

Technische Universität Braunschweig

TN IDA-MEMRAD 1/2004

M. Brüggemann, H. Schmidt

Institut für Datentechnik und Kommunikationsnetze TU Braunschweig, Germany

R. Harboe-Sørensen

European Space Agency / ESTEC Noordwijk, The Netherlands

SEE Acceptance Test of the Radiation Testbed for Memory Components (RTMC-3).

Performed at the HIF, Université Catholique de Louvain, Louvain la Neuve, Belgium, April 2004.

ESA Reference: ESA_QCA0422S_C

ESA Contract No 11356/95/NL/FM CCN-03

European Space Agency Contract Report

The work described in this report was done under ESA contract. Responsibility for the contents resides in the author or organization that prepared it.

ESTEC Technical Officer: R. Harboe-Sørensen

1. Introduction

This is a summary of the test data collected at UCL in April 2004. Main intention of this test was to verify the handling and performance of the new built test system, RTMC-3. Thus, four of the six DUTs were already tested before. Only two DUTs, AT61 and AT62, are new revisions and are tested for the first time.

Hans-Sommer-Straße 66 • D-38106 Braunschweig • Germany • Tel.: (+ 49 531) 391-3734 • Fax: (+ 49 531) 391-4587

2. Devices

Table 1 shows all tested devices with their markings.

Table 1: Tested Devices

Manufacturer	ID	Package	Туре	Remarks
Atmel	AT61	FP36 0.5"	АТ60142-Е	Sample; Rad Hard
Atmel	AT62	FP36 0.5"	АТ60142-Е	Sample; Rad Hard
MHS	MH41	CerDIP28 0.3"	MMDP65656EV-45	
MHS	MH51	SOJ28 0.4"	MMDP65656FV-55	
White	WH33	SOJ32 0.4"	WMS512K8-70DEM	
White	WH28	SOJ32 0.4"	WMS512K8-45DEM	

The devices AT61 and AT62 from Atmel have a new die revision and are tested here, because during former tests the old die revision showed latch-ups. The devices MH41, MH51 from MHS and WH28, WH33 from White Electronic Designs have been tested already in 1998-99, so previous SEE data is available.

3. Heavy Ion Test Facility

The heavy ion tests were performed at UCL, Université Catholique de Louvain, Louvain la Neuve, Belgium. The HIF beam line with the ion cocktail M/Q=5 was used to irradiate the DUTs. In particular, the following ions and incidence angles have been used:

Ion	Energy [MeV]	Tilt Angle	Range [µm(Si)]	LET [MeV/mg/cm ²]
¹⁵ N ³⁺	62	0°	64	2.97
¹⁵ N ³⁺	62	45°	45.3	4.2
¹⁵ N ³⁺	62	60°	32	5.94
²⁰ Ne ⁴⁺	78	0°	45	5.85
²⁰ Ne ⁴⁺	78	45°	31.8	8.27
²⁰ Ne ⁴⁺	78	60°	22.5	11.7
⁴⁰ Ar ⁸⁺	150	0°	42	14.1
⁴⁰ Ar ⁸⁺	150	45°	29.7	19.94
$^{40}{\rm Ar}^{8+}$	150	60°	21	28.2
⁸⁴ Kr ¹⁷⁺	316	0°	43	34
⁸⁴ Kr ¹⁷⁺	316	45°	30.4	48.08
⁸⁴ Kr ¹⁷⁺	316	60°	21.5	68
132 Xe ²⁶⁺	459	45°	30.4	79.05
132 Xe ²⁶⁺	459	60°	21.5	111.8

Table 2:	Ions	and	LETs	used	for	Heavy	Ion	Tests
----------	------	-----	------	------	-----	-------	-----	-------

IDA

Unfortunately, no boron was available at UCL in the test period and therefore no low LET values could be taken.

Fig. 1 shows the range distribution over the LET of the used ions in a diagram.

Fig. 1: Range and LET of used Ions

4. Single Event Upsets (SEUs)

No latch-ups occurred during the test.

Fig. 2 to Fig. 7 shows the cross sections of each device over the LET.

During each test run the error distribution over the memory array is displayed and shows some events with errors in multiple cells (physically neighboured) especially at higher LET value and incidence angle. Because this phenomenon produces more than one erroneous cell per event, test data has to be filtered. But for now, the evaluation software isn't capable to do this. If needed, an extra evaluation can be made. This might be useful for future tests because this effect produces an error in cross section of a few percent.

Fig. 2: Cross section for AT61

Fig. 3: Cross section for AT62

Fig. 4: Cross section for MH41

Fig. 5: Cross section for MH51

Fig. 6: Cross section for WH33

Fig. 7: Cross section for WH28

Table 3 shows the occurrence of 8-bit errors (the full output word is wrong) in the various tests. This type of error can be attributed to events hitting the address decoder or read/write control. Remarkable is the fact that this type of error occurs only at low (< 6) LET or at high (> 34) LET. This leads to an assumption that in fact two different mechanisms causing this effect. Further analysis of the test data could show which type of the above described error mechanisms are responsible.

LET	AT61	AT62	MH41	MH51	WH33	WH28
2.97	6	4	0	7	8	2
4.20	2	4	0	0	19	0
5.85	0	0	0	0	0	0
5.94					18	2
8.27	0	0	0	0	0	0
11.70	0	0	0	0	0	0
14.10	0	0	0	0	0	0
19.94	0	0	0	0	0	0
28.80	0	0	0	0	0	0
34.00	0	2	0	0	0	0
48.08	0	0	0	0	0	1
68.00	0	0	0	0	0	0
79.05	0	0	4	0	4	0
111.80	0	0	10	2	6	0

Table 3: Full Word Errors

5. Multiple Event Upsets (MEUs)

Table 4 shows the amount of two single bit errors in the same output word and the statistically expected amount of each device and run. This type of error is normally caused by two independent events hitting the geometrically distant bit planes. Most of these figures are within their expected value, values marked in green are slightly above the expectancy. There are two remarkable outliers coloured in yellow and red at device MH51 with an LET of 79.05 and 111.8, which cannot be explained. The recorded data sets from these two runs look quite normal and do not differ from other runs.

No three or more bit error occurred during the test.

	AT	61	АТ	62	MF	1 41	MF	1 51	WI	133	WI	H28
LET	Read	Exp.	Read	Exp.	Read	Exp.	Read	Exp.	Read	Exp.	Read	Exp.
2.97	4	5.51	1	4.81	0	0.01	0	0.03	5	11.5	0	6.76
4.20	3	6.52	3	8.32	0	0.02	0	0.19	5	10.2	3	7.32
5.85	0	2.18	1	5.7	4	3.74	4	3.29	12	25.4	8	22.4
5.94									7	10.1	4	8.32
8.27	3	2.58	1	4.45	2	2.94	0	3.06	23	33.6	8	23.1
11.70	1	3.75	3	4.03	0	3.19	1	3.58	18	40.5	9	22.2
14.40	4	4.94	2	3.95	0	1.82	1	1.01	5	7.55	0	2.37
19.94	3	4.48	0	3.7	1	2.53	1	2.92	4	8.88	4	4.8
28.80	3	4.46	5	3.96	0	1.83	0	1.95	1	6.66	1	5.37
34.00	4	8.06	5	6.61	8	12.1	10	11	41	61.7	5	8.73
48.08	2	6.82	1	4.08	7	9.29	5	7.85	3	12.6	2	6.9
68.00	1	6.34	2	9.3	8	6.89	4	7.97	4	9.94	5	6.73
79.05	4	7.19	2	10.2	0	5.07	17	2.04	3	5.69	0	5.57
111.80	2	6.07	4	7.33	2	4.75	6	3.77	2	3.94	1	4.12

Table 4: Double Bit Upsets

6. Conclusion

During the SEE test, the radiation testbed runs stable and reliable. It is capable to record and display the DUT data even at higher fluxes. The resulting cross section diagrams are very similar to those measured earlier. One big advantage over the old test system is the in-situ evaluation and visualisation of the test data during the irradiation. Additionally, an advantage is the offline playback of the recorded test data to do a deeper analysis. Working with the new radiation testbed revealed a few things that had to be improved:

- The black background colour of the error map display is chosen unfavourable: Blue dots showing single errors are poorly visible. The background colour is now changed to light grey, so error dots are clearly shown.
- Operating the test system turned out to be very intricate and error-prone. Improvements in the test software have been made to get a safer user interface.

Finally, Fig. 8 shows an example of cross section results obtained using two different test systems but using the same ion species and the same Atmel (MHS) memory type. As shown below, good correlation can be reported between the Testbed SEU data and earlier obtained results. Further correlation results as well as a Testbed summary presentation can be found on ESA's www pages detailing the 6th QCA presentation day, May 11th, 2004.

https://escies.org/public/radiation/esa/database/qcaday6data/Presentations/VME_BOARD_QCADA Y.pdf (correlation data pages 33-35)

https://escies.org/public/radiation/esa/database/qcaday6data/Presentations/Rad_Days_Presentation_I DA.pdf (Testbed presentation)

Fig. 8: Comparison of test results for MH51

Run
Each
esults of
etailed R
ndix: De
Appe

Vertinal In Bit Bi		ilt LE		DUT	Capacity [Time	Fluence	Errors	Single	Double	Triple 8	8 bit	Exp.	Exp. Triple	Xsection
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	'] [MeV·cm²/mę	sV∙cm²/m	[[[s] [[/cm²]		Bit	Bit	Bit		Double		[/cm²]
Zhrei 4194304 169 1.00E+06 31275 31253 32324 3 0 2 6.5.2 0.00117 7 AT61 4194304 184 307000 18440 18440 0 0 2.18 0.000231 1 AT61 4194304 184 337000 18440 18440 0 0 2.56 0.001765 3 AT61 4194304 163 223500 232762 3 0 0 4.48 0.000756 3 AT61 4194304 84 172200 22768 22762 3 0 0 4.48 0.000756 3 AT61 4194304 87 88100 27768 22762 3 0 0 6.32 0.00157 8 AT61 4194304 87 88100 22764 24778 3 0 0 6.32 0.00152 18 AT61 4194304 81 138700 22564	0 2.9	2.9	7	AT61	4194304	100	1.00E+06	21940	21884	4	0	9	5.51	0.00119	5.23E-09
AT61 4194304 184 307000 18440 18440 18440 0 0 2.18 0.0002281 1 AT61 4194304 186 259500 20237 20231 3 0 0 2.55 0.000281 1 AT61 4194304 163 225000 23326 23324 1 0 0 4.46 0.000231 2 AT61 4194304 163 225000 22768 22762 3 0 0 4.46 0.000551 3 AT61 4194304 81 15400 22768 22776 2 0 0 4.46 0.00053 3 AT61 4194304 87 88100 22786 22776 2 0 0 4.46 0.00152 8 AT61 4194304 87 88100 22784 22776 2 0 0 6.32 0.00152 8 AT61 4194304 87	45 4.2	4.2	~	AT61	4194304	169	1.00E+06	31275	31253	8	0	2	6.52	0.00117	7.46E-09
ATG1 4194304 186 259500 20237 20231 3 0 0 2.58 0.000517 2 ATG1 4194304 163 225000 23326 23324 1 0 0 3.75 0.000517 2 ATG1 4194304 163 225000 23326 23324 1 0 0 4.94 0.000516 3 ATG1 4194304 163 22500 22768 22762 3 0 0 4.44 0.00051 4 ATG1 4194304 81 15590 22780 22776 2 0 0 4.45 0.00151 5 ATG1 4194304 87 88100 22780 22776 2 0	0 5.8	5.8	5 /	AT61	4194304	184	307000	18440	18440	0	0	0	2.18	0.000221	1.43E-08
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	45 8.2	8.2	7	AT61	4194304	186	259500	20237	20231	8	0	0	2.58	0.000281	1.86E-08
1 ATG1 4194304 163 293400 26217 26209 4 0 0 4.94 0.000756 3 H T161 4194304 181 172200 22768 22762 3 0 0 4.46 0.000756 3 A T161 4194304 181 154900 26223 22768 22776 3 0 0 4.46 0.000756 3 A T161 4194304 87 88100 22780 22776 2 0 0 4.46 0.00175 6 B AT61 4194304 87 88100 22780 22761 2 0 0 6.82 0.00175 6 0.000751 2 2 0 <td>60 11.</td> <td>11</td> <td>7</td> <td>AT61</td> <td>4194304</td> <td>163</td> <td>225000</td> <td>23326</td> <td>23324</td> <td>L</td> <td>0</td> <td>0</td> <td>3.75</td> <td>0.000517</td> <td>2.47E-08</td>	60 11.	11	7	AT61	4194304	163	225000	23326	23324	L	0	0	3.75	0.000517	2.47E-08
Id AT61 4194304 134 172200 22768 22762 3 0 0 4.48 0.000756 3 8 AT61 4194304 181 154900 26223 26217 3 0 0 4.46 0.000551 4 14 AT61 4194304 81 154900 26233 262176 2 0 0 6.82 0.00155 6 8 AT61 4194304 87 88100 22780 22651 22649 1 0 0 6.82 0.00152 8 8 AT61 4194304 72 46500 21264 1 0 0 6.34 0.00152 8 8 AT62 4194304 72 46500 21264 1 0 0 6.07 0.001501 1 8 AT62 4194304 60 34150 19910 2 0 0 6.07 0.001501 1 <	0 14	14	<u>-</u>	AT61	4194304	163	293400	26217	26209	4	0	0	4.94	0.000798	2.13E-08
8 AT61 4194304 181 154900 26223 26217 3 0 0 4.46 0.000651 4 34 AT61 4194304 81 154900 22780 22776 2 0 0 8.06 0.0023 4 38 AT61 4194304 87 88100 22651 22649 1 0 0 6.82 0.00152 8 38 AT61 4194304 93 65300 22651 22649 1 0 0 6.07 0.00152 8 38 AT61 4194304 60 34150 19914 19910 2 0 0 6.07 0.00152 8 37 AT62 4194304 60 34150 19910 22763 3 0 0 6.07 0.00165 2 36 AT62 4194304 137 415056 25866 25563 1 0 0 6.07	45 19.9	19.9	94 /	AT61	4194304	134	172200	22768	22762	3	0	0	4.48	0.000756	3.15E-08
34 AT61 4194304 84 128300 24278 24277 4 0 0 8.06 0.0023 4 38 AT61 4194304 87 88100 22776 2 0 0 6.82 0.00175 6 38 AT61 4194304 87 88100 22780 22651 22649 1 0 0 6.34 0.00152 8 35 AT61 4194304 72 46200 21284 21276 4 0 0 7.19 0.00159 1 36 4194304 60 34150 19914 19910 2 0 0 6.34 0.00159 1 37 4194304 138 1.000 32546 32508 3 0 0 4.481 0.00165 2 0.00168 2 0.00168 2 0.00168 2 0.00168 2 0.00168 2 0 0 4.481 0.00056	60 28	28	8	AT61	4194304	181	154900	26223	26217	3	0	0	4.46	0.000651	4.04E-08
08 T61 4194304 87 88100 22776 2 0 6.82 0.00175 6 68 4761 4194304 93 65300 22651 22649 1 0 6.34 0.00152 8 05 AT61 4194304 72 46200 21284 21276 4 0 0 7.19 0.00159 1 05 AT61 4194304 60 34150 19914 19910 2 0 0 6.34 0.00159 1 07 4194304 138 1.00E+06 23952 23958 1 0 4 4.81 0.00182 7 05 4194304 137 415056 25866 25864 1 0 0 4.45 0.00161 2 05 4194304 151 212200 22744 3 0 0 4.45 0.001651 2 05 4194304 151 212200	0		34 /	AT61	4194304	84	128300	24286	24278	7	0	0	90'8	0.0023	4.51E-08
68 AT61 4194304 93 65300 22651 22649 1 0 0 6.34 0.00152 8 05 AT61 4194304 72 46200 21284 21276 4 0 0 7.19 0.00159 1 97 AT61 4194304 72 46200 21284 21276 4 0 0 7.19 0.00159 1 97 AT62 4194304 138 1.00E+06 23992 23958 1 0 0 4 4.81 0.000829 5 27 AT62 4194304 137 1.00E+06 23992 23958 1 0 0 4 4.81 0.000781 1 1 1 1 1 0 0 6.77 0.00108 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	45 48.	48.	08 /	AT61	4194304	87	88100	22780	22776	2	0	0	6.82	0.00175	6.16E-08
05 AT61 4194304 72 46200 21276 4 0 0 7.19 0.00209 1 1.8 AT61 4194304 60 34150 19914 19910 2 0 0 6.07 0.00159 1 97 AT62 4194304 60 34150 19914 19910 2 0 0 6.07 0.00182 7 97 AT62 4194304 138 1.00E+06 23592 23568 1 0 0 4.45 0.00182 7 95 AT62 4194304 137 415056 25866 25864 1 0 0 4.45 0.00108 1 27 4194304 134 280554 22634 1 0 0 4.45 0.000751 2 21 AT62 4194304 151 212200 22745 22634 1 0 0 4.45 0.000651 2	60		68 /	AT61	4194304	93	65300	22651	22649	~	0	0	6.34	0.00152	8.27E-08
8 AT61 4194304 60 34150 19910 2 0 0 6.07 0.00159 1 97 AT62 4194304 13 1.00E+06 23992 23958 1 0 4 4.81 0.000829 5 97 AT62 4194304 138 1.00E+06 32546 32508 3 0 4 4.81 0.000829 5 95 AT62 4194304 137 415056 25866 25864 1 0 0 4.45 0.001612 2 27 AT62 4194304 151 212200 22734 3 0 0 4.45 0.000612 2 27 AT62 4194304 151 212200 22745 22745 5 0 0 3.7 0.000616 2 3.7 0.000616 3 3.7 0.000616 2 3.7 0.000616 3 3.7 0.000616 3 3.7 <td< td=""><td>45 79.0</td><td>79.(</td><td>05 /</td><td>AT61</td><td>4194304</td><td>72</td><td>46200</td><td>21284</td><td>21276</td><td>4</td><td>0</td><td>0</td><td>7.19</td><td>0.00209</td><td>1.10E-07</td></td<>	45 79.0	79.(05 /	AT61	4194304	72	46200	21284	21276	4	0	0	7.19	0.00209	1.10E-07
97 ATG2 4194304 138 1.00E+06 23958 1 0 4 4.81 0.000829 5 85 AT62 4194304 138 1.00E+06 23992 23958 1 0 4 4.81 0.00182 7 85 AT62 4194304 137 415056 25866 25864 1 0 0 4 8.32 0.00108 1 27 AT62 4194304 137 415056 25866 25864 1 0 0 4 4.81 0.000751 1 27 AT62 4194304 151 212200 22734 3 0 0 4.45 0.000612 2 94 AT62 4194304 106 137200 19071 19071 0 0 3.35 0.000616 3 3 0 0 3.35 0.000616 3 3 0 0 3.35 0.000616 3 3	60 111	111	.8	AT61	4194304	60	34150	19914	19910	2	0	0	6.07	0.00159	1.39E-07
97 AT62 4194304 138 1.00E+06 23952 23958 1 0 4 4.81 0.000829 5 4.2 AT62 4194304 148 1.00E+06 32546 32508 3 0 4 8.32 0.00182 7 85 AT62 4194304 137 415056 25866 25864 1 0 0 4 8.32 0.00168 7 27 AT62 4194304 134 280554 22634 1 0 0 4.45 0.000612 2 1.7 AT62 4194304 151 212200 22740 22734 3 0 0 4.45 0.000616 3 9.4 AT62 4194304 152 12745 25745 5 0 0 0 0 3.95 0.000616 3 9.4 AT62 4194304 152 129500 22755 227745 5 0 0 <td></td>															
4.2 AT62 4194304 148 1.00E+06 32546 32508 3 0 4 8.32 0.00182 7 85 AT62 4194304 137 415056 25866 25864 1 0 0 5.7 0.00108 1 27 AT62 4194304 137 415056 25866 25864 1 0 0 4.45 0.000108 1 1.7 AT62 4194304 151 212200 22740 22734 3 0 0 4.45 0.000612 2 4.1 AT62 4194304 166 137200 19071 19071 0 0 0 4.45 0.000616 3 3.8 AT62 4194304 106 137200 19071 19071 0 0 0 3.95 0.000616 3 3.4 AT62 4194304 105 128205 22755 22755 52745 5 0 0 0 3.96 0.000616 5 3 3.4 AT62 4194304 90 108600 22755 22745 5	0 2.	2.	97 /	AT62	4194304	138	1.00E+06	23992	23958	١	0	4	4.81	0.000829	5.72E-09
85 AT62 4194304 137 415056 25866 25864 1 0 0 5.7 0.00108 1 27 AT62 4194304 134 280554 22636 22634 1 0 0 4.45 0.000671 2 1.7 AT62 4194304 151 212200 22740 22734 3 0 0 4.45 0.000612 2 1.1 AT62 4194304 151 212200 20518 20514 2 0 0 4.03 0.000616 3 3.8 AT62 4194304 152 129500 22755 22745 5 0 0 3.7 0.0006591 4 3.8 AT62 4194304 152 129500 22755 22745 5 0 0 0 0 3.7 0.000591 4 5 0 0 0 0 0 0 0 0 0 0	45 4	7	t.2/	AT62	4194304	148	1.00E+06	32546	32508	3	0	4	8.32	0.00182	7.76E-09
Z7 AT62 4194304 134 280554 22636 22634 1 0 0 4.45 0.000751 1 .7 AT62 4194304 151 212200 22734 3 0 0 4.45 0.000612 2 .1 AT62 4194304 151 212200 22740 22734 3 0 0 4.03 0.000612 2 .4 AT62 4194304 106 137200 19071 19071 0 0 0 3.95 0.000616 3 .8 AT62 4194304 106 137200 19071 19071 0 0 0 3.95 0.000616 3 34 AT62 4194304 10 108600 22805 22779 5 0 <td>0 5.8</td> <td>5.8</td> <td>35 /</td> <td>AT62</td> <td>4194304</td> <td>137</td> <td>415056</td> <td>25866</td> <td>25864</td> <td>1</td> <td>0</td> <td>0</td> <td>5.7</td> <td>0.00108</td> <td>1.49E-08</td>	0 5.8	5.8	35 /	AT62	4194304	137	415056	25866	25864	1	0	0	5.7	0.00108	1.49E-08
1.7 AT62 4194304 151 212200 22740 22734 3 0 0 4.03 0.000612 2 1.1 AT62 4194304 154 212200 20518 20514 2 0 0 4.03 0.000615 2 94 AT62 4194304 106 137200 19071 19071 0 0 0 3.95 0.000616 3 3.8 AT62 4194304 152 129500 22755 22745 5 0 0 3.95 0.000591 4 3.4 AT62 4194304 90 108600 22805 22779 5 0 0 0 3.95 0.0005391 4 3.4 AT62 4194304 10 90 108600 28432 27779 5 0 0 0 3.95 0.0005391 4 3.4 AT62 4194304 90 76600 28432 21	45 8.	ю.	27 /	AT62	4194304	134	280554	22636	22634	L	0	0	94.45	0.000751	1.92E-08
I.1 AT62 4194304 124 212200 20518 20514 2 0 0 3.95 0.00065 2 94 AT62 4194304 106 137200 19071 19071 0 0 0 3.95 0.000616 3 3.8 AT62 4194304 152 129500 22755 22745 5 0 0 3.96 0.000591 4 3.4 AT62 4194304 90 108600 22805 22779 5 0 0 3.96 0.000531 4 5 0 4.08 0.00164 5 0 0 3.96 0.000539 6 5 0 0 0 0 0 0 0 0 0 0.000539 5 5 0 <td>60 11</td> <td>11</td> <td>.7</td> <td>AT62</td> <td>4194304</td> <td>151</td> <td>212200</td> <td>22740</td> <td>22734</td> <td>8</td> <td>0</td> <td>0</td> <td>4.03</td> <td>0.000612</td> <td>2.55E-08</td>	60 11	11	.7	AT62	4194304	151	212200	22740	22734	8	0	0	4.03	0.000612	2.55E-08
94 AT62 4194304 106 137200 19071 19071 0 0 0 3.7 0.000616 3 3.8 AT62 4194304 152 129500 22755 22745 5 0 0 3.96 0.000591 4 3.4 AT62 4194304 90 108600 22805 22779 5 0 0 3.96 0.0005391 4 3.4 AT62 4194304 90 108600 22805 22779 5 0 0 4.08 0.001644 5 0.8 AT62 4194304 99 76600 29199 29195 2 0 0 9.3 0.002544 5 0.5 AT62 4194304 63 50600 23868 23864 2 0 0 0 9.3 0.002544 5 1 10.2 0.003755 1 1 18 AT62 4194304 81 37800 22868	0 1	1	4.1	AT62	4194304	124	212200	20518	20514	2	0	0	3.95	0.00065	2.31E-08
3.8 AT62 4194304 152 129500 22755 22745 5 0 0 3.96 0.000591 4 3.4 AT62 4194304 90 108600 22805 22779 5 0 2 6.61 0.00164 5 0.8 AT62 4194304 10 93000 26434 26432 1 0 0 4.08 0.000539 6 6.8 AT62 4194304 99 76600 29199 29195 2 0 0 9.3 0.00254 5 0.5 AT62 4194304 63 76600 29199 29195 2 0 0 9.3 0.00254 5 0.5 AT62 4194304 63 50600 23868 23864 2 0 0 7 3 0.002574 5 1.8 AT62 4194304 81 37800 22868 22860 4 0 0	45 19.	19.	94 /	AT62	4194304	106	137200	19071	19071	0	0	0	3.7	0.000616	3.31E-08
34 AT62 4194304 90 108600 22805 22779 5 0 2 6.61 0.00164 5 08 AT62 4194304 110 93000 26434 26432 1 0 0 4.08 0.000539 6 68 AT62 4194304 99 76600 29199 29195 2 0 0 9.3 0.00254 5 05 AT62 4194304 63 50600 23868 23864 2 0 0 9.3 0.00254 5 1.8 AT62 4194304 81 37800 22868 22860 4 0 0 7.33 0.00201 1	60 28	28	8.8	AT62	4194304	152	129500	22755	22745	9	0	0	36.5	0.000591	4.19E-08
08 AT62 4194304 110 93000 26434 26432 1 0 0 4.08 0.000539 6 58 AT62 4194304 99 76600 29199 29195 2 0 0 9.3 0.00254 9 05 AT62 4194304 63 50600 23868 23864 2 0 0 9.3 0.00375 1 0.8 AT62 4194304 63 50600 23868 23864 2 0 0 10.2 0.00375 1 .8 AT62 4194304 81 37800 22868 22860 4 0 0 7.33 0.00201 1	0		34 /	AT62	4194304	06	108600	22805	22779	9	0	2	6.61	0.00164	5.01E-08
38 AT62 4194304 99 76600 29199 29195 2 0 0 0 9.3 0.00254 9 35 AT62 4194304 63 50600 23868 23864 2 0 0 10.2 0.00375 1 .8 AT62 4194304 81 37800 22868 22860 4 0 0 7.33 0.00201 1	45 48.(48.(38 <i>i</i>	AT62	4194304	110	93000	26434	26432	L	0	0	4.08	0.000539	6.78E-08
05 AT62 4194304 63 50600 23868 23864 2 0 0 10.2 0.00375 1 . .8 AT62 4194304 81 37800 22868 22860 4 0 0 7.33 0.00201 1	60		68 /	AT62	4194304	99	76600	29199	29195	2	0	0	9.3	0.00254	9.09E-08
1.8 AT62 4194304 81 37800 22868 22860 4 0 0 7.33 0.00201 1	45 79.	79.	05/	AT62	4194304	63	50600	23868	23864	2	0	0	10.2	0.00375	1.12E-07
	60 111	111	.8	AT62	4194304	81	37800	22868	22860	4	0	0	7.33	0.00201	1.44E-07

Hans-Sommer-Straße 66 • D-38106 Braunschweig • Germany • Tel.: (+ 49 531) 391-3734 • Fax: (+ 49 531) 391-4587

10	
Page	

Run	lon	⊥iit ⊡	LET [MeV·cm²/mg]	DUT	Capacity	Time [s]	Fluence [/cm²]	Errors	Single Bit	Double Bit	Triple Bit	8 bit	Exp. Double	Exp. Triple	Xsection [/am²]
48	N-15	0	2.97	MH41	262144	111	1.00E+06	845	845	0	0	0	0.0104	1.10E-07	3.22E-09
47	N-15	45	4.2	MH41	262144	166	1.00E+06	1533	1533	0	0	0	0.0233	3.03E-07	5.85E-09
26	Ne-20	0	5.85	MH41	262144	190	843500	20799	20791	4	0	0	3.74	0.000576	9.41E-08
27	Ne-20	45	8.27	MH41	262144	178	508800	18920	18916	2	0	0	2.94	0.000391	1.42E-07
28	Ne-20	60	11.7	MH41	262144	155	356500	17398	17398	0	0	0	3.19	0.000503	1.86E-07
12	Ar-40	0	14.1	MH41	262144	123	206800	12073	12073	0	0	0	1.82	0.000235	2.23E-07
11	Ar-40	45	19.94	MH41	262144	155	178000	15863	15861	L	0	0	2.53	0.000347	3.40E-07
10	Ar-40	09	28.8	MH41	262144	144	140400	13717	13717	0	0	0	1.83	0.00021	3.73E-07
59	Kr-84	0	34	MH41	262144	137	256200	32716	32700	8	0	0	12.1	0.00382	4.87E-07
60	Kr-84	45	48.08	MH41	262144	115	148200	25668	25654	2	0	0	9.29	0.00288	6.61E-07
61	Kr-84	60	68	MH41	262144	97	104400	21907	21891	8	0	0	6.89	0.00186	8.00E-07
78	Xe-132	45	79.05	MH41	262144	109	100900	19113	19081	0	0	4	5.07	0.00116	7.23E-07
77	Xe-132	60	111.8	MH41	262144	128	87500	19948	19864	2	0	10	4.75	0.000973	8.70E-07
_															
45	N-15	0	2.97	MH51	262144	130	1.00E+06	1680	1624	0	0	7	0.0331	5.79E-07	6.41E-09
46	N-15	45	4.2	MH51	262144	152	1.00E+06	4190	4190	0	0	0	0.189	7.32E-06	1.60E-08
31	Ne-20	0	5.85	MH51	262144	145	531200	17067	17059	4	0	0	3.29	0.000545	1.23E-07
30	Ne-20	45	8.27	MH51	262144	153	392000	17294	17294	0	0	0	3.06	0.000463	1.68E-07
29	Ne-20	60	11.7	MH51	262144	142	331800	18586	18584	1	0	0	3.58	0.00059	2.14E-07
7	Ar-40	0	14.1	MH51	262144	178	176500	10714	10712	1	0	0	1.01	8.20E-05	2.32E-07
8	Ar-40	45	19.94	MH51	262144	132	163400	15391	15389	1	0	0	2.92	0.000476	3.59E-07
6	Ar-40	60	28.8	MH51	262144	121	100400	12049	12049	0	0	0	1.95	0.00027	4.58E-07
64	Kr-84	0	34	MH51	262144	80	174000	24456	24436	10	0	0	11	0.00426	5.36E-07
63	Kr-84	45	48.08	MH51	262144	81	123000	21513	21503	5	0	0	7.85	0.00246	6.67E-07
62	Kr-84	60	68	MH51	262144	130	129600	26665	26657	4	0	0	7.97	0.00204	7.85E-07
75	Xe-132	45	79.05	MH51	262144	295	106800	19131	19097	17	0	0	2.04	0.000187	6.83E-07
76	Xe-132	09	111.8	MH51	262144	170	98400	19775	19747	9	0	2	3.77	0.000618	7.67E-07
44	N-15	0	2.97	WH33	4194304	57	284700	24256	24182	5	0	8	11.5	0.00467	2.03E-08

	Xsection	/מוו-]	3.04E-08	4.90E-08	4.25E-08	6.79E-08	1.00E-07	7.22E-08	1.04E-07	1.47E-07	1.46E-07	2.02E-07	2.34E-07	2.14E-07	2.18E-07	1.55E-08	2.48E-08	3.38E-08	3.65E-08	4.85E-08	7.64E-08	5.68E-08	8.46E-08	1.26E-07	9.53E-08	1.36E-07	1.69E-07	1.78E-07	2.00E-07
	Exp. Triple	_	0.00382	0.0181	0.00377	0.0238	0.0321	0.00198	0.00266	0.00161	0.062	0.00555	0.00325	0.00135	0.000677	0.00159	0.00211	0.0125	0.00256	0.0121	0.013	0.000285	0.000691	0.0011	0.00261	0.00183	0.00172	0.00122	0.00072
	Exp.	Double	10.2	25.4	10.1	33.6	40.5	7.55	8.88	6.66	61.7	12.6	9.94	5.69	3.94	6.76	7.32	22.4	8.32	23.1	22.2	2.37	4.8	5.37	8.73	6'9	6.73	2.57	4.12
	8 bit		19	0	18	0	0	0	0	0	0	0	0	4	9	2	0	0	2	0	0	0	0	0	0	۱	0	0	0
	Triple	Bit	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Double	Bit	5	12	7	23	18	5	4	~	4	e	4	e	2	0	n	ω	4	ω	6	0	4	~	5	2	5	0	Ļ
	Single	Bit	23312	30462	23211	40633	43789	24710	25378	23554	52671	24591	26052	20561	19609	24654	21765	34580	23201	37756	32422	16898	28583	22484	25061	22273	22549	21769	20253
	Errors		23474	30486	23369	40679	43825	24720	25386	23556	52753	24597	26060	20599	19661	24670	21771	34596	23225	37772	32440	16898	28591	22486	25071	22285	22559	21769	20255
	Fluence	/cm-]	184300	148200	131000	142900	104000	81600	58000	38143	86000	29100	26500	23000	21500	380304	209000	244200	151500	185600	101200	70900	80600	42700	62700	39200	31900	29200	24100
	Time	[s]	60	39	53	22	53	93	82	89	50	54	82	85	130	104	74	53	73	20	52	140	200	108	22	82	62	86	115
	Capacity		4194304	4194304	4194304	4194304	4194304	4194304	4194304	4194304	4194304	4194304	4194304	4194304	4194304	4194304	4194304	4194304	4194304	4194304	4194304	4194304	4194304	4194304	4194304	4194304	4194304	4194304	4194304
-	DUT	[6111/-1	4.2 WH33	5.85 WH33	5.94 WH33	3.27 WH33	11.7 WH33	14.1 WH33	9.94 WH33	28.8 WH33	34 WH33	3.08 WH33	68 WH33	9.05 WH33	11.8 WH33	2.97 WH28	4.2 WH28	5.85 WH28	5.94 WH28	3.27 WH28	11.7 WH28	14.1 WH28	9.94 WH28	28.8 WH28	34 WH28	3.08 WH28	68 WH28	9.05 WH28	11.8 WH28
-	It LET	liviev cri	15	i 0	30	15 8	, 0	` 0	15 19	00	0	15 48	30	15 79	30 1	0	15	4 0	i 0	15 8	, 0	` 0	15 16	00	0	15 48	30	15 79	30 1
	Ξ	2	5	20	5 6	20 4	20 6	0	0	0	4	4	4	32 4	32 6		4	0	6	20	<u>20</u>	0	0	0	4	4	4 6	32 4	32 6
-	Run lon		43 N-15	32 Ne-2	42 N-15	33 Ne-2	34 Ne-2	6 Ar-4	5 Ar-4	4 Ar-4	65 Kr-8	66 Kr-8	67 Kr-8	74 Xe-1	73 Xe-1	39 N-15	40 N-15	38 Ne-2	41 N-15	36 Ne-2	35 Ne-2	1 Ar-4	2 Ar-4	3 Ar-4	70 Kr-8	69 Kr-8	68 Kr-8	71 Xe-1	72 Xe-1
- L																				•		•		•					

Page 11