Irradiation Facilities at CYCLONE (HIF – LIF – NIF)

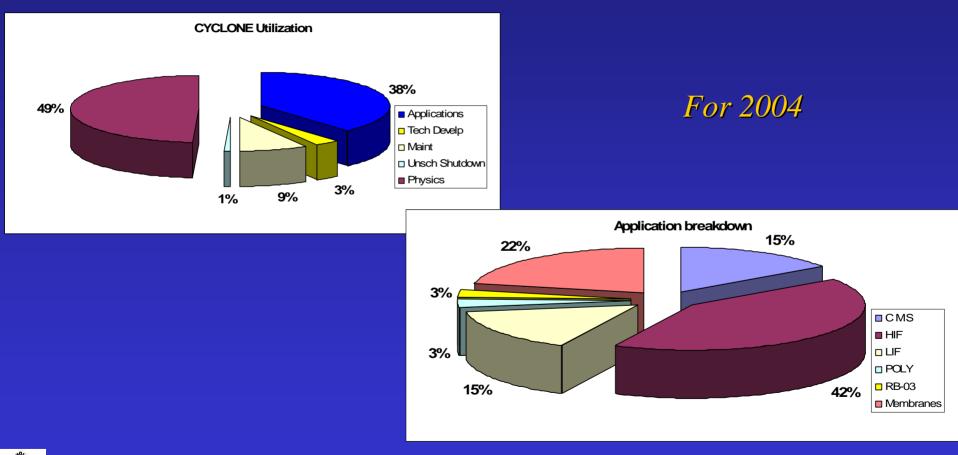
Guy Berger

Université catholique de Louvain Centre de Recherches du Cyclotron

✓ CYCLONE

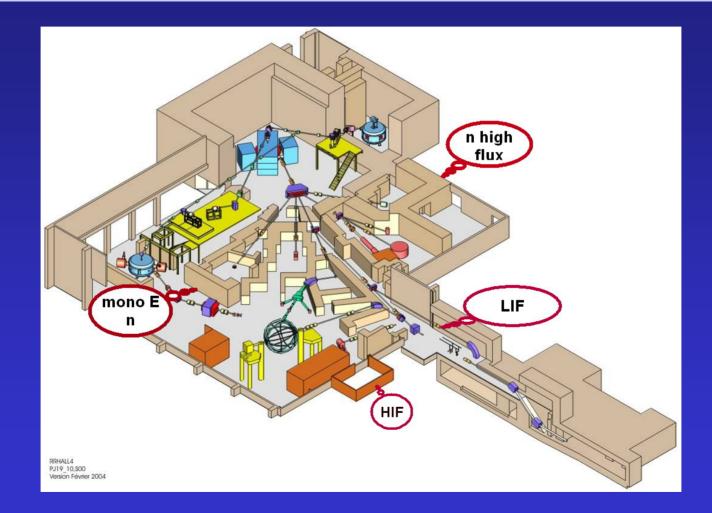
- ✓ Heavy Ion Facility (HIF)
- ✓ Proton Facility (LIF).
- ✓ Neutron Facilities (NIF).
- Scheduling and financing.
- Future developments

Protons up to 75 MeV

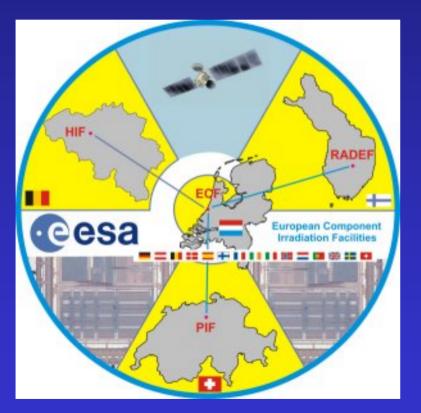

 $\geq \alpha$ and heavy ions between 0,6 and 27,5 MeV/AMU

Heavy ions produced with an ECR source High charge state ($E = 110 \text{ Q}^2 / \text{ M}$) «Cocktails» (fast ion changing)

Neutrons by 7Li(p,n) and 9Be(d,n) reactions


CYCLONE Beam time breakdown

Workshop on European SEE Accelerators - Jyväskylä, - May 26th 2005



Workshop on European SEE Accelerators – Jyväskylä, – May 26th 2005

Heavy Ion irradiation Facility (HIF)

- 1992: First HI test in LLN
- 1993: First setup
- 1995: HIF kick off
- 1996: HIF validation test

HIF					
₩ <u>Beam</u> :	Homogeneity \pm 10 % on diam. of 25 mm Flux from a few part/s cm ² to 2 10 ⁴ Ion changing time 3 minutes				
Interface:	 2 flanges with BNC (2 X 10 BNC) 1 flange with 6 sub D-25 1 flange with 10 SMA 2 flanges with 40 pin connectors 1 thermocouple flange available 				
Miscellaneous:	Chamber pumping time: 5 minutes User controllable beam shutter Power supplies, scope, counter and tools available				

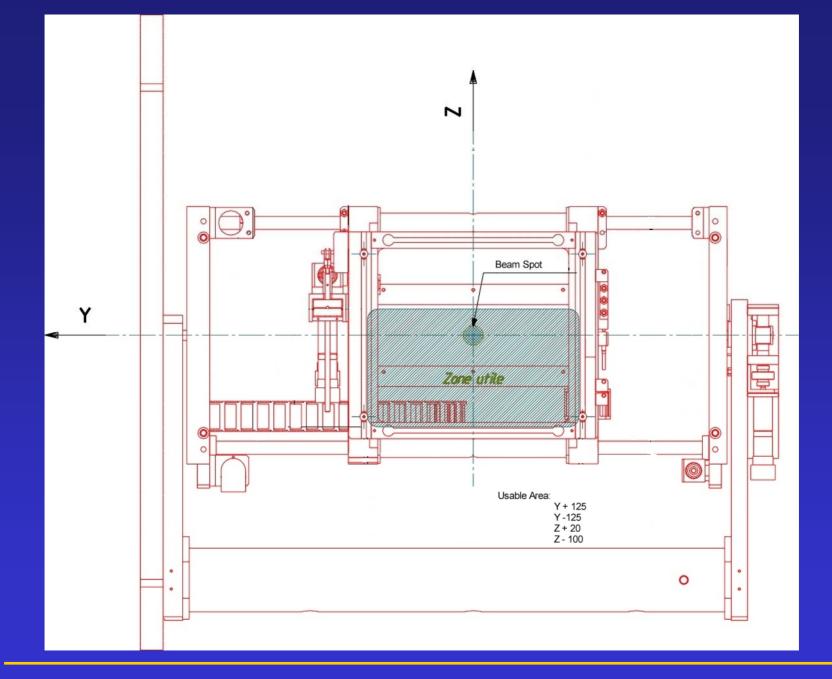
Ion	DUT Energy [MeV]	Range [µm Si]	LET [MeV cm² / mg]
¹⁵ N ³⁺	62	64	2.97
²⁰ Ne ⁴⁺	78	45	5.85
⁴⁰ Ar ⁸⁺	150	42	14.1
⁸⁴ Kr ¹⁷⁺	316	43	34
¹³² Xe ²⁶⁺	459	43	55.9

High LET Cocktail

Workshop on European SEE Accelerators – Jyväskylä, – May 26th 2005

Ion	Cyclo Energy [MeV]	Range Cyclo [µm Si]	LET(Si) Cyclo [MeV cm² / mg]	DUT Energy [MeV]	Range [µm Si]	LET (Si) [MeV cm ² / mg]
¹³ C ⁴⁺	133	276	1.2	131	266	1.2
²² Ne ⁷⁺	241	207	3.2	235	199	3.3
²⁸ Si ⁸⁺	248	115	6.6	236	106	6.8
⁴⁰ Ar ¹²⁺	390	125	9.9	372	119	10.1
⁵⁸ Ni ¹⁸⁺	603	106	19.9	567	98	20.6
⁸³ Kr ²⁵⁺	813	100	31	756	92	32.4

High penetration Cocktail



Workshop on European SEE Accelerators – Jyväskylä, – May 26th 2005

Light Ion irradiation Facility (LIF)

➢ Proton energy: from 10 to 67 MeV

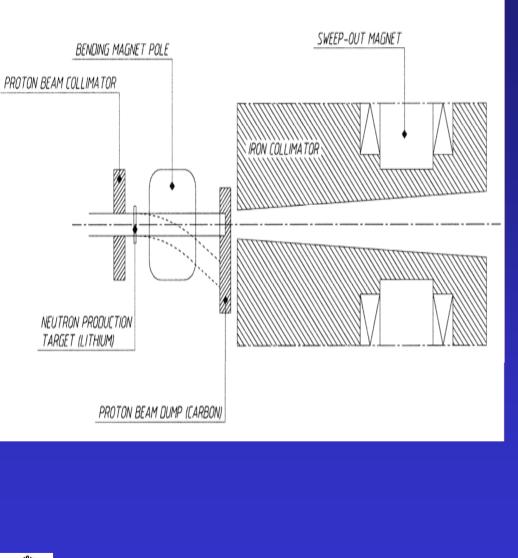
Energy modulation: Polystyrene blocks

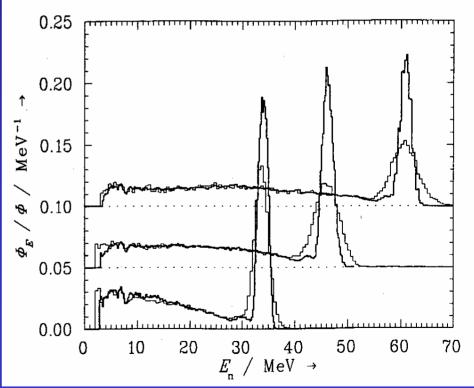
 \geq <u>Homogeneity</u>: ± 10 % on a diam. of 10 cm

 \geq <u>Flux</u>: between a few p/s cm² and 10⁹ p/s cm²

≻<u>Dosimetry</u>:

- Profile: diode in a water phantom
- Monitoring: transmission chamber + Scintillators
- Calibration with a Faraday cup



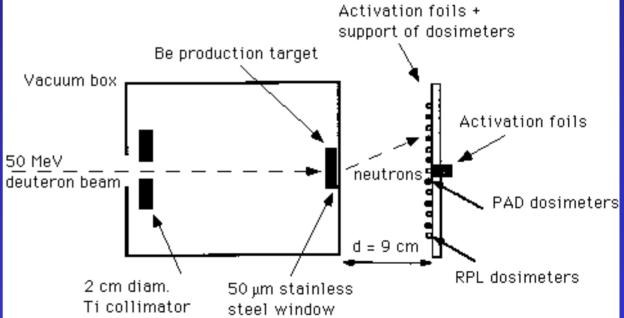


Monoenergetic Neutron Line

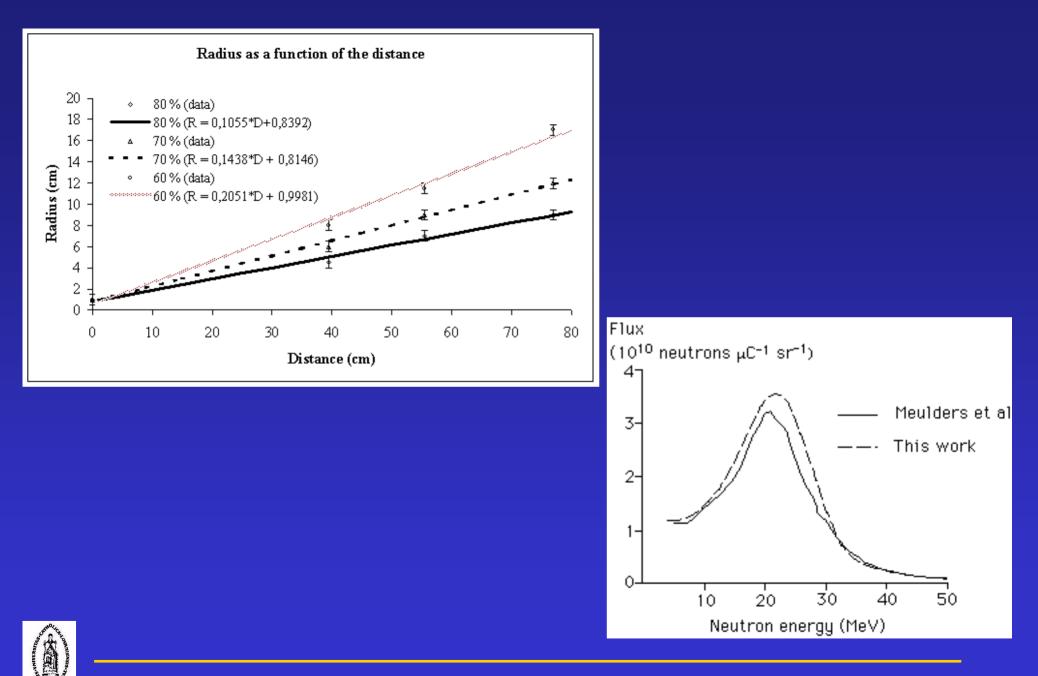
 \geq Reaction: ⁷Li (p,n) ⁷Be Q= - 1,644 MeV Thin target > Peak energy range: from 25 to 70 MeV \geq <u>Typical flux</u>: with 10µA proton beam 3 mm thick target 10⁶ n / cm² s on a 30 mm diameter area \succ Homogeneity $\pm 10 \%$

Workshop on European SEE Accelerators – Jyväskylä, – May 26th 2005

High Flux Neutron Line


$\geq \underline{\text{Reaction}}: \ ^{9}\text{Be} + d \rightarrow n + X \text{ using a 50 MeV beam}$ 1 cm thick target

Peak energy range: from 25 to 70 MeV


Typical flux: 7.3 * 10¹⁰ neutrons / cm² s at 9 cm from target

Scheduling and financing

o CYCLONE shut down periods for maintenance : from Xmas to mid February mid July to last week of August

o Scheduling : semestrial planning meeting
 HIF : 8 periods of 4 days per year
 LIF : 4 periods of 2 days per year
 Neutron : on request

- o Request to : <u>berger@cyc.ucl.ac.be</u>
- o CYCLONE Web site : http://www.cyc.ucl.ac.be

Scheduling and financing

- o Hourly rates:
 - HIF : ESA, ESA-contractors (upon approval by the ESA Technical Manager) other non-profit organisations and institutions: 495 €

- all other companies, organisations : 516 ${\ensuremath{\in}}$

• LIF – NIF : Non - CERN516 \in

o Cancellation policy: if within 2 weeks before scheduled period, 50 % of the ordered beam time will be charged.

Future Developments

- HIF : High penetration ion with high LET
- LIF : Labview environment interface
- Heavy ion Micro beam line

