

User Test Experiences and Needs

Hirex Engineering SAS – F.X. Guerre

RADECS Thematic Workshop May 26th 2005

HIREX ENGINEERING S.A.S.

• Offering SEE test as a service using

- Heavy ion
- Proton
- Neutron
- Alpha source, CF-252
- Laser
- User test H&W could basically be the same with some specific constraints
 - Physical test board dimensions
 - Thermal vacuum
 - Parts opening
 - parasitic secondary radiation
 - Remote control
 - etc.

- To be successful and produce reliable data to the customer, a SEE test requires **both**
 - a good performance of the SEE test set-up
 - a good performance of the beam provider
 - to get the right beam and beam data (beam stability, homogeneity, ion energy, LET, flux, fluence, etc.)
 - to have the SEE test set-up working as needed (error detection, data recording,...
 - that both beam facility set-up and SEE test set-up fits together. (mechanical, electrical interfaces)

Accelerator selection criteria as a service provider

- Technical: beam characteristics
- Facility approved for SEE testing
- Overall beam acquisition cost for full characterization of a device
 - beam cost
 - travel cost
 - overall test time (user manpower)
- SEE Test slots availability

Lessons learned

- Data validation: back to home, it is to late
 - To have the beam data in real time
 - to perform a data analysis (first check) upon completion of each run
- Set-up installation: trouble issues
 - Cables and connectors: inversion, pin integrity,cables blocked or damaged during a tilt, etc
 - Electrical noise
 - Parasitic light

What do we need

- beam characteristics
- data validation
- set-up
- cost effectiveness
- beam availability

Beam characteristics

- Heavy ion
 - LET range > 1 to about 50 MeV/(mg/cm2)
 - ion penetration range $> 100 \mu m$ could be needed
 - number of ions available (number of LET points)
 - flux < 100 to >10000 #/cm2.s,
 - fluence up to >1E7 # cm2.)
- Proton
 - energy 20 to 200MeV
 - possibility of high flux / fluence (dose)

Data validation

- In addition to error detection, the following parameters should be monitored and recorded all along the run and within the same time system
 - •Beam count versus time from the **accelerator**
 - •DUT U/Is versus time
 - •DUT temperature versus time
 - •Number of errors versus time

This gives a way to check data consistency and find anomalies, to correlate between events occurrence and parameters (DUT current variations, beam instability,...)

Quick check of beam calibration

Use of a reference

Set-up

- Beam count signal to the user test equipment
- User control of a beam shutter (heavy ions, DUT initialization phase integrity)
- Reliable cables and connectors (savers, electrical check)
- cables in place between beam test area and user room (long distance)
- clean power network
- protection parasitic light (heavy ion)
- Friendly beam user interface (BNL could be a good example)
- beam data log in real time

Cost issue

Possibility to fully characterize a given device in one slot:

- All ions needed (LET points) available
- All proton energies available

To reduce as much as possible all the hidden times:

- Beam preparation and tuning
- Changing DUT (pumping, etc)

Availability

A coordination of the European facilities would be appreciated to define a global schedule and propose test slots all along the year.

Neutrons

Today mono-energetic neutrons beam are available in Europe.

For the near future, a white neutron spectrum is needed also in Europe as it could be a very cost effective solution to test commercial devices for ground applications

I would say that working with accelerator people for more than 10 years has been a very enjoyable experience.

RADECS Thematic Workshop May 26th 2005

HIREX ENGINEERING S.A.S.