

Wales Airborne Demonstrator

Martin Wirth, <u>Andreas Fix</u>, Gerhard Ehret DLR, Institut für Physik der Atmosphäre

DLR WALES: Motivation of the Project

- Airborne Demonstrator for Water Vapour DIAL in Space
- \checkmark 4 Wavelengths Lidar in the 935nm H₂O-Band
- → State-of-the-art System for Atmospheric Research
- → Satellite Validation

Design Goals

→ Design Goals

- Technologically equivalent to proposed space system (4-wavelength setup in 935 nm H₂O-Band)
- Compact, robust, (quasi-) autonomous
- Modular, extendable
- Also State of the Art for airborne application (not only a WALES-Demonstrator)

Co-operation :DLR Stuttgart, DLR Berlin, DLR OberpfaffenhofenProject head:Martin Wirth

Special Requirements for Airborne Deployment

- ✓ Temperature changes in the range of 10-15 °C/h
- ✓ Rapid pressure changes of 0,3 bar
- ✓ Vibrations, mechanical stress induced by bending platform
- ✓ Crash proof up to 18 g
- → Has to fit into a volume of 100 x 110 x 90 cm (without telecope)
- ✓ Maximum total weight of less than 400 kg
- ✓ Limited cooling power (< 2 kW)</p>
- ✓ Small exit aperture (8 cm central window) for 4 outgoing beams
- ✓ System warm-up for full performance less than 1/2 h
- Resistant to high humidity and insects (tropical campaigns)
- → Has to be (dis-)assembled easily
- \Rightarrow Critical elements: Hermetically sealed and integrated
- \Rightarrow Only components with small space and power consumption can be used

Heritage: DLR Airborne H2O DIAL

G. Poberaj et al., Appl. Phys. B, 2002

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

in der Helmholtz-Gemeinschaft

Airborne Multi-Wavelength H2O DIAL:

Transmitter Specifications

	Threshold Requirement	Optimistic Estimate (from 2003)	Current State
Output Power			
Laser Output @ 1064nm	250 mJ	400 mJ	
Laser Output @ 532nm	130 mJ	220 mJ	
OPO Output @ 935nm	25 mJ	40 mJ	
Repetition rate (all 4 pulses)	50 Hz	50 Hz	
Spatial Beam Quality			
OPO Beam Diameter (2nd M)	6 mm	4 mm	
OPO Beam Divergence	< 2 mrad	< 1 mrad	
Beam Quality M ²	< 6	< 3	
Boresight Stability	<±50µrad	<±30µrad	
Spectral Beam Quality			
Pulse Linewidth	< 250 MHz	<150 MHz	
Frequency Stability	< 50MHz	<35MHz	
Spectral Purity	>99.7%	>99.9%	

Airborne Multi-Wavelength H2O DIAL: Receiver Specifications

Parameter	Unit	Anticipated
Receiver Telescope Optic (circular) Aperture	m	0.48
Spectral Filter Width	nm	0.7
Spectral Filter Transmission	-	0.7
Telescope Transmission	-	0.90
Receiver Field of View	mrad	1.2
APD Effective NEP	fW/√Hz	3.5
APD Quantum Efficiency		0.85
APD Fano Factor (at gain 100)		3.5

Transmitter Concept (2x2 = 4)

Seedlaser: Wavelength Stabilisation Concept

- Stabilisation of the highest absorption wavelength to a water vapour reference cell Advantages: Absolute Calibration of the wavelength with the highest accuracy requirements, needs only a relatively short multipass cell
- Relative stabilisation of the other wavelengths using a commercial wavemeter Advantages: easy to use, approved components, unambiguous frequency determination

DFB Laser Performance: Side-mode suppression

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

DFB Laser Performance: Stability

WALES specification is 60 MHz RMS !

Pump Laser: Monolithic Master Laser Mephisto-Q: pulsed, inherently single frequency

Energy: ~15-50 µJ Pulse length : 3-15 ns Stability: 1 MHz/min Passively Q-switched

Advantages

- Very low sensitivity to vibrations
- No problems with thermal gradients (whole laser is temperature stabilized to mK)
- No active resonator stabilization necessary
- No suppression for amplified seed radiation necessary
- Very simple double pulse possible (master runs at 4 kHz)
- Large longitudinal mode separation (approx. 6 GHz): good for spectral purity
- No electro-optical q-switch: no lifetime problems with crystals and HV-electronics

Possible Disadvantages

- Has to be synchronized to power stage by a phase locked loop (jitter \approx 1 µs)
- Unusual temporal pulse shape (slow ascent, fast descent)

Mephisto-Q: Frequency Stability

Measured by heterodyne technique

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Pump laser: Laboratory Breadboard Schematics

Pump Laser: Laboratory Breadboard Realisation

Preamplifier

Monolithic master oscillator in pressure tight housing

Pump Laser:

Simulation of beam propagation and thermal lensing

LR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Pump Laser: Optimisation of Rod Diameter and Doping

⇒ Significantly more homogenous inversion distribution over a large temperature range

 \Rightarrow Pulse energy raised from 35 mJ to 50 mJ accompanied by a reduction in pump energy by 35%

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Pump Laser: Beam Quality of the Breadboard

Preamplifier: M² = 1.2 @ 50 mJ/100 Hz r_=0.267 mm r_=0.277 mm phi= -9 0% M²,=1.19±0.01 6.7% 13% 0.3 $M_{b}^{2}=1.22\pm0.02$ 0.2 20% M²_=1.16±0.03 26% 33% 0.0 [mm] 40% 0.2 46% Radiue 53% Ē.0.2 59% 66% **.** . 73% 0.1 80% Mainamplifier: 86% -0.6 93% 99% 0,=0.85±0.05mrad D₂=2.36mm M² = 1.4 @ 380 mJ/100 Hz 0.0 0.0 0.2 -0.6 -0.4 -0.2 0.4 50 600 Distance [mm] 500 550 650 x [mm] + + r_=0.092 mm r_=0.089 mm phi= 14* 1.0 E 1.0 Orientation [°] 0% 20 M^{2} = 1.39 ± 0.02 6.7% 0.6 0 13% $M_{h}^{2}=1.41\pm0.03$ 0.4 0.820% 0.2 -20 $M^{2}_{-}=1.35\pm0.02$ 26% 0.0 33% 0.0 -40 mm] enjpez -0.2 550 Distance 40% -0.50.0 0.5 500 -1.0 46% E 53% 59% 66% 73% 80% -0.2 0.2 86% 93% 0,=0.38±0.10mroc 99% D_{in}=5.76mm 0.0 0.0 -0.3 -0.2 -0.1 450 400 500 550 600 650 700 x [mm] Distance [mm] Orientation [°] 0.8 20 F 0.6 0.4 0.2 -20 0.0 -40 -0.2 450 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 400 500 550 600 650 700 Distance [mm]

Pump Laser: Second Harmonic Generation

- ✓ Comparative test of different SHG-Cristals
- ➤ Different materials:

 - ✓ KTP, Typ 2, CPM, RT
 - → KTP, Typ 2, CPM, 80°C
- → Different suppliers
- ➤ Development of a crystal oven

Pump Laser: Second Harmonic Generation

7 10 mm KTP at 80°C

Pump Laser: Beam Quality at 532nm

 $M^2 = 1.8$

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Pump Laser: Flight Module is currently manufactured

Dimensions: 700 mm x 412 mm x 257 mm including all electronics
Wall-plug Efficiency (1064nm): 5.1% / 750 W power consumption

Airborne Multi-Wavelength H₂O DIAL: Aircraft Rack with all Components

Time Schedule

- Q4/2005 All critical transmitter components built and test in a laboratory setup
- Q2/2006 Integration of all sub systems in the lab and first atmospheric measurements (*out of the window*)
- Q3/2006 Assembly of the complete system within aircraft frame and ground testing
- Q4/2006 First test flight
- Q3/2007 Full aircraft certification and first airborne campaign

