

An Interdisciplinary Large Scale Facility for the French and European Communities

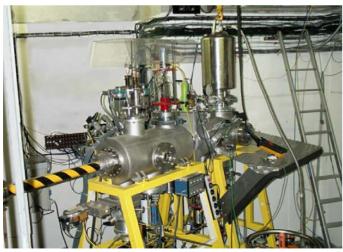
Nuclear Physics :

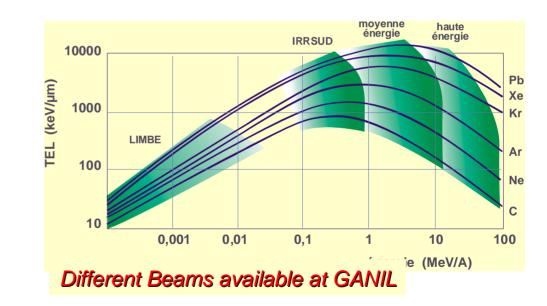
Nuclear structure far from stability Nuclear dynamics Nuclear Astrophysics

Applied Physics : Irradiation of materials

(electronics, nuclear power plans, ...) Technology transfers (electronics, Ion sources, ...)

Interdisciplinary Researches :


Atomic and Molecular Physics Surface - Ions Interaction Material (polymers, organic molecules) - Ions Interaction Radiobiology (Chromosomic instabilities)


Interdisciplinary Researches at GANIL with Ciril

GANIL offers a wide range of energies from keV to GeV.

- Atomic Physics,
- Condensed Matter Physics,
- Material Sciences,
- Chemistry under irradiation,
- Radiobiology,
- Applications

Irradiation device IRABAT

2005/05/26

Simulation of radiation-damage

Modification of materials

Reactors Steel: containment vessel, structure Sheaths for fuel Radiolysis of coolant water Reactor fuel Ageing Matrices for burning and storage Polymers, organic materials Ageing of cable sheaths Cosmic rays Electronic components in space	EDF, DRT, DSM DEN DSM, ITER DSM, DEN, CNRS DEN, CNRS EDF, DRT, COGEMA MATRA, DAM	Trapping of vortexes (superconductivity) DSM, (Mesoscopic Physics	DSM CNRS CNRS CNRS CNRS DRT
Supernanogan: ECR ion source w magnets produced et commercialis	ith permanent	Technology TransferBIOPORE (1986-90)microporous membranesGANELEC (1989-93)electronic modulesMATRA (1989-97)irradiation of componentPANTECHNIK (1991)ion sourcesX-ION (1998)microelectronicsNormandie Incubation (2000- EADS ASTRIUM (2004))CNES (2004)irradiation of component	rs rs

magnets produced et commercialised by the Pantechnik company

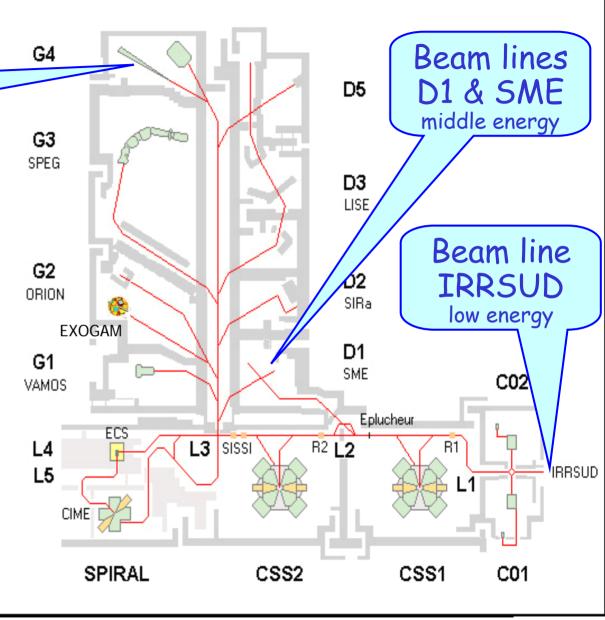
2005/05/26


XXXX (2005 - ...)

microporous membranes

The GANIL beams

- Light to heavy ions for nuclear research
 - Carbon Ions up to 95 MeV/a
 - Uranium Ions up to 24 MeV/a
 - Up to 2 x 10 13 pps

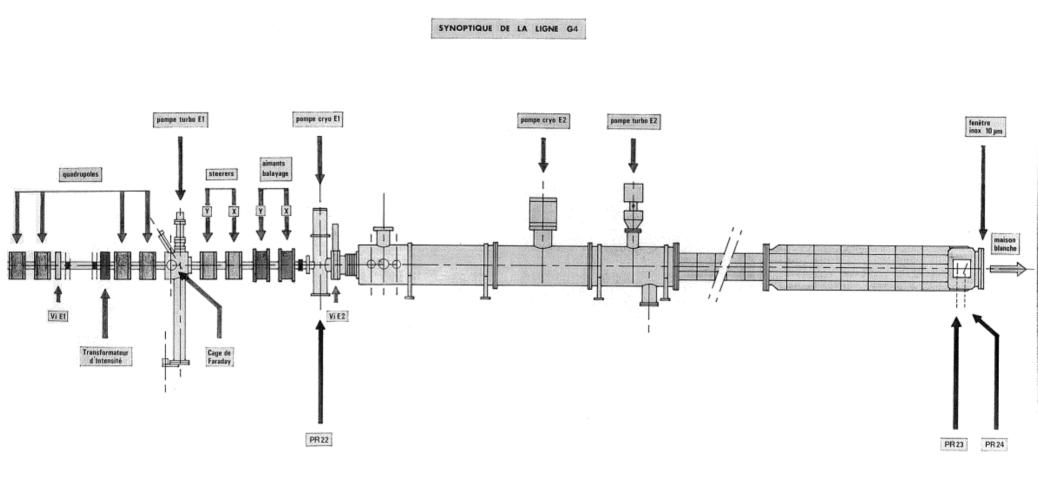

Beam line

G41

High energy

Layout of the GANIL facility

most of irradiations for components are in G41



Irradiation for industry

- Irradiation beam line G41
 - Scanning magnets
 - Horizontal: 200 Hz; max 50 cm
 - Vertical: 2 Hz ou 8 kHz; max 4 cm
 - Beam control
 - Secondary emission or gas detectors
 - Irradiation in the air
 - Stainless steel window: 10 μm

Irradiation beam line G41

RADECS Workshop

8

CAVE G4

- The « white room »
- The samples irradiation device
 - 6 places for 30x20cm boards
 - Irradiation area 4x30 cm
 - Tilt possibility (0..60°)
 - Longitudinal movement (air thickness adjustment 53 ... 189 mm)

The GANIL beams for G41

- Beam from
 - CSS1 (up to 13 MeV/a)
 - CSS1 + CSS2 (up to 95 MeV/a)
 - CIME (up to 13 meV/a)
- LET and range adjustment
 - Do not forget the steel window (10 μ m)
 - Air (53 .. 189 mm)
 - Aluminium foils (25 .. 2000 $\mu\text{m})$

The GANIL beams for G41

- Xenon beam (129 Xe), 35 MeV/a
 - EADS ATRIUM (March & November 2004)
 - LET exploration: 34 .. 54 MeV.cm²/mg
 - Range over 100 μm
- Lead beam (208 Pb), 29 MeV/a
 - CNES (December 2004)
 - LET exploration: 72 .. 98 MeV.cm²/mg
 - Range over 63 μm

The GANIL beams for G41

Ions	Initial energy (accelerator) (MeV/u)	de/dx min. (MeV.cm²/mg) (Air=53mm. Al=0µm)	de/dx max. (MeV.cm²/mg)	range for de/dx min (µm)	range for de/dx max. (µm)	Air (mm) for de/dx max.	Al (µm) for de/dx max.
36 Ar	95	2,0	2,3	4 220	3 019	189	1000
36 Ar	27	5,4	9,9	445	113	53	300
40 Ca	95	2,5	2,9	3 812	2 611	189	1000
58 Ni	52	7,6	11,2	1 013	427	100	500
84 Kr	35	16,4	37,8	484	49	179	325
86 Kr	60	11,0	42,1	1 223	27	189	1000
93 Nb	31	22,7	34,0	349	128	53	200
112 Sn	47	24,2	48,7	601	100	53	450
	i		1	i	1		
132 Xe	35	33,5	62,1	393	54	160	250

Access to the GANIL facility

- Annual schedule
 - Available in October for the next year
 - Four running periods (8..10 weeks)
 - Maintenance (Winter 10 weeks, Summer 4 weeks)
- Priority is given to physics
 - Program Advisory Committee (twice a year)
 - PACs concerns 90% of available beam time
 - 4 to 6 times more requested time as beam time
 - about 5 to 10 % beam time available for industrial applications (not subject to the PAC)

Access to the GANIL facility

- Unit of Time of eight hours (UT)
- Beam production and tuning
 - 2 or 3 UT (one or two cyclotrons)
 - the same time is needed for a modification of energy
 - an alternative way is to use a degrader
- for industrial users
 - 1 UT (beam in the cave)
 - 2 UT for any energy modification during the run
 - as many UT as necessary
 - (this time includes beam setup in the cave and irradiation)

Access to the GANIL facility

- (very) long response time to a request
 - Beam (ion, energy) is planned? 2-4 months
 - If not 4-6 months
- Announce the planned beams
 - Shorter response time, but...
 - Very few heavy ions beams (and unpredictable)
- Pre-schedule of "right beam" window
 - 3 or 4 times a year
 - Requires confirmation !

Pre-schedule for RADECS community

- What should be the right beam(s)?
 Ion, Energy, Beam intensity ...
- Could there be a unique partner ?
 (for RADECS community)
- What should be the deadline to confirm ?...
 8 weeks before beam ?
- Could we have a commitment on a minimum annual beam time utilization ?

Thank you for your attention!

2005/05/26