AIM INFRARED DETECTOR MODULES GENERIC SWIR-SENSOR GENSIS

Copyright AIM INFRAROT-MODULE GmbH

■ INFRARED SPACE POTENTIALS

COMPONENTS

- Infrared Detector Arrays
- Readout Integrated Circuits, ROIC
- Focal Plane Arrays, FPA
- Dewar
- Frontend Electronics, FEE
- Cryogenic Stirling Cooler

INTRODUCTION

PROGRAMMES

- German
- ESA
- AIM

MCT-IR-DETECTORS: λ _{CUT-OFF}

AIM

INTRODUCTION

PROGRAMMES

- German
- ESA
- AIM

TOWARDS 3rd GENERATION

EnMap: ENVIRONMENTAL MONITORING and ANALYSIS PROGRAM

German Program:

• Application in Future Instruments for National and International Space Programmes AIM

• AIM: Proof of Competence in the Area of **Infrared Sensorics**

Applications

- Earth Observations
- Meteorology
- Atmosphere and Climate Research
- spin-offs also in Terrestrial Applications

INTRODUCTION PROGRAMMES

- German
- ESA

SWIR 1024 x 256 INFRARED DETECTOR MODULE

Infrared Requirement List		GENSIS
1.	Optical Inteface	Hyperspectral Imaging
1.1	Photon flux [photons•s ⁻¹ •cm ⁻²]	
1.2	Spectral wavelength range [µm]	0.95μm ≤ λ ≤ 2.45 μm
1.3	Arrays Configuration	1024x256
2.	Detector Material	МСТ
2.1	Quantum efficiency η [%], Fill factor	> 60 %, ≥ 65%
2.2	Sensitive pixel area [µm x µm]	20 µm x 28 µm
2.5	Pitch [µm] [V x H]	24 μm x 32 μm
3.	CMOS - ROIC, number of outputs	8
3.1	 Operating modes, readout modes: Stare then read Stare while scan readout External frame start Subframe readout capability 	selectable lines user configurable
	• Individual gain adjustment for each line	2-stages
3.4	Programmable integration times	$1 \text{ ms} \le \Delta t < \approx 4 \text{ ms}$
3.5	Detector-MUX-Interface	СТІА
3.6	Full charge well capacity/element [pC] Max. handling charge [e ⁻]	2 C's: Q1 = $6 \cdot 10^5 e^{-10^5}$ Q2 = $1.6 \cdot 10^6 e^{-10^5}$

INTRODUCTION

PROGRAMMES

• German

AIM

- ESA
- AIM

	Infrared Requirement List	GENSIS
3.7	Maximum signal voltage range	2.0 V
3.8	Frame rate [Hz]	≤ 250 Hz
3.10	Dynamic range	> 76 dB
3.13	AD-conversion [bit]	14 bit
4.	Frontend Electronics, Elect. Interface	
4.4	Number of digital outputs	2
5.1	Responsivity [V/W]	$\approx 3\mu V/e$
5.2	NEP [W]	6.8•10 ⁻¹⁴ @ T_{op} (Det.) = 120 K
6.	Stirling Cryogenic Cooler	Pulse tube cooler, long life flexure bearing compressor
6.1	T _{op} (IR-Detector)	< 160 K (TBC)

AIM

- ESA
- AIM

Array:	HgCdTe 1)
Pixel:	384 x 288
Pitch:	$24 \ x \ 24 \ \mu m^2$
Cuton Wavelength:	0.85 µm
Cutoff Wavelength:	2.7 µm

Peltier Cooler:

Typical operating temperature 200 - 215 K

INTRODUCTION PROGRAMMES • German • ESA • AIM

Tint = 10 ms

Detectivity (Band 0.85 μ m - 2.7 μ m): > 3 x 10¹¹ cmHz^{1/2}W⁻¹

Defective Pixels: 0.25%

¹⁾ Remark: SWIR-FPA still with Direct Injection!

γ-TDI IRRADIATION TESTS

- ESA
- AIM

384x288 MWIR-MCT-Reference Detector: Tests carried out at ESTEC

384x288 MWIR-MCT-Reference Detector: Tests carried out at ESTEC

AVALANCHE PHOTODIODES

Ionisation Coefficients holes: α_h Electrons: α_e

 $k = \frac{\alpha_h}{\alpha_h}$

 α_{e}

INTRODUCTION

PROGRAMMES

- German
- ESA
- AIM

 $k \approx 1$: same contribution e⁻ und h⁺, avalanche Process will not stop k<<1: Only e⁻ will contribute, avalanche Process is ceased

 $\begin{array}{ll} \lambda_{CO} > 2 \ \mu m: & k<<1 \ well \ suited \ for \ low-noise \ APDs \ in \\ Proportional \ Range \\ x \approx 0,6: & Resonance \ of \ E_G \ and \ \Delta; \ k > 1 \ suited \ for \\ APDs \ in \ Geiger \ modus? \end{array}$

MCT AVALACHE PHOTODIODES

Measurement results for MCT-APDs with $\lambda_{CO} = 2,2 \ \mu m$ at 297 K

J.D. Beck et al., Proc. SPIE 4454, 188 (2001)

Gain for Bias between 0 and 40 V

Additional noise figure for Gain between 1 and 25

AIM FLIP-CHIP-TECHNOLOGY

INTRODUCTION PROGRAMMES

- German
- ESA
- AIM

Classical Photodiode: n⁺ - n - p

$$\label{eq:n+} \begin{split} n^+ &\approx 0,5 \; \mu m \\ n &\approx 0,5 \; - \; 1,0 \; \mu m \\ Le &= 5 \; - \; 10 \; \mu m \\ d_{Epi} &\approx 8 \; \mu m \end{split}$$

Avalanche Photodiode: n⁺ - n - p

 $n^+ = 0.0 - 0.5 \ \mu m$ $n \approx 1.0 - 5.0 \ \mu m$ $Le = 5 - 10 \ \mu m$ $d_{Epi} \approx 6 - 8 \ \mu m$

BANDWIDTH ESTIMATION

- Required Bandwidth 500 MHz critical
- Corrective Action:
 - deeper depletion region
 - Lower Operation Temperature

AIM EXPERIENCIES

INTRODUCTION

- PROGRAMMES
- German

AIM

- ESA
- AIM

Dark Current at RT

$$\lambda_{COi} = 1,55 \ \mu m : 0,05 \ e^{-} / ns$$

 $\lambda_{COi} = 2,25 \ \mu m : 10 \ e^{-} / ns$

Expected Photon Number: 8 - 80 / ns

REQUIRED DEVELOPMENTS

• Technology Development for Extended Depletion Region (for Example Diffusion Instead of Implantation, Extrinsic Doping)

- Reduced Epitaxial Layer Thickness to Achieve Higher Bandwidths
- Characterisation of Manufactured Diodes wrt Gain, Noise, Responsivity, Noise Behaviour, and Homogeneity at various Operation Temperatures
- Analysis of the Feasibility of MCT-Diodes Operating in the Geiger Modus
- Generation of Effective Electrical Potential Equalization to Prevent "Debiasing" for Matrix-APDs
- Eventually Using Micro-Lenses for Matrix-Arrays Pitch ca. 200µm x 200µm
- Hybridization Technology for Arrays for Larger Array Dimensions
- Adaptation of the Dewar Technology, if Cooling Requiured

INTRODUCTION

PROGRAMMES

- German
- ESA
- AIM