estec

BB of a Water Vapor DIAL Transmitter

Two Parallel Contracts, 600k€ each:

- 1. Alcatel-F / Quantel / (Passat) / Poli Milano
- 2. GA / CESI / Poli Milano
 - Both Completed
 - Both chose Ti:Sapphire after trade-off (*), pumped by Doubled Nd:YAG & seeded by ECLD; frequency reference by water vapor cell
 - Both suffered Laser Damage on:
 - Mirrors
 - **Crystals (Ti:Sapphire and Nd:YAG)**
 - Neither have reached the full set of specifications (Energy!)
- (*) Promising innovative Passat solution with Raman source + OPA considered industrially too risky by the Prime at the time

Quantel Breadboard

Ti:Sapphire oscillator

Fiber-coupled Seeder

CESI Breadboard

Water Vapor DIAL Transmitter: Results

Parameter	Value	Alcatel / Quantel	GA / CESI
Wavelengths (<i>vacuum</i> values)	A minimum of 2 emission λ 's out of the first three of either group :Group I: (935.561 nm)I. 935.906, 935.561, 935.684, 935.85 nm II. 943.248, 942.442, 943.083, 940 nm935.906 nm		Group I: (935.561 nm) 935.684 nm
Inter-pulse separation within burst (between different λ's)	0 – 200 µsec max.	80 µsec	200 µsec
Energy per pulse	>100 mJ, goal 150 mJ	35 mJ (single-pass Amp)	25 mJ (240 mJ pump)
PRF	> 25 Hz	25 Hz	25 Hz
Energy short term stability	<±4 %	5.5% (limited by pump stb.)	30% (limited by pump)
Polarization	> 99% Linear	99%	~99.3 %
Spatial beam quality	M ² < 2	< 2	~1.3
Boresight stability	< ±15 µrad	±~10 μrad	±25 / 40 μrad (pump: 240 μrad !)
Laser Pulse linewidth	< 160 MHz	140 MHz (single-pass Amp)	85 MHz
Spectral purity	99.9% energy within absorption line	99% - meas. Limit.	99.99% TBC
Wavelength accuracy and stability	< ±60 MHz	±33 MHz over 1 sec	±15 MHz over 1 min
Tunability range	±10 GHz	±10 GHz	±15 GHz
Wall-plug efficiency	2% goal	~1 % extrapolated	~1 % extrapolated

Igor Zayer TEC-MME

DLR - ESA - Meeting Nov. 2005

L3CCD for Lidar Applications – e2v Technologies

Advanced Demonstrator Activity: 800k€

Objectives

- Develop a representative L3CCD demonstrator of an optimized detector for Lidar applications with the goal to assess its full performance under Lidar-specific operation

- Reduce future risks for the development of this type of detector for future Lidar instrument

Status

- Direct Negotiations with e2v Technologies
- Directly driven by EarthCARE
- PDR held 24.10.05 recommendations under discussion
- Back-illuminated thinned optimized for 355nm; light shield outside sensitive area

L3CCD – Functional Requirements

Typical Timing Sequence

L3CCD – Operational Requirements

Operating Temperature	As close as possible to 20°C but always within [-50°C to +35°C]	Т
Optical spot diameter	20µm	Т
Wavelength	355nm	Т
Spectral width	Narrowband with δλ typically < 5nm	
Useful signal	1-4000 photons/µs	Т
Ground echo (single pulse)	10 ⁴ photons/15ns	Т
Quasi-specular reflection (single pulse)	10 ⁵ photons/15ns (TBC)	A/T
High signal at laser emission	TBD	Т
Pulse repetition frequency	50-100 Hz typically	Т
Number of samples to be acquired	400	Т
Time gate	666ns	Т
Total Acquisition Repetitiion Period	<7ms	Т

L3CCD – Performance Requirements

Quantum efficiency (QE)		>70% at 355nm	Т
PRNU (r.m.s. value)		<2% (TBC)	Т
Total dark signal (for one read-out time sample of 666ns)		<0.3 electrons	Т,
DSNU (rms value)		< 5%	Τ,
Read-out noise (for one read-out)		< 0.5 e-/pixel	Т,
Excess noise factor		$<\sqrt{2}$	Τ,
Gain value		TBD by the contractor	Τ,
Gain stability		<1% over 15s	Τ,
Gain knowledge		<3% over 1hour	Т
(Non-)Linearity		< 1% over the useful signal dynamic range	Т
Image Charge Handling Capacity		to be sized to accommodate the full dynamic range	Т
Memory Charge Handling Capacity		to be sized to accommodate the full dynamic range	Т
Serial Register Charge Handling Ca	<mark>pac</mark> ity	to be sized to accommodate the dynamic range	Т
Output stage Charge Handling Cap	acit <mark>y</mark>	> TBD	Т
Total allowed fractional charge loss amplification stage	prior to the	< 10 ⁻³ (TBC)	Т,
Correlation between consecutive ten	nporal samples	<± 13% (TBC)	Т

Igor Zayer TEC-MME

DLR - ESA - Meeting Nov. 2005