IC Circuit Design & Technology Analysis of UCC1806 and UC1825A Pulse Width Modulators

Slide 1

Presented at the ESA/ESTEC 7th QCA Presentation Day 25th May 2005 Jyväskulä FINLAND Final Presentation of ESTEC Contract No. 10582/93/WO-05/COO-20 AND 21

> Ted O'Shea Richard FitzGerald Robert Allison Catriona Kenny Margaret Hegarty

For full analysis information see report W0-05/C00-20 and report WO-05/C00-21

Specific Tasks Performed

- Identify process technology.
- Reconstruct the IC designs.
- Correlate IC designs to manufacturers block diagram.
 - Identify physical layout of the designs.
 - Extract horizontal geometries (device sizes).
 - Extract vertical geometries (cross-sectional data).

Note: Ref documents DTE1339 & DTE1338 for comprehensive report concerning circuitry and technology information.

UCC-1806 primary process description

Package markings	UCC1806J/8838	
	5962-9457501MEA	
	Q BA9845	
Die size	2.48mm x 1.92mm	
Die area	4.76mm ²	
Die Thickness	390µm	
Die markings	C1806 UICC (M) UICC 92	
Process	BiCMOS	
Metal	One level	
Metal 1 width	5 μ m Metal 1 space = 3 μ m	
Poly	One level	
Poly 1 width	$2\mu m$ Poly 1 space = $2\mu m$	
Other information	Diffused resistors used. No buried layer.	

Tyndall -

UC-1825A primary process description

Die size	3.32mm x 3.00mm
Die area	9.96mm ²
Die Thickness	380µm
Die markings	JJ 1825A
	(M) UICC 90
Process	Bipolar
Metal	One level
Metal 1 width	5µm
Metal 1 space	10µm
Poly	None
Other information	Thin film resistors used
	Diffused resistors used.
	Has buried layer.

UCC1806 sample Bipolar pnp cross section

- Tyndall -

UCC1806 sample Bipolar pnp cross section

Plan and cross-section of the pnp BiPolar transistor (20deg tilt)

FIB cross sectioned, followed by a chemical etch to highlight diffusions

Note: UCC1806 has <u>no</u> buried layer

UC1825A sample Bipolar npn cross-section

UC1825A sample Bipolar npn cross-section

Mechanically cross sectioned, followed by a chemical etch to highlight diffusions

- Tyndall -

UCC1806 manufacturers block diagram

UCC1806 partitioned by extracted units

Tyndall -

UCC1806 layout with arbitrary blocks extracted

Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8 Block 9 Block 10 Block 11 Block 12 ESD

Slide 11

Tyndall –

Some areas of special interest concerning the UCC1806

Slide 12

- Op-amp at pins 3,4 (CS-, CS+)
- Error-amp at pins 5,6 (NI, INV)

• Comparator

- Flip-flop connected to 1,16 (Curlim, Shut Down)
 - 5.1V reference regulator
 - Identify differences between
 - DC9845(Unitrode)and DC0126 (TI)

UCC1806 block diagram with some areas of special interest in green, blue & orange

UCC1806 with the 'error amp' circuitry highlighted

'error-amp' related circuitry in blue. Block 4

Slide 14

UCC1806 circuitry for the the 'error-amp' section

UCC1806 circuitry differences between the Unitrode DC9845 and Texas Instruments DC0126

UC1825A manufacturers block diagram

Some areas of special interest concerning the UC1825A

• Fault Latch

Voltage Reference

UC1825A block diagram partitioned by extracted units, and showing two areas of special interest in blue

UC1825A layout with arbitrary blocks extracted

Block A Block B Block C Block D **Block E** Block F Block G Block H Block I **Block J** Block K

Slide 21

Design Technology Evaluation Group, Tyndall National Institute, Cork IRELAND

Tyndall –

UC1825A: A closer look at the voltage reference.

Tyndall -

UC1825A: Voltage reference circuitry in blue.

Voltage-ref Block E

UC1825A: Full circuitry of the Voltage reference.

Conclusion

- We fully extracted the circuitry of both the UCC1806 and UC1825A Pulse Width Modulators.
- We compiled both functional block diagram descriptions and transistor level schematics of the IC's, facilitating precise correlation of failure locations with circuitry.
- We also provided the primary process technology information.

Thank you for you attention

