#### **Raman Laser**

H. J. Eichler, T. Riesbeck and H. Rhee



One-day meeting ESA-DLR on Technology Activities for Spaceborne DIAL Instruments 18.Nov.2005



## Requirements for WALES-Laser-Transmitter

last update 2004

| Wavelengths [nm]               | I. 935.906 / 935.561 / 935.684 / 935.840  |
|--------------------------------|-------------------------------------------|
|                                | II. 943.284 / 943.442 / 943.083 / 942.650 |
| Pulse energy [mJ]              | 75                                        |
| Pulse duration [ns]            | < 200                                     |
| Repetition rate [Hz]           | > 50                                      |
| Pulse-to-pulse interval [ms]   | 10                                        |
| Linewidth [MHz]                | < 160                                     |
| Beam quality [M <sup>2</sup> ] | < 2                                       |
| Polarization (linear) [%]      | > 99                                      |
| Tuning range [GHz]             | +/- 10                                    |



### Spontaneous Raman-Scattering



### Stimulated Raman-Scattering



### Stimulated Raman-Scattering



#### Raman-Laser



### Raman-Laser

400



λ [nm]



1100

1200

1300

1198 nm

St₁

### Raman-Laser

Output energy





#### Anti-Stokes-Raman-crystals for water vapour detection with Nd:YAG pump laser

| Wanted wavelength [nm] | Nd:YAG pump wavelength & Possible material<br>linewidth [nm] |                                   | Raman-line<br>attributes |
|------------------------|--------------------------------------------------------------|-----------------------------------|--------------------------|
| 943,284                |                                                              |                                   |                          |
| 943,442                | $1052.1 \pm 0.5$                                             | P.P.O.                            | ASt.                     |
| 943,083                | $1032.1 \pm 0.3$                                             | DID3O6                            | ASI2                     |
| 942,650                |                                                              |                                   |                          |
| 935,561                |                                                              | AANP or                           | ASt <sub>1</sub> or      |
| 935,684                |                                                              | β-BaB <sub>2</sub> O <sub>4</sub> | ASt <sub>2</sub>         |
| 935,906                |                                                              |                                   |                          |
| 935,561                |                                                              | AANP                              | ASt <sub>1</sub>         |
| 935,684                |                                                              |                                   |                          |
| 935,840                | $1064.1\pm0.5$                                               |                                   |                          |
| 943,284                | $1004.1 \pm 0.3$                                             | BiB <sub>3</sub> O <sub>6</sub>   | ASt <sub>2</sub>         |
| 943,442                |                                                              |                                   |                          |
| 943,083                |                                                              |                                   |                          |
| 942,650                |                                                              |                                   |                          |
| 935,906                |                                                              | AANP                              | ASt <sub>1</sub>         |
| 935,840                |                                                              |                                   |                          |
| 943,284                | $1064.6 \pm 0.5$                                             | BiB <sub>3</sub> O <sub>6</sub>   | ASt <sub>2</sub>         |
| 943,442                | $1004.0 \pm 0.3$                                             |                                   |                          |
| 943,083                |                                                              |                                   |                          |
| 942,650                |                                                              |                                   |                          |

# Raman-crystals for anti-Stokes-generation with Yb:YAG pump laser

| Wanted<br>wavelength<br>[nm] | Pump laser<br>wavelength<br>[nm] | Raman<br>wavelength<br>[nm] | Line<br>attribution | Raman<br>crystals                                                                                                       |
|------------------------------|----------------------------------|-----------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------|
| 935.561<br>943.442           | Yb:YAG<br>(1020 – 1050)          | 921.58<br>960.08            | ASt <sub>1</sub>    | $Ba(NO_3)_2$ $Na_2SO_4$ $KAl(SO_4)_2$ $PbWO_4$ $KGd(WO_4)_2$ $NaY(WO_4)_2$ $Ca_3(NbGa_2)$ $Ga_3O_{12}$ $ZnWO_4$ $YVO_4$ |



## Yb:YAG + barium nitrate or lead tungstate





## Schematic Setup for Seeder Amplification





### Stokes-Raman Crystals for CO<sub>2</sub>-detection with Nd and Yb pump laser

| Wanted      | Pump             | Raman-crystal                                | Raman-shift &                | Generated                        |
|-------------|------------------|----------------------------------------------|------------------------------|----------------------------------|
| wavelength  | wavelength &     |                                              | linewidth of                 | wavelength [nm]                  |
| [nm]        | linewidth [nm]   |                                              | material [cm <sup>-1</sup> ] | and attribution                  |
| 1570 - 1610 | $1052.1 \pm 0.5$ | $C_{16}H_{15}N_3O_4$                         | $1588 \pm 1.5$               | $S_2: 1580.1 \pm 1.1$            |
|             | $1064.6 \pm 0.5$ | $\alpha$ -C <sub>14</sub> H <sub>12</sub> O  | $3065 \pm 9$                 | $S_1: 1580.2 \pm 1.1$            |
|             |                  | $Ba(NO_3)_2$                                 | $1047\pm0.4$                 | $S_3: 1599.4 \pm 1.2$            |
|             | $1073.8 \pm 0.5$ | $C_{13}H_{10}O$                              | $3070\pm6.5$                 | $S_1: 1601.9 \pm 1.1$            |
|             |                  | $\alpha$ -C <sub>14</sub> H <sub>12</sub> O  | $3065 \pm 9$                 | $S_1: 1600.6 \pm 1.1$            |
|             | $1318 \pm 0.5$   | $Y(HCOO)_3 \cdot 2H_2O$                      | $1377 \pm 5.4$               | $S_1: 1610.2 \pm 0.8$            |
|             |                  | LiHCOO·H <sub>2</sub> O                      | ~ 1377                       | $S_1\!\!:\sim 1610.2\pm 0.8$     |
|             |                  | Ca(HCOO) <sub>2</sub>                        | ~ 1377                       | $S_1: \sim 1610.2 \pm 0.8$       |
|             | $1357.2 \pm 0.5$ | $\alpha$ -XAl(SO <sub>4</sub> ) <sub>2</sub> | 990 - 992                    | S <sub>1</sub> : 1567.9 - 1568.4 |
|             |                  | X: K, NH <sub>4</sub> , Rb, Tl               | ± 4.1 - 5.3                  | $\pm 0.7$                        |
|             | $1035 \pm 15$    | C <sub>13</sub> H <sub>10</sub> O            | $1650 \pm 4.5$               | $S_2: 1571.9 \pm 35$             |

## Stokes-Raman-conversion efficiency

• First-Stokes-efficiency up to 70 %:

P. G. Zverev, T. T. Basiev, A. M. Prokhorov, "Stimulated Raman scattering of laser radiation in Raman crystals", *Opt. Mater.* **11**, 335 – 352 (1999)

• Second-Stokes-efficiency > 30 %:

G. M. A. Gad, H. J. Eichler, A. A. Kaminskii, "Highly efficient 1.3- $\mu$ m second-Stokes PbWO<sub>4</sub> Raman laser", *Optics Letters*, **28**, Nr. 6, 426 - 428 (2003)

## Advantages and Drawbacks

## **Optical Parametric Oscillator OPO**

- + broad tuning range
  - → universal materials for many wavelengths
- frequency selection required
- only negative frequency shifts
- optical resonator required for high conversion efficiency

# **Stimulated Raman Shifter SRS**

- tuning range:
   1nm for crystals, 20nm for glass
   → special material for each wavelength
- + direct injection seeding
- + positive and negative frequency shifts
- + high gain  $\rightarrow$  single pass amplification of seed
  - needs further engineering

![](_page_14_Picture_13.jpeg)

## Summary

Anti-Stokes-Raman-shifting to <u>water absorption lines</u> at 935 and 942 nm is possible with: Nd:YAG-pump laser (3 crystals)

Yb:YAG-pump laser (10 crystals)

- Anti-Stokes Raman-laser with 12 mJ output energy and 6.4 % efficiency has been demonstrated with Ba(NO<sub>3</sub>)<sub>2</sub>.
- Calculations show that Raman-amplification of 100 mW seed beam to 30 mJ in 10 ns is possible with 100 mJ pump beam.
- Stokes-Raman-shifting to <u>CO<sub>2</sub>-absorption lines</u> at 1570 to 1610 nm is possible with: Nd:YAG-pump laser (11 crystals)

Yb:YAG-pump laser (1 crystal)

- First-Stokes efficiency up to 80 %

### References

- [1] A. A. Kaminskii, S. N. Bagaev, D. Grebe, H. J. Eichler, A. A. Pavlyuk, R. Macdonald, "Efficient multiwave Stokes and anti-Stokes operation of a Raman parametric laser based on a tetragonal NaLa(MoO<sub>4</sub>)<sub>2</sub> crystal", *Quant. Electron.*, 26, Nr. 3, 193 - 195 (1996)
- [2] A. A. Kaminskii, H. Eichler, J. Findeisen, Ch. Barta, "Room-Temperature High-Order Stimulated Raman Scattering and Stimulated Emission in Ultra-Low-Phonon Energy Orthorhombic PbCl<sub>2</sub>:Nd<sup>3+</sup> Crystal", *phys. stat. sol.* (b), **206**, R3 (1998)
- [3] A. A. Kaminskii, H. J. Eichler, D. Grebe, R. Macdonald, J. Findeisen, S. N. Bagaev, A. V. Butashin, A. F. Konstantinova, H. Manaa, R. Moncorge, F. Bourgeois, G. Boulon, "Orthorhombic (LiNbGeO<sub>5</sub>): efficient stimulated Raman scattering and tunable near-infrared laser emission from chromium doping", *Opt. Materials*, 10, 269 284 (1998)
- [4] A. A. Kaminskii, N. V. Klassen, B. S. Redkin, H. J. Eichler, J. Findeisen, "Tetragonal tungstates NaY(WO<sub>4</sub>)<sub>2</sub> and NaY(WO<sub>4</sub>)<sub>2</sub>:Nd<sup>3+</sup>-novel  $\chi^{(3)}$ -nonlinear-and laser-active crystals: multicomponent and Raman-parametric generation and low-threshold stimulated emission of Nd<sup>3+</sup> ions by two intermultiplet IR transitions  ${}^{4}F_{3/2}$  to  ${}^{4}I_{11/2}$  and  ${}^{4}F_{3/2}$  to  ${}^{4}I_{13/2}$ ", *Dokl. Akad. Nauk.*, **363**, Nr. 1, 34 38 (1998)

![](_page_16_Picture_5.jpeg)

## References

- [5] A. A. Kaminskii, H. J. Eichler, K. Ueda, N. V. Klassen, B. S. Redkin, L. E. Li, J. Findeisen, D. Jaque, J. Garcia-Sole, J. Fernández and R. Balda, "Properties of Nd<sup>3+</sup>-doped and undoped tetragonal PbWO<sub>4</sub>, NaY(WO<sub>4</sub>)<sub>2</sub>, CaWO<sub>4</sub>, and undoped monoclinic ZnWO<sub>4</sub> and CdWO<sub>4</sub> as laser-active and stimulated Raman scattering-active crystals", *Appl. Opt.*, **38**, Nr. 21, 4533 4547 (1999)
- [6] A. A. Kaminskii, S. N. Bagaev, A. M. Jurkin, A. E. Koch, H. J. Eichler, J. Findeisen, "New nonlinear-laser effects in a β-BaB<sub>2</sub>O<sub>4</sub> χ<sup>(2)</sup>- and χ<sup>(3)</sup>-active crystal", *Dokl. Akad. Nauk.*, 367, Nr. 4, 468 474 (1999)
- [7] A. A. Kaminskii, S. N. Bagaev, N. V. Kravtsov, S. N. Chekina, Ya. V. Vasiliev, N. I. Ivannikova, K. Ueda, J. Lu, H. J. Eichler, G. M. A. Gad, J. Hanuza, J. Fernandez, P. Reiche, "Spectroscopy and cw laser action, magnetooptics and nonlinear optical frequency conversion in Ln<sup>3+</sup> doped and undoped Bi<sub>4</sub>Ge<sub>3</sub>O<sub>12</sub> and Bi<sub>4</sub>Si<sub>3</sub>O<sub>12</sub> crystals", *Laser Physics*, **11**, Nr. 8, 897 918 (2001)
- [8] A. A. Kaminskii, P. Becker, L. Bohatý, K. Ueda, K. Takichi, J. Hanuza, M. Moczka, H. J. Eichler, G. M. A. Gad, "Monoclinic bismuth triborate  $BiB_3O_6$  a new efficient  $\chi^{(2)} + \chi^{(3)}$  nonlinear crystal: multiple stimulated Raman scattering and self-sum-frequency lasing effects", *Opt. Comm.*, **206**, 179 191 (2002)

![](_page_17_Picture_5.jpeg)

### References

- [9] A. A. Kaminskii, H. Klapper, J. Hulliger, H. J. Eichler, J. Hanuza, K. Ueda, K. Takichi, C. Wickleder, G. M. A. Gad, M. Maczka, "High-order many-phonon stimulated Raman scattering in orthorhombic benzophenone (C<sub>13</sub>H<sub>10</sub>O) and monoclinic α-4-methylbenzophenone (α-C<sub>14</sub>H<sub>12</sub>O) crystals", *Laser Phys.*, **12**, 1041 1053 (2002)
- [10] A. A. Kaminskii, T. Kaino, T. Taima, A. Yokoo, K. Ueda, K. Takichi, J. Hulliger, H. J. Eichler, J. Hanuza, J. Fernandez, R. Balada, M. Moczka, G. M. A. Gad, "Monocrystalline 2-Adamantylamino-5-Nitropyridine (AANP) a novel organic material for laser Raman converters in the visible and near-IR", *Jpn. J. Appl. Phys.*, **41**, 1041 1053 (2002)
- [11] H. J. Eichler, G. M. A. Gad, A. A. Kaminskii, H. Rhee, "Raman crystal lasers in the visible and near-infrared", J. of Zhejiang Univ. SCIENCE, 4, Nr. 3, 241 - 253 (2003)
- [12] G. M. A. Gad, H. J. Eichler, A. A. Kaminskii, "Highly efficient 1.3-μm second-Stokes PbWO<sub>4</sub> Raman laser", *Optics Letters*, 28, Nr. 6, 426 - 428 (2003)
- [13] J. Findeisen, "Sichtbare und infrarote Festkörperlaser mit nichtlinearer Frequenzumsetzung sowie Anregung über resonante Zwischenniveaus", Dissertation (1999)
- [14] P. G. Zverev, T. T. Basiev, A. M. Prokhorov, "Stimulated Raman scattering of laser radiation in Raman crystals", *Opt. Mater.* 11, 335 – 352 (1999)

![](_page_18_Picture_7.jpeg)