electrical and Electro-optical Measurements at Reference Temperature</u>

The parameters to be measured in respect of electrical and electro-optical characteristics are scheduled in Table 2. Unless otherwise specified, the measurements shall be performed at $T_{ref} \pm 3$ °C.

4.6.2 <u>Electrical and Electro-optical Measurements at High and Low Temperatures</u>

The parameters to be measured at high and low temperatures are scheduled in Table 3. Unless otherwise specified, the measurements shall be performed at -40(+5-0) and +85(+0-5) °C respectively.

4.6.3 <u>Circuits for Electrical and Electro-optical Measurements</u>

Circuits for use in performing electrical and electro-optical measurements listed in Tables 2 and 3 of this specification are shown in Figure 4.

4.7 BURN-IN TESTS

4.7.1 Parameter Drift Values

The parameter drift values applicable to H.T.R.B. and Power Burn-in are specified in Table 4 of this specification. Unless otherwise stated, measurements shall be performed at $T_{ref}\pm 3$ °C. The parameter drift values (Δ) applicable to the parameters scheduled, shall not be exceeded. In addition to these drift value requirements, the appropriate limit value specified for a given parameter in Table 2 shall not be exceeded.

4.7.2 Conditions for High Temperature Reverse Bias Burn-in

Not applicable.

4.7.3 Conditions for Power Burn-in

The requirements for power burn-in are specified in Section 7 of ESA/SCC Generic Specification No. 9020. The conditions for power burn-in shall be as specified in Table 5(b) of this specification.

4.7.4 <u>Electrical Circuits for High Temperature Reverse Bias Burn-in</u>

Not applicable.

4.7.5 Electrical Circuits for Power Burn-in

Circuits for use in performing the power burn-in test are shown in Figure 5(b) of this specification.

PAGE 25

ISSUE 1

***************************************	**************************************	200000000000000000000000000000000000000	***************************************		p		processor and a second
No.	CHARACTERISTICS SYMBOL TEST TEST CONDITIONS		LIM	ITS	UNIT		
	0.0.0.0.0.0.0.00	O I WIDOL	FIG.	(PINS UNDER TEST)	MIN	MAX	OIVII
01	Leakage Current on Input Gates	IL.	4(b)	V _{IH} = 12V T _{amb} = +25 ±3 °C	-	300	рА
02 to 05	Input Clamp Voltage (to VSS)	V _{IC}	4(c)	I _{IN} (Under Test) = −500µA at V _{IN} ≤ −3.5V V _{IN} (Remaining Pins) = 0V (Pins A2 - A10 - E1 - F1)	-1.5	~	V
06 to 29	Insulation Leakage Current between Pins (Input Current)	IΕ	4(d)	V _{IH} = 15V (Pins A2-A3-A4-A8-A9-A10- A11-B11-C11-D11-E1-F1-F11- G1-G11-H1-H11-J2-J3-J4-J8- J9-J11) Pin E1 see Note to Fig. 4(d)	<u>.</u>	1.0	uA
30	Power Supply Current 1	I _{DD1}	4(e)	Room Temperature STATIC $V_{DR} = \phi R$ (High Level) = Table 1(a) V_{IN} (Remaining Pins) = 0V $V_{OS} = Open$ $V_{DD} = 18V$ $V_{SS} = 0V$ (Pins A1 and J1)	Item 6		mA
31	Power Supply Current 2	I _{DD2}	4(g)	DYNAMIC V _{IN} (Remaining Pins) = See Test Table V _{DD} = 18V, V _{SS} = 0V (Pins A1 and J1)	Item 7		mA
32	DC Output Level	V _{ref}	4(e)	STATIC $V_{DR} = 14V$ Φ R (High Level) = Table 1(a) V_{IN} (Remaining Pins) = 0V $V_{OS} = Open$ $V_{DD} = 18V$ $V_{SS} = 0V$ (Pin C1)			V
33	Output Impedance	Zs	4(f)	DYNAMIC Ite V _{IN} (Remaining Pins) = See Test Table V _{OS} = Open V _{DD} = 18V, V _{SS} = 0V (Pin C1)		10	Ω

PAGE 26

ISSUE 1

NI-	OLIADAOTEDIOTIOO	OVADOL	TEST	TEST CONDITIONS	LIM	ITS	LIANT
No.	CHARACTERISTICS	SYMBOL	FIG.	(PINS UNDER TEST)	MIN	MAX	UNIT
34	Saturation Voltage for the Image Area	V _{SAT}	4(g)	V _{IN} (Remaining Pins) = See Test Table V _{OS} = Open V _{DD} = 18V, V _{SS} = 0V (Pin C1)	Item	11	mV
35	Vertical Charge Transfer Inefficiency	VCTI	4(g)	V _{IN} (Remaining Pins) = See Test Table V _{OS} = Open V _{DD} = 18V, V _{SS} = 0V (Pin C1)	lten	ı 12	%
36	Horizontal Charge Transfer Inefficiency	НСТІ	4(g)	V _{IN} (Remaining Pins) = See Test Table V _{OS} = Open V _{DD} = 18V, V _{SS} = 0V (Pin C1)	Item 13		%
37	Average Dark Signal	VDS	4(g)	V _{IN} (Remaining Pins) = See Test Table V _{OS} = Open V _{DD} = 18V, V _{SS} = 0V (Pin C1)	Item 14		mV
38	Dark Signal Non- uniformity, standard deviation o	DSNU(σ)	4(g)	V _{IN} (Remaining Pins) = See Test Table V _{OS} = Open V _{DD} = 18V, V _{SS} = 0V (Pin C1)	lten	15	mV
39	Number of Dark Signal Defects beyond a3 Limit	Ndef3	4(g)	V _{IN} (Remaining Pins) = See Test Table V _{OS} = Open V _{DD} = 18V, V _{SS} = 0V (Pin C1)	ltem	17	
40	Number of Dark Signal Defects beyond a4 Limit	Ndef4	4(g)	V _{IN} (Remaining Pins) = Item 18 See Test Table V _{OS} = Open V _{DD} = 18V, V _{SS} = 0V (Pin C1)		18	
41	DSNU Limit for Ndef3	a3	4(g)	V _{IN} (Remaining Pins) = See Test Table V _{OS} = Open V _{DD} = 18V, V _{SS} = 0V (Pin C1)	lten	19	mV -

PAGE 27

ISSUE 1

No.	CHARACTERISTICS	# ~ V N / H 11 K	TEST	TEST CONDITIONS	LIM	LINUT	
IVO.	OHAHAOTENISTIOS	3 TIVIDOL	FIG.	(PINS UNDER TEST)	MIN	MAX	UNIT
42	DSNU Limit for Ndef4	a4	4(g)	V _{IN} (Remaining Pins) = See Test Table V _{OS} = Open V _{DD} = 18V, V _{SS} = 0V (Pin C1)	ltem	20	mV
43	Responsivity	R	4(g)	V _{IN} (Remaining Pins) = See Test Table V _{OS} = Open V _{DD} = 18V, V _{SS} = 0V (Pin C1)	Item	21	V/µJ/cm²
44	Photoresponse Non- uniformity, standard deviation σ	PRNU(σ)	4(g)	V _{IN} (Remaining Pins) = See Test Table V _{OS} = Open V _{DD} = 18V, V _{SS} = 0V (Pin C1)	Item 22		%
45	Number of PRNU Defects beyond a1 Limit	Ndef1	4(g)	V _{IN} (Remaining Pins) = See Test Table V _{OS} = Open V _{DD} = 18V, V _{SS} = 0V (Pin C1)	ltem	24	-
46	Number of PRNU Defects beyond a2 Limit	Ndef2	4(g)	V _{IN} (Remaining Pins) = See Test Table V _{OS} = Open V _{DD} = 18V, V _{SS} = 0V (Pin C1)	ltem	25	-
47	PRNU Limit for Ndef1	a1	4(g)	V _{IN} (Remaining Pins) = See Test Table V _{OS} = Open V _{DD} = 18V, V _{SS} = 0V (Pin C1)	Item	26	%
48	PRNU Limit for Ndef2	a2	4(g)	V _{IN} (Remaining Pins) = ltem 27 See Test Table V _{OS} = Open V _{DD} = 18V, V _{SS} = 0V (Pin C1)		27	%
49	Spectral Responsivity in Optical Band B1	R(B1)	4(g)	MARCOCCOCCOCCCCCCCCCCCCCCCCCCCCCCCCCCCCC		28	V/µJ/cm² -

PAGE 28

ISSUE 1

No.	CHARACTERISTICS	SYMBOL	TEST	TEST CONDITIONS	LIM	ITS	UNIT
140,	O IA DO LI IIO 1100	O HVIDOL	FIG.	(PINS UNDER TEST)	MIN	MAX	ONH
50	Spectral Responsivity in Optical Band B2	R(B2)	4(g)	V _{IN} (Remaining Pins) = See Test Table V _{OS} = Open V _{DD} = 18V, V _{SS} = 0V (Pin C1)	lterr	1 29	V/µJ/cm²
51	Spectral Responsivity in Optical Band B3	R(B3)	4(g)	V _{IN} (Remaining Pins) = See Test Table V _{OS} = Open V _{DD} = 18V, V _{SS} = 0V (Pin C1)	lterr	n 30	V/µJ/cm²
52	Spectral Responsivity in Optical Band B4	R(B4)	4(g)	V _{IN} (Remaining Pins) = See Test Table V _{OS} = Open V _{DD} = 18V, V _{SS} = 0V (Pin C1)	Item 31		V/µJ/cm²
53	Spectral Responsivity in Optical Band B5	R(B5)	4(g)	V _{IN} (Remaining Pins) = See Test Table V _{OS} = Open V _{DD} = 18V, V _{SS} = 0V (Pin C1)	Item 32		V/µJ/cm²
54	Spectral Responsivity in Optical Band B6	R(B6)	4(g)	V _{IN} (Remaining Pins) = See Test Table V _{OS} = Open V _{DD} = 18V, V _{SS} = 0V (Pin C1)	ltem	33	V/µJ/cm²
55	Spectral Responsivity in Optical Band B7	R(B7)	4(g)	V _{IN} (Remaining Pins) = Item 34 See Test Table V _{OS} = Open V _{DD} = 18V, V _{SS} = 0V (Pin C1)		ı 34	V/µJ/cm²
56	Linearity Error	LE	4(g)	V _{IN} (Remaining Pins) = Item 35 See Test Table V _{OS} = Open V _{DD} = 18V, V _{SS} = 0V (Pin C1)		%	
57	Temporal Noise	V _N		V _{IN} (Remaining Pins) = See Test Table V _{OS} = Open V _{DD} = 18V, V _{SS} = 0V (Pin C1)	V _{IN} (Remaining Pins) = Item 36 See Test Table V _{OS} = Open V _{DD} = 18V, V _{SS} = 0V		μV

PAGE 29

ISSUE 1

No.	CHARACTERISTICS	TERISTICS SYMBOL TEST TEST CONDITIONS		TEST CONDITIONS	LIM	ITS	UNIT
NO.	OHANAOTENISTIOS	STVIBOL	FIG.	(PINS UNDER TEST)	MIN	MAX	UNIT
58	Offset Voltage	V _{Offset}	4(g)	V _{IN} (Remaining Pins) = See Test Table V _{OS} = Open V _{DD} = 18V, V _{SS} = 0V (Pin C1)	Item	ı 37	mV
59	Amplitude of Reset Feedthrough	V _{Reset}	4(g)	V _{IN} (Remaining Pins) = See Test Table V _{DD} = 18V, V _{SS} = 0V (Pin C1)	ltem	ı 38	mV
60	Reference Level Settling Time	t _{D-Ref}	4(g)	V _{IN} (Remaining Pins) = See Test Table V _{DD} = 18V, V _{SS} = 0V (Pin C1)	ltem 39		กร
61	Reference Level Duration	t _{U-Ref}	4(g)	V _{IN} (Remaining Pins) = See Test Table V _{DD} = 18V, V _{SS} = 0V (Pin C1)	Item 40		ns
62	Reference Level Error Band	ΔU _{Ref}	4(h)	V _{IN} (Remaining Pins) = See Test Table V _{DD} = 18V, V _{SS} = 0V (Pin C1)	ltem 41		mV
63	Signal Level Settling Time	t _{D-Signal}	4(h)	V _{IN} (Remaining Pins) = See Test Table V _{DD} = 18V, V _{SS} = 0V (Pin C1)	Item 42		ns
64	Signal Level Duration	t∪-Signal	4(h)	V _{IN} (Remaining Pins) = See Test Table V _{DD} = 18V, V _{SS} = 0V (Pin C1)	Item 43		ns
65	Signal Level Error Band	ΔU _{Signal}	4(h)	V _{IN} (Remaining Pins) = See Test Table V _{DD} = 18V, V _{SS} = 0V (Pin C1)	Item 44		mV

PAGE 30 ISSUE 1

No.	CHARACTERISTICS	CHARACTERISTICS SYMBOL TEST TEST CONDITIONS		TEST CONDITIONS	LIM	ITS	1 15 127"
I VO	OHAHAOTENIOTIOS	STIVIDOL	FIG.	(PINS UNDER TEST)	MIN	MAX	UNIT
66 to 69	Electrode Capacitance	С∳Рі	4(g)	For V _{IN} (Remaining Pins) = See Test Table V _{OS} = Open V _{DD} = 18V, V _{SS} = 0V (Pin C1)	Item 45		pF
70 to 74	Electrode Capacitance	СфМі	4(g)	For V _{IN} (Remaining Pins) = See Test Table V _{OS} = Open V _{DD} = 18V, V _{SS} = 0V (Pin C1)	Item	ı 46	pF
75 to 76	Electrode Capacitance	C <i>∲</i> Li	4(g)	For V _{IN} (Remaining Pins) = See Test Table V _{OS} = Open V _{DD} = 18V, V _{SS} = 0V (Pin C1)	Item 47		pF
77	Electrode Capacitance	C∳R ·	4(g)	For V _{IN} (Remaining Pins) = See Test Table V _{OS} = Open V _{DD} = 18V, V _{SS} = 0V (Pin C1)	Item 48		pF
78	Electrode Capacitance	С∳Р	4(g)	For V _{IN} (Remaining Pins) = See Test Table V _{OS} = Open V _{DD} = 18V, V _{SS} = 0V (Pin C1)	est Table Open 18V, V _{SS} = 0V		pF

PAGE 31

ISSUE 1

TABLE 3 - ELECTRICAL AND ELECTRO-OPTICAL MEASUREMENTS AT HIGH AND LOW TEMPERATURES

No.	CHARACTERISTICS	SYMBOL	TEST METHOD		TEST CONDITIONS	LIMITS		UNIT	
		OTATAOTERIOTICS	OTHIOCE	ESA/SCC 25000	FIG.	(PINS UNDER TEST)	MIN	MAX	OIVII
	30	Power Supply Current 1 over T _{op}	I _{DD1} (T _{op})	Para. 5.3	.(*)	DYNAMIC V _{OS} = Open Remaining pins = Fig 4(a)	Table 1(a) Item 8		mA
	37	Average Dark Signal over T _{op}	VDS2 (T _{op})	Para. 6.20	, ,,,	V _{OS} = Open Remaining pins = Fig 4(a)	Table 1(a) Item 15		mV
	43	Responsivity over T _{op}	R (T _{op})	Para. 6.17	10/	V _{OS} = Open Remaining pins = Fig 4(a)	Table Item		V/µJ/c m²

PAGE 32

ISSUE 1

FIGURE 4 - CIRCUITS FOR ELECTRICAL AND ELECTRO-OPTICAL MEASUREMENTS

FIGURE 4(a) - BIASING VOLTAGE LEVELS

PARAMETER	SYMBOL	CONDITIONS	UNIT
Output Amplifier Drain Supply	$V_{ m DD}$	18 (+0.5 - 0.5)	V
Protection Drain Bias	V_{DP}	5 (+1.0-1.0)	V
Reset Bias	$V_{ m DR}$	14 (+0.5 ~ 0.5)	V
Register Output Gate Bias	v_{GS}	3.0 (+0.5-0.5)	V
Output Amplifier Gate Bias	Vs	0	V
Substrate Bias	Vss	0	V
Image Zone Clocks	ϕ P low ϕ P high	- 12.5 (+0.5 - 0.5) 3 (+0.5 - 0.5)	V
Memory Zone Clocks	ϕ M low ϕ M high	- 12.5 (+0.5 - 0.5) 3 (+0.5 - 0.5)	V
Output Zone Clocks	ϕ L low ϕ L high	- 12.5 (+0.5 - 0.5) 3 (+0.5 - 0.5)	V
Reset Clock	ϕ R low ϕ R high	6 (+1.0-1.0) 16 (+0.5-0.5)	V

FIGURE 4(b) - LEAKAGE CURRENT ON INPUT GATES

PAGE 33

ISSUE 1

FIGURE 4 - CIRCUITS FOR ELECTRICAL AND ELECTRO-OPTICAL MEASUREMENTS (CONTINUED)

FIGURE 4(c) - INPUT CLAMP VOLTAGE

FIGURE 4(d) - INSULATION LEAKAGE CURRNT BETWEEN PINS

NOTES

1. For the measurements of pin E1 (VDR), pins A10 (VDP), B1 (VDD) and C1 (VOS) must be open.

PAGE 34

ISSUE 1

FIGURE 4 - CIRCUITS FOR ELECTRICAL AND ELECTRO-OPTICAL MEASUREMENTS (CONTINUED)

FIGURE 4(e) - POWER SUPPLY CURRENT AND DC OUTPUT LEVEL

FIGURE 4(f) - OUTPUT IMPEDANCE

NOTES

1. All other pins shall be connected, and if required, shorted to ground.

PAGE 35

ISSUE 1

FIGURE 4 - CIRCUITS FOR ELECTRICAL AND ELECTRO-OPTICAL MEASUREMENTS (CONTINUED)

FIGURE 4(g) - DRIVING CIRCUIT

NOTES

- 1. R = Serial resistors to be adjusted to obtain a rise time compatible with the appropriate timing diagram.
- 2. C = Decoupling capacitors to be adjusted to adequately decouple.

PAGE 36

ISSUE 1

FIGURE 4 - CIRCUITS FOR ELECTRICAL AND ELECTRO-OPTICAL MEASUREMENTS (CONTINUED)

FIGURE 4(h) - VIDEO SIGNAL

NOTES

- 1. R = Serial resistors to be adjusted to obtain a rise time compatible with the appropriate timing diagram.
- 2. C = Decoupling capacitors to be adjusted to adequately decouple.

PAGE 37

ISSUE 1

FIGURE 4 - CIRCUITS FOR ELECTRICAL AND ELECTRO-OPTICAL MEASUREMENTS (CONTINUED) OUTPUT WAVEFORM FEATURES

PAGE 38

ISSUE 1

TABLE 4 - PARAMETER DRIFT VALUES

No.	CHARACTERISTICS	SYMBOL	SPEC. AND/OR TEST METHOD	TEST CONDITIONS	CHANGE LIMITS (Δ)	UNIT
01	Leakage Current on Input Gates	l _L	As per Table 2	As per Table 2	±100	рА
06 to 29	Insulation Leakage Current between Pins (Input Current)	le	As per Table 2	As per Table 2	± 1.0	μA
30	Power Supply Current 1	l _{DD1}	As per Table 2	As per Table 2	± 10	%

PAGE 39

ISSUE 1

TABLE 5(a) - CONDITIONS FOR HIGH TEMPERATURE REVERSE BIAS BURN-IN

Not applicable.

TABLE 5(b) - CONDITIONS FOR POWER BURN-IN AND OPERATING LIFE TESTS

No.	CHARACTER	ISTICS	SYMBOL	CONDITIONS	UNIT
1	Ambient Temperature	**************************************	T _{amb}	+ 125(+0-5)	°C
2	Output Amplifier Drain Supply	(B1)	V_{DD}	18.5	V
3	Reset Bias	(E1)	V_{DR}	14.5	V
4	Protection Drain Bias		V_{DP}	5.5	V
5	Register Output Gate Bias	(F1)	V_{GS}	2.3	V
6	Output Amplifier Gate Bias	(D1)	V _S	0	V
7	Substrate Bias	(A1-E11-J1)	V _{SS}	0	٧
8	Image Zone Clocks	(A11-B11-C11-D11- F11-G11-H11-J11)	ϕ P	High +2.5 Low -14.5	V
9	Memory Zone Clocks	(J2)	ϕ M	Hìgh +2.5 Low -14.5	V
10	Readout Register Clocks	(G1-H1)	ϕ L	High +2.5 Low -14.5	V
11	Reset Clock	(A2)	φR	High +16.5 Low 0	V
12	Image Zone to Memory Zone and Output Register Frequency	d Memory Zone to	Fi	10k	Hz
13	Output Register and Reset Frequ	ıency	F _L	300k	Hz

PAGE 40

ISSUE 1

FIGURE 5(a) - ELECTRICAL CIRCUIT FOR HIGH TEMPERATURE REVERSE BIAS BURN-IN

Not applicable.

FIGURE 5(b) - ELECTRICAL CIRCUIT FOR POWER BURN-IN AND OPERATING LIFE TESTS

<u>NOTES</u>

1. Ra = 3.6KΩ, Rb = 13KΩ, Rc = 13KΩ, Rd = 5.6KΩ, Re = 15KΩ, Rf = 2.2KΩ, R6 = 10KΩ, Capacitance C1 and C2 = 0.1μF, R2 = R5 = 200Ω, R3 = R4 = 1kΩ.

PAGE 41

ISSUE

4.8 <u>ENVIRONMENTAL AND ENDURANCE TESTS (CHARTS IV AND V OF ESA/SCC GENERIC SPECIFICATION NO. 9020)</u>

4.8.1 <u>Electrical and Electro-optical Measurements on Completion of Environmental Tests</u>

The parameters to be measured on completion of environmental tests are scheduled in Table 6. Unless otherwise stated, the measurements shall be performed at $T_{ref} \pm 3$ °C.

4.8.2 <u>Electrical and Electro-optical Measurements at Intermediate Points during Endurance Tests</u>

The parameters to be measured at intermediate points during endurance tests are scheduled in Table 6 of this specification. Unless otherwise stated, the measurements shall be performed at $T_{ref} \pm 3$ °C.

4.8.3 <u>Electrical and Electro-optical Measurements on Completion of Endurance Tests</u>

The parameters to be measured on completion of endurance testing are scheduled in Table 6 of this specification. Unless otherwise stated, the measurements shall be performed at $T_{ref} \pm 3$ °C.

4.8.4 Conditions for Operating Life Tests

The requirements for operating life testing are specified in Section 9 of ESA/SCC Generic Specification No. 9020. The conditions for operating life testing shall be as specified in Table 5(b) of this specification.

4.8.5 <u>Electrical Circuits for Operating Life Tests</u>

Circuits for use in performing the operating life tests are shown in Figure 5(b) of this specification.

4.8.6 Conditions for High Temperature Storage Test

The requirements for the high temperature storage test are specified in ESA/SCC Generic Specification No. 9020. The temperature to be applied shall be the maximum storage temperature specified in Table 1(b) of this specification.

4.9 TOTAL DOSE IRRADIATION TESTING

4.9.1 Application

If specified in Para. 4.2.1 of this specification, total dose irradiation testing shall be performed in accordance with the requirements of ESA/SCC Basic Specification No. 22900.

4.9.2 Bias Conditions

Continuous bias shall be applied during irradiation testing as shown in Figure 6 of this specification.

4.9.3 Electrical and Electro-optical Measurements

For all Variants, the parameters to be measured prior to irradiation exposure are I_L in accordance with Table 2 and those parameters scheduled in the individual Table 1(a) for Variant 01, with the Conditions and Limits as specified in the individual Table 1(a) for the Variant in question. Only devices which meet these requirements shall be included in the test sample.

The parameters to be measured during and on completion of irradiation testing are scheduled in Table 7 of this specification.

PAGE 42 ISSUE 1

TABLE 6 - ELECTRICAL AND ELECTRO-OPTICAL MEASUREMENTS ON COMPLETION OF ENVIRONMENTAL TESTS AND AT INTERMEDIATE POINTS AND ON COMPLETION OF ENDURANCE TESTING

200000000000000	090000000000000000000000000000000000000							
No.	CHARACTERISTICS	SYMBOL	SPEC. AND/OR	TEST	CHANGE LIMITS	LIN	IITS	UNIT
		017770012	TEST METHOD	CONDITIONS	(Δ)	MIN.	MAX.	OINI
01	Leakage Current on Input Gates	ΙL	As per Table 2	As per Table 2	±100	As per	Table 2	рА
06 to 29	Insulation Leakage Current between Pins (Input Current)	lΕ	As per Table 2	As per Table 2	± 1.0	As per	Table 2	μА
31	Power Supply Current 1	l _{DD1}	As per Table 2	As per Table 2	±10	As per	Table 2	mA
32	DC Output Level	$V_{\rm ref}$	As per Table 2	As per Table 2	~	As per	Table 2	٧
34	Saturation Voltage for the Image Area	V _{SAT}	As per Table 2	As per Table 2	± 15	As per	Table 2	mV
37	Average Dark Signal	VDS	As per Table 2	As per Table 2	±30	As per	Table 2	mV
38	Dark Signal Non- uniformity, standard deviation σ	DSNU(σ)	As per Table 2	As per Table 2	***************************************	As per	Table 2	mV
39	Number of Dark Signal defects beyond a3 limit	Ndef3	As per Table 2	As per Table 2	**************************************	As per	Table 2	-
40	Number of Dark Signal defects beyond a3 limit	Ndef4	As per Table 2	As per Table 2	-	As per	Table 2	~
43	Responsivity	R	As per Table 2	As per Table 2	± 5.0	As per	Table 2	V/µJ/ cm²
44	Photoresponse Non- uniformity, standard deviation σ	PRNU(σ)	As per Table 2	As per Table 2	**************************************	As per	Table 2	%
45	Number of PRNU Defects beyond a1 Limit	Ndef1	As per Table 2	As per Table 2	60000000000000000000000000000000000000	As per	Table 2	-
46	Number of PRNU Defects beyond a2 Limit	Ndef2	As per Table 2	As per Table 2	~	As per	Table 2	-

PAGE 43

ISSUE 1

FIGURE 6 - BIAS CONDITIONS FOR IRRADIATION TESTING

See Figure 5(b): Electrical circuit for power burn-in and operating life test

TABLE 7 - ELECTRICAL AND ELECTRO-OPTICAL MEASUREMENTS DURING AND ON COMPLETION OF IRRADIATION TESTING

No.	CHARACTERISTICS	SYMBOL	SPEC. AND/OR	SPEC. AND/OR TEST TEST METHOD CONDITIONS		LIMITS	70000000000000000000000000000000000000	UNIT
		O TIME OF	TEST METHOD	CONDITIONS	T0 (1)	T1 (1)	T2 (1)	ONIT
14	Average Dark Signal	VDS	As per Table 2	As per Table 2	2.0	75	300	mV
50	Leakage Current on Input Gates	ΙL	As per Table 2	As per Table 2	300	300	300	pΑ
51	Power Supply Current 1	l _{DD1}	As per Table 2	As per Table 2	7.0	10	10	mA

NOTES

1. T0 = Initial Measurement

T1 = Measurements on completion of Irradiation Testing

T2 = Measurements after annealing

PAGE 44

ISSUE 1

TABLE 1(a) - TYPE VARIANT DETAILED INFORMATION

200000000000000000000000000000000000000			000000000000000000000000000000000000000	LIMITS	000000000000000000000000000000000000000		00000000000000000000000000000000000000
No.	CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNITS	REMARKS
1	Operating Temperature Range	T _{op}	-20	-	+ 85	°C	
2	Reference Temperature	T_{ref}	+ 19	+ 22	+ 25	°C	***************************************
3	Flatness of Image Area	Р	~	-	30	μm	At+25±3 °C
4	Spectral Range for Optical Coating on Window	WOC	400	-	900	nm	<1% per side
5	Timing Diagram	TD	*	~	~	-	TD1
6	Power Supply Current 1	I _{DD1}	-		7	mA	Static
7	Power Supply Current 2	l _{DD2}	***************************************	N/A		mA	Dynamic
8	Power Supply Current 1 over T _{op}	IDD2 (T _{op})		~	8	mA	Dynamic
9	DC Output Level	V _{Ref}	~	-	13	V	
10	Output Impedance	Z _S	**************************************	N/A		Ω	
11	Saturation Voltage for the Image Area	V_{SAT}	600	~	~	mV	99900000000000000000000000000000000000
12	Vertical Charge Transfer Inefficiency	VCTI	**************************************	Ÿ	6.0	%	At Vsat/2
13	Horizontal Charge Transfer Inefficiency	HCTI	<u>~</u>	-	3.0	%	At Vsat/2
14	Average Dark Signal	VDS	~	×	8.0	mV	Ti ≈ 1S
15	Average Dark Signal (Image Area + Storage Area) over T _{OP}	VDS(T _{op})	-	~	100	mV	Ti = 100mS
16	Dark Signal Non-uniformity, standard deviation σ	DSNU(σ)	~	~	3.0	mV	Ti ≈ 1S
17	Number of Dark Signal Defects beyond a3 limit	Ndef3	m	-	10	·	Ti₌≕ 1S

PAGE 45 ISSUE 1

TABLE 1(a) - TYPE VARIANT DETAILED INFORMATION (CONTINUED)

B	***************************************	7	***************************************	**********************	*************************		egennennammammammammammammammammammammammammam
No.	CHARACTERISTICS	SYMBOL	***************************************	LIMITS		UNITS	REMARKS
	01,7,11,01,01	O THIS CE	MIN.	TYP.	MAX.	ONITS	NEWMANO
18	Number of Dark Signal Defects beyond a4 limit	Ndef4		N/A	99888888888888888888888888888888888888	-	Ti = 1S
19	DSNU Limit for Ndef3	а3	-	~	10	mV	Ti = 1S
20	DSNU Limit for Ndef4	a4	***************************************	N/A	Виски, инисканов	mV	Ti=1S
21	Responsivity	R	6.0	~	-	V/µJ/cm²	BG38 optical filter
22	Responsivity over T _{op}	R(T _{op})	6.0	-	~	V/µJ/cm²	BG38 optical filter
23	Photoresponse Non- uniformity, standard deviation σ	PRNU(σ)	**	~	2.0	%	At Vsat/2
24	Number of PRNU defects beyond a1 limit	Ndef1			10	-	At Vsat/2
25	Number of PRNU defects beyond a2 limit	Ndef2	-	-	0	**************************************	At Vsat/2
26	PRNU limit for Ndef1	at	~	-	20	%	At Vsat/2
27	PRNU limit for Ndef2	a2	~	-	50	%	At Vsat/2
28	Spectral Responsivity in Optical Band B1	R(B1)	**************************************	N/A	500000000000000000000000000000000000000	V/µJ/cm²	58058500000000000000000000000000000000
29	Spectral Responsivity in Optical Band B2	R(B2)	4858556406880008000 0000	N/A	90000000000000000000000000000000000000	V/µJ/cm²	517/81nm
30	Spectral Responsivity in Optical Band B3	R(B3)	000000000000000000000000000000000000000	N/A	8/448444AAAAAAAAA	V/µJ/cm²	610/98nm
31	Spectral Responsivity in Optical Band B4	R(B4)	20222222222222222222222222222222222222	N/A	10000000000000000000000000000000000000	V/μJ/cm²	703/94nm
32	Spectral Responsivity in Optical Band B5	R(B5)		N/A)1111000000000000000000000000000000000	V/µJ/cm²	827/98nm
33	Spectral Responsivity in Optical Band B6	R(B6)	N/A			V/µJ/cm²	900/105nm
34	Spectral Responsivity in Optical Band B7	R(B7)	N/A			V/µJ/cm²	0000000000000000000000000000000000000
35	Linearity Error	LE	N/A			%	**************************************
36	Temporal Noise	V _N	*****************************	N/A			20000000000000000000000000000000000000
37	Offset Voltage	V_{Offset}	**************************************	N/A	OUTPRODUCTO Extractorio consensensense	mV	04000000000000000000000000000000000000

PAGE 46

ISSUE 1

TABLE 1(a) - TYPE VARIANT DETAILED INFORMATION (CONTINUED)

No.	CHARACTERISTICS	SYMBOL	2000000000000000000000000000000000000	LIMITS	5965096666444444444444444444444444444444	LINUTO	ST-14 D1/0
140.	CHARACTERISTICS	STIVIBOL	MIN.	TYP.	MAX.	UNITS	REMARKS
38	Amplitude of Reset Feedthrough	V _{Reset}		N/A		mV	00 000 000 000 000 000 000 000 000 000
39	Reference Level Settling Time	t _{D-Ref}	**************************************	N/A	***************************************	ns	on and an analysis of the state
40	Reference Level Duration	tu-Ref	WARRENGERASION	N/A		ns	
41	Reference Level Error Band	ΔU_{Ref}	000000000000000000000000000000000000000	N/A		mV	
42	Signal Level Settling Time	t _{D-Signal}	N/A			ns	
43	Signal Level Duration	t _{U-Signal}		N/A	(1111/1111/1111/1111/1111/111	ns	000000000000000000000000000000000000000
44	Signal Level Error Band	ΔU_{Signal}	**************************************	N/A		mV	***************************************
45	Electrode Capacitance	С ϕ Р		N/A	***************************************	ρF	**************************************
46	Electrode Capacitance	С ϕ М	***************************************	N/A		pF	
47	Electrode Capacitance	C <i>∲</i> L	N/A		pF	000000000000000000000000000000000000000	
48	Electrode Capacitance	C ϕ R	N/A		pF	***************************************	
49	Charge to Voltage Conversion Factor	CVF		N/A	200000000000000000000000000000000000000	μV/e	5 non deliverable devices/lot

PAGE 47

ISSUE 1

TABLE 1(a) - TYPE VARIANT DETAILED INFORMATION

NI.	OUADAOTEDIOTIO	0.44701		LIMITS	open mineral observation in the management of the particular observation is a second observation of the particular observation observation of the particular observation obser	11612~	
No.	CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNITS	REMARKS
1	Operating Temperature Range	Т _{ор}	- 40		+ 85	°C	
2	Reference Temperature	T _{ref}	- 23	- 20	-17	°C	
3	Flatness of Image Area	Р	-	-	30	μm	At + 25 ± 3 °C
4	Spectral Range for Optical Coating on Window	WOC	400		900	nm	<1% per side
5	Timing Diagram	TD	-	-	**	~	TD1
6	Power Supply Current 1	l _{DD1}	**	~	5	mA	Static
7	Power Supply Current 2	l _{DD2}	***************************************	N/A	000000000000000000000000000000000000000	mA	Dynamic
8	Power Supply Current 1 over T _{op}	I _{DD1} (T _{op})	econocida con activida con acti	~	8	mA	Static
9	DC Output Level	V_{Ref}	~	-	13	V	***************************************
10	Output Impedance	Z _S	59980464646666666666666666666666666666666	700	***************************************	Ω	***************************************
11	Saturation Voltage for the Image Area	V _{SAT}	800	950	<u>~</u>	mV	***************************************
12	Vertical Charge Transfer Inefficiency	VCTI		-	6.0	%	At Vsat/2
13	Horizontal Charge Transfer Inefficiency	HCTI	<u>.</u>	-	3.0	%	At Vsat/2
14	Average Dark Signal	VDS	^		2.0	mV	Ti = 40S
15	Average Dark Signal (Image Area + Storage Area) over T _{OP}	VDS(T _{op})	-	-	100	mV	Ti = 100mS
16	Dark Signal Non-uniformity, standard deviation σ	DSNU(σ)	~	^	2.0	mV	Ti == 1S
17	Number of Dark Signal Defects beyond a3 limit	Ndef3	=-	-	10		Ti=40S

PAGE 48

ISSUE 1

TABLE 1(a) - TYPE VARIANT DETAILED INFORMATION (CONTINUED)

			9886 00000000000000000000	LIMITS	000000000000000000000000000000000000000	00000000000000000000000000000000000000	**************************************
No.	CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNITS	REMARKS
18	Number of Dark Signal Defects beyond a4 limit	Ndef4	N/A		~		
19	DSNU Limit for Ndef3	a3	~	-	20	mV	Ti=40S
20	DSNU Limit for Ndef4	a4	000000000000000000000000000000000000000	N/A	Becommence	mV	00000000000000000000000000000000000000
21	Responsivity	R	9.0	10.8	~	V/µJ/cm²	BG38 optical filter
22	Responsivity over T _{op}	R(T _{op})	6.0	·*	<u>~</u>	V/µJ/cm²	BG38 optical filter
23	Photoresponse Non- uniformity, standard deviation σ	PRNU(σ)	~	-	2.0	%	At Vsat/2
24	Number of PRNU defects beyond a1 limit	Ndef1	<u></u>	~	10	~	At Vsat/2
25	Number of PRNU defects beyond a2 limit	Ndef2	**************************************	~	0	~	At Vsat/2
26	PRNU limit for Ndef1	a1	~	-	20	%	At Vsat/2
27	PRNU limit for Ndef2	a2	***	~	50	%	At Vsat/2
28	Spectral Responsivity in Optical Band B1	R(B1)	900-000-000-000-000-00-00-00-00-00-00-00	N/A	***************************************	V/µJ/cm²	***************************************
29	Spectral Responsivity in Optical Band B2	R(B2)	6.0	8.5	~	V/µJ/cm²	517/81nm
30	Spectral Responsivity in Optical Band B3	R(B3)	7.0	13.6		V/µJ/cm²	610/98nm
31	Spectral Responsivity in Optical Band B4	R(B4)	8.0	14.5	~	V/µJ/cm²	703/94nm
32	Spectral Responsivity in Optical Band B5	R(B5)	8.0	14.5	***************************************	V/µJ/cm²	827/98nm
33	Spectral Responsivity in Optical Band B6	R(B6)	6.0	10		V/µJ/cm²	900/105nm
34	Spectral Responsivity in Optical Band B7	R(B7)	**************************************	N/A	**************************************	V/µJ/cm²	000000000000000000000000000000000000000
35	Linearity Error	LE	**	~	3.0	%	20mV to 500mV
36	Temporal Noise	V _N	**	-	400	μV	
37	Offset Voltage	V _{Offset}		N/A	000000000000000000000000000000000000000	mV	00022200000000000000000000000000000000

PAGE 49

ISSUE 1

TABLE 1(a) - TYPE VARIANT DETAILED INFORMATION (CONTINUED)

No.	CHARACTERISTICS	SYMBOL	***************************************	LIMITS	ininkananisasesansososeooooduus	UNITS	**************************************
140.	CHARACTERISTICS	STIVIBUL	MIN.	TYP.	MAX.	UNIIS	REMARKS
38	Amplitude of Reset Feedthrough	V _{Reset}	00000000000000000000000000000000000000	N/A	00000000000000000000000000000000000000	mV	**************************************
39	Reference Level Settling Time	t _{D-Ref}	00000000000000000000000000000000000000	N/A	30000000000000000000000000000000000000	ns	CANDRAMA (1994)
40	Reference Level Duration	t _{U-Ref}	AND THE PROPERTY OF THE PROPER	N/A			
41	Reference Level Error Band	ΔU_{Ref}	N/A			mV	***************************************
42	Signal Level Settling Time	t _{D-Signal}	N/A			ns	
43	Signal Level Duration	^t ∪-Signal	**************************************	N/A	994-466-4666-464-464-465-465-66-66-66-66-66-66-66-66-66-66-66-66-6	ns	**************************************
44	Signal Level Error Band	ΔU_{Signal}	TO CONTRACT TO THE CONTRACT TO	N/A		mV	
45	Electrode Capacitance	C <i>ф</i> P	**************************************	-	5 000	pF	***************************************
46	Electrode Capacitance	C <i>∲</i> M	**************************************	4	5 000	рF	***************************************
47	Electrode Capacitance	C <i>ф</i> L	######################################	-	300	pF	***************************************
48	Electrode Capacitance	C∳R	~	~	30	pF	***************************************
49	Charge to Voltage Conversion Factor	CVF	3.0	-	~	μV/e	5 non deliverable devices/lot

PAGE 50

ISSUE 1

TABLE 1(a) - TYPE VARIANT DETAILED INFORMATION

No	CHARACTERISTICS	OVA ADOL		LIMITS	000000000000000000000000000000000000000	4 14 11 77 6	**************************************
No.	CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNITS	REMARKS
1	Operating Temperature Range	T _{op}	- 40	1	+ 85	°C	**************************************
2	Reference Temperature	T _{ref}	- 23	- 20	- 17	°C	***************************************
3	Flatness of Image Area	Р	<u></u>	~	30	μm	At + 25 ± 3 °C
4	Spectral Range for Optical Coating on Window	WOC	400	~	900	nm	<1% per side
5	Timing Diagram	TD	~		**	~	TD1
6	Power Supply Current 1	l _{DD1}	<u>-</u>	3.0	5	mA	Static
7	Power Supply Current 2	I _{DD2}	***************************************	N/A		mA	Dynamic
8	Power Supply Current 1 over T _{op}	I _{DD1} (Т _{ор})	T.	-	8	mA	Static
9	DC Output Level	V_{Ref}	**************************************	9.8	13	V	***************************************
10	Output Impedance	Z _S	**************************************	700	10001100400000000000000000000000000000	Ω	***************************************
11	Saturation Voltage for the Image Area	V _{SAT}	800	950	**	mV	***************************************
12	Vertical Charge Transfer Inefficiency	VCTI	~	-	6.0	%	At Vsat/2
13	Horizontal Charge Transfer Inefficiency	HCTI	~	~	3.0	%	At Vsat/2
14	Average Dark Signal	VDS	~	-	2.0	mV	Ti = 40S
15	Average Dark Signal (Image Area + Storage Area) over T _{OP}	VDS(T _{op})	**	~	100	mV	Ti = 100mS
16	Dark Signal Non-uniformity, standard deviation σ	DSNU(σ)		~	1.0	mV	Ti = 40S
17	Number of Dark Signal Defects beyond a3 limit	Ndef3		~	10	-	Ti =40S

PAGE 51

ISSUE 1

TABLE 1(a) - TYPE VARIANT DETAILED INFORMATION (CONTINUED)

N.L.	OUASACTESICTION	0.44501	00000000000000000000000000000000000000	LIMITS	00000000000000000000000000000000000000		**************************************
No.	CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	- UNITS	REMARKS
18	Number of Dark Signal Defects beyond a4 limit	Ndef4	N/A			-	000000000000000000000000000000000000000
19	DSNU Limit for Ndef3	a3		-	20	mV	Ti = 40S
20	DSNU Limit for Ndef4	a4	***************************************	N/A	000000000000000000000000000000000000000	mV	***************************************
21	Responsivity	R	9.0	10.8		V/µJ/cm²	BG38 optical filter
22	Responsivity over Top	R(T _{op})	6.0	~	~	V/µJ/cm²	BG38 optical filter
23	Photoresponse Non- uniformity, standard deviation σ	PRNU(σ)	*	-	2.0	%	At Vsat/2
24	Number of PRNU defects beyond a1 limit	Ndef1	-	-	10	-	At Vsat/2
25	Number of PRNU defects beyond a2 limit	Ndef2	-	~	0	~	At Vsat/2
26	PRNU limit for Ndef1	a1	**	~	20	%	At Vsat/2
27	PRNU limit for Ndef2	a2	. <u></u>	-	50	%	At Vsat/2
28	Spectral Responsivity in Optical Band B1	R(B1)	000000000000000000000000000000000000000	N/A		V/µJ/cm²	**************************************
29	Spectral Responsivity in Optical Band B2	R(B2)	6.0	8.5	96969999999999999999999999999999999999	V/µJ/cm²	517/81nm
30	Spectral Responsivity in Optical Band B3	R(B3)	7.0	13.6	**	V/µJ/cm²	610/98nm
31	Spectral Responsivity in Optical Band B4	R(B4)	8.0	14.5	~	V/µJ/cm²	703/94nm
32	Spectral Responsivity in Optical Band B5	R(B5)	8.0	14.5	~	V/µJ/cm²	827/98nm
33	Spectral Responsivity in Optical Band B6	R(B6)	6.0	10	***	V/µJ/cm²	900/105nm
34	Spectral Responsivity in Optical Band B7	R(B7)	***************************************	N/A	000000000000000000000000000000000000000	V/µJ/cm²	•••••••••••••••••••••••••••••••••••••••
35	Linearity Error	LE	···	-	3.0	%	20mV to 500mV
36	Temporal Noise	V _N	-	~	400	μV	000000000000000000000000000000000000000
37	Offset Voltage	V_{Offset}	***************************************	N/A	***************************************	mV	74000000000000000000000000000000000000

PAGE 52 ISSUE 1

TABLE 1(a) - TYPE VARIANT DETAILED INFORMATION (CONTINUED)

No.	CHARACTERISTICS	SYMBOL	LIMITS			1 18 1177	
140.			MIN.	MIN.	MAX.	UNITS	REMARKS
38	Amplitude of Reset Feedthrough	V _{Reset}	N/A			mV	0 300000000000000000000000000000000000
39	Reference Level Settling Time	t _{D-Ref}	N/A			ns	**************************************
40	Reference Level Duration	t∪ _{-Ref}	N/A			ns	
41	Reference Level Error Band	ΔU_{Ref}	N/A			mV	•
42	Signal Level Settling Time	^t D-Signal	N/A			ns	
43	Signal Level Duration	^t U-Signal	N/A			ns	**************************************
44	Signal Level Error Band	ΔU_{Signal}	N/A			mV	***************************************
45	Electrode Capacitance	С ϕ Р	N/A			pF	***************************************
46	Electrode Capacitance	С ϕ М	N/A			pF	***************************************
47	Electrode Capacitance	C ϕ L	N/A			pF	***************************************
48	Electrode Capacitance	C∳R	N/A			pF	**************************************
49	Charge to Voltage Conversion Factor	CVF	N/A		μV/e	5 non deliverable devices/lot	