Application-Like Radiation Test of XTMR and FTMR Mitigation Techniquers for Xilinx Virtex-II FPGA

> Final Presentation of ESTEC Contract No. 11407/95/NL/MV, CCN-5, COO-7

Saab Ericsson Space, Sweden Stanley Mattsson, Fredrik Sturesson

PURPOSE

• Investigate validity of TMR on SRAM based Xilinx FPGA

- Two TMR Mitigation Methologies
 - FTMR VHDL code mitigation general for any FPGA/ASIC
 - XTMR Xilinx specific TMR tool (in our case implemented by Xilinx)
- Purpose was to Compare the Two Techniques, But

After first test campaign, it was concluded that FTMR did not mitigate all logics, Xilinx Place & Route tool introduced new nets that were not tripled. The nets were used to control static inputs to basic the FPGA architecture

• All given test data is XTMR

Upsets and Error detection

- Upsets in Xilinx Virtex-II,
 - SEU in user logic flip-flop,
 - SEU in configuration data (Functional Errors)
 - SEU in control registers (SEFI)

- Mitigated by XTMR???
- Mitigated by XTMR???
- No Mitigation

- Error domains
 - Data Error, local error corrected with new configuration data
 - Stuck Error, local error NOT corrected with new configuration data
 - SEFI, device not functional at all.

Tested DUT Designs Xilinx TMR Tool "XTMR"

b,

C,

• Design Modules

- 2x "FFT"; Fast Fourier Transform,

(Application like)

- Complex design with mix of combinatorial and sequential logics
- 2x PSR; Pseudo Randomizer

(Not application like)

- Mostly sequential logic functional similar to a 60 bits shift register
- 3 Design variants tested
 - Non-TMR
 - XTMR_V1
 - XTMR_V2
- Tripling of routing & logics, inputs & outputs

TEST SAMPLE & FACILITY

Xilinx Virtex II XQR2V3000 0.15µm CMOS 8-layer metal process with epitaxial layer 676-pin Plastic FP

die size 16x16 mm

Bond pad affected by chemical etching.

- Facilities HIF/Belgium & RADEF/ FinlandWasted lot of beam time not giving test results
 - Bad test samples
 - FTMR not mitigated
 - XTMR_V1 => XMTR_V2

Error cross section for "non-TMR" Design

(Number of Care Bits estimated from XTMR_V1)

	Module	Cross Section Si [cm2 / Care Bits] (11 MeV cm2/mg)	Cross Section 60 MeV proton [cm2 / Care Bits]
XTMR_V2	FFT	5,3E-09	9,0E-15
	PSR	4,0E-09	5,8E-15
XTMR_V1	FFT	4,5E-09	
	PSR	4,8E-09	
		JPL ~1E-08	

Too Few data points for a full SEE characterization

Cross Sections PSR

Comparison PSR Module in design variant XTMR_V1 & XTMR_V2

Cross Sections FFT

Comparison FFT Module in design variant XTMR_V1 & XTMR_V2

Cross Sections Proton Data

Comparison PSR vs FFT

60 Mev Proton SN#E1 XQR2V3000

Summary

- Xilinx Virtex-II, 676-pin plastic FP chemically etched by Xilinx
 - Bond lifts and partly damaged bonds, five etched samples were considered functional but not 100% reliable
 - Verification against non-etched sample in proton test were found to give the same results
 - Cross Section per SRAM cell in agreement with earlier measurements
- Clear flux dependence observed
 - Scrub Rate 4,9 scrub/sec
 - Flux in Accelerators high compared to space environment
- Two copies of each module in DUT design
 - Clear spread in cross section results:
 - Not identical routing implemented by Xilinx Place&Route???
 - Non-homogeneous beam over test sample???
- Simple Design (PSR) and low flux indicate TMR error rates in the same order or magnitude as for SEFI
- No full SEE characterization
 - Test data only for 1 LET value and one proton energy

PRINCIPAL of TEST SYSTEM "DUT-Tester"

Data Pattern Generator continuously streams input test vectors into the DUT

- 10 Mbyte/s
- Max Clock Speed
 - 80 MHz
- Max I/O's

- 96

Resource usage for all DUT design variants

	Non-TMR	One FFT module	One PSR module	XTMR_V1	XTMR_V2	Total available
Number of FF	2140	1050	2160	6420	6420	28672
	(7%)	(4%)	(8%)	(22%)	(22%)	
Number of LUT	4238	5511	1812	14460	23287	28672
	(15%)	(19%)	(6%)	(50%)	(81%)	
Number of IOB	26^{1}	12	24	81^{1}	81 ¹	484
	(5%)	(2,5%)	(5%)	(16%)	(16%)	
Number of MULT18X18	24	36	0	72	72	96
	(25%)	(37%)	(0%)	(75%)	(75%)	
Number of GCLK	1	-	-	3	3	16
	(6%)			(18%)	(18%)	
Number of "Care Bits"	508749 (5%)	719404 (8%)	318144 (3%)	2075095 (22%)	2854971 (30%)	9582848

