## RADFET Ground Calibration and BioRADFET Experiment

#### D/TEC-QCA Final Presentation Day 2005 Jyvaskyla, Finland, 25/05/2005

#### Aleksandar Jaksic, Vladimir Ogourtsov

Tyndall National Institute, Cork, Ireland



## Outline:

- What is RADFET and how does it work?
- RADFET characterisation
- BioRADFET project
- Recent success story



## **RADFET** operating principle:



- Radiation creates electron-hole pairs
- Initial recombination of electrons and holes happens
- Non-recombined electrons leave the oxide; holes are trapped in the vicinity of the oxide/silicon interface
- RADFET threshold voltage (V<sub>T</sub>) changes ( $\Delta$ V<sub>T</sub> ~ Dose)



## **RADFET** biasing configurations:

- <u>Irradiation (sense mode)</u>: zero current; (B, S and D grounded); G can be:
  - Grounded (V<sub>IRR</sub>=V<sub>GS</sub>=0V)
  - Biased (typically  $V_{IRR}=V_{GS}>0$ )

<u>Read-out mode:</u> specified current (Ids=I<sub>0</sub>) applied to S=B; G=D grounded



Irradiation (sense mode) and Read-out mode are the same



## RADFET advantages over other dosimeters:

- Immediate read-out without destroying the data
- Extremely small sensor chip
- Very low or zero power consumption
- Technology suitable for connection to a microprocessor
- Comparatively low cost

# **Applications:**

- Nuclear industry and research
- Space dosimetry
- Radiotherapy
- Personal dosimetry [?]





### ESAPMOS4 RADFET chip:



- Chip size: 1mm x 1mm
- Contains four RADFETs:
  - two 300/50 devices
  - two 690/15 devices
- Chip types (gate oxide):
  - 100 nm
  - 400 nm
  - 400 nm Implanted (IMPL)
  - 1 μm
  - 1 μm Implanted (IMPL)



## Pre-irradiation characterisation RADFETs:

| Device type       | V <sub>T(RC)</sub> @ 10µA<br>[V] | V <sub>T(EX)</sub><br>[V] | $\frac{\beta}{[\times 10^{-6} \text{ A/V}^2]}$ | SS<br>[mV/decade] |
|-------------------|----------------------------------|---------------------------|------------------------------------------------|-------------------|
| 300/50 standard   | $-1.524 \pm 0.124$               | $0.193 \pm 0.111$         | $6.947 \pm 0.127$                              | $263 \pm 8$       |
| 300/50 passivated | $-1.630 \pm 0.097$               | $0.092\pm0.105$           | $6.986 \pm 0.167$                              | $254 \pm 9$       |
| 690/15 standard   | $-0.201 \pm 0.084$               | $0.293 \pm 0.072$         | $75.370 \pm 1.288$                             | $228 \pm 5$       |
| 690/15 passivated | $-0.330 \pm 0.067$               | $0.148\pm0.064$           | $78.130\pm1.956$                               | $225\pm 6$        |



- No effect of passivation on preirradiation characteristics
- Changes in  $V_{T(\mathsf{RC})}$  and  $V_{T(\mathsf{EX})}$  are the same
- Changes in  $V_{T(RC)}$  for different read-out currents are the same



## Passivation effect on radiation response:

- Sensitivity after 200cGy Co-60 dose:
  - Unpassivated RADFETs: ~0.55mV/rad
  - Passivated RADFETs (200nm  $Si_3N_4$ ): ~0.75mV/rad
  - Passivated RADFETs , passivation stripped: ~0.55mV/rad
  - Passivated RADFETs, passivation stripped + CVD oxide: ~0.70mV/rad
- Main culprits: hydrogen and/or stress



## Co-60 calibration curves (400nm IMPL):



#### $\label{eq:calibration coefficients} \ensuremath{\mathsf{Calibration coefficients}} \ensuremath{\mathsf{The curve equation}} \ensuremath{\mathsf{is of the form: } \Delta V = a \times Dose^b; \ensuremath{\Delta V[Volts]}, \ensuremath{\mathsf{Dose}[Rad(H_2O)]}.$

| Bias         | a        | b      | <b>R-square</b> | SSE     |
|--------------|----------|--------|-----------------|---------|
| -5V          | 0.000643 | 0.8871 | 0.9999          | 0.00042 |
| Cont Id=10µA | 0.001365 | 0.8494 | 0.9994          | 0.00475 |
| 0V           | 0.003166 | 0.8001 | 0.9976          | 0.04626 |



# Co-60 irradiation (1µm IMPL):



- Preliminary radiation data (courtesy Avner Haran, Soreq NRC)
- Most sensitive non-stacked RADFET up to date
- Initial threshold voltages very uniform, fading low



## Electron irradiation (zero V<sub>IRR</sub>, normalised):



Tyndall National Institute

## Proton irradiation:





## Proton energy dependence (normalised):



Tyndall National Institute

## Post-irradiation annealing (fading):



Proton data shown, similar data for other types of radiation



### Irradiation response summary:

- Flat energy response to photons and electrons (1-8MeV)
- Energy dependent response to protons (10-60 MeV)
- Preferred biasing configurations:
  - Zero gate bias (V<sub>IRR</sub>=0V)
    - Good sensitivity
    - ✓ Low fading
    - × Need to switch between irradiation and read-out mode
  - Continuous I<sub>o</sub>
    - × Somewhat decreased sensitivity
    - ✓ Low fading
    - ✓ No need for switching between irradiation and read-out mode



## BioRADFET project:

- Part of the Biopan-5 experiment on Photon-M2
- Lounch scheduled for Wednesday next week
- RADFET reader board (BioRADFET)
  - DC power supply: 12V (continuous)
  - Maximum current: 0.5mA
  - Two TTL control lines to control multiplexer/switches



## **BioRADFET configurations considered:**

尽



Current Source 1 (10 uA) Address bus Current Source 2 (10 uA) Current Source 3 (10 uA) Current Source 4 (10 uA) Outout

Continuous I<sub>o</sub>



D/TEC-QCA Final Presentation Day 2005, Jyvaskyla, 25/05/2005

Zero  $V_{IRR}$ 

### **BioRADFET** boards manufactured:





#### Zero $V_{IRR}$





#### Recent success story:

- RADFET development under ESA sponsorship since late 1980s
- Applications: space (ESA, other agencies), particle physics labs.
- New application: QA of radiotherapy treatments
  - OneDose system developed by Sicel Technologies (surface dosimetry)
  - DVS system under development (implantable dosimetry)





