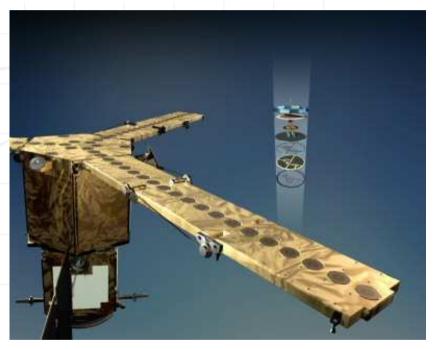


Outline

SMOS and SMOS/MOHA

- SMOS
- MOHA in SMOS
- COTS Fibre Optic Components in SMOS

Qualification Approach

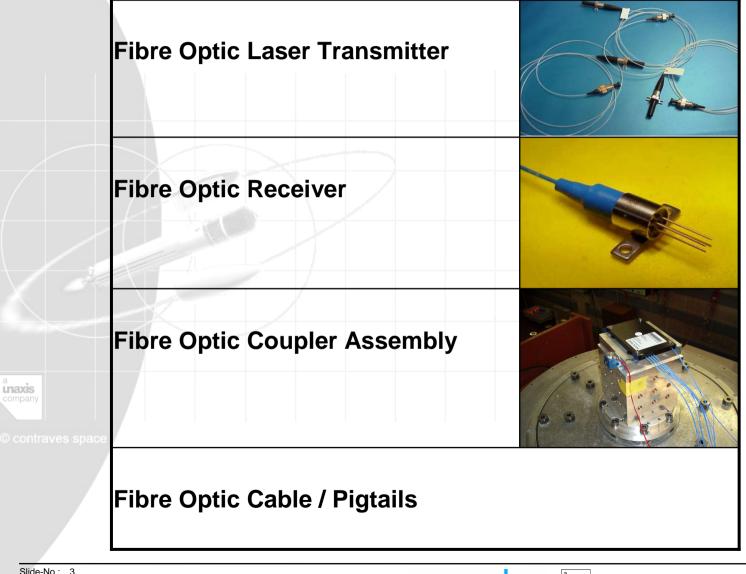

- Possible Strategies
- Strategy for SMOS/MOHA
- Evaluation
- Lot Acceptance
- Procurement Baselines

Lessons Learned and Issues

© contraves space

SMOS and SMOS/MOHA

SMOS Mission (Soil Moisture and Ocean Salinity) Payload Module: Microwave Imaging Radiometer with Aperture Synthesis (MIRAS) COTS Fibre Optic Components in SMOS



Contraves space

MOHA (MIRAS Optical Harness): Connects antennas with the control and correlator unit via a custom optical bus.

COTS Fibre Optic Components in SMOS/MOHA

COTS Fibre Optic Components in SMOS

Qualification Approach

COTS Fibre Optic Components in SMOS

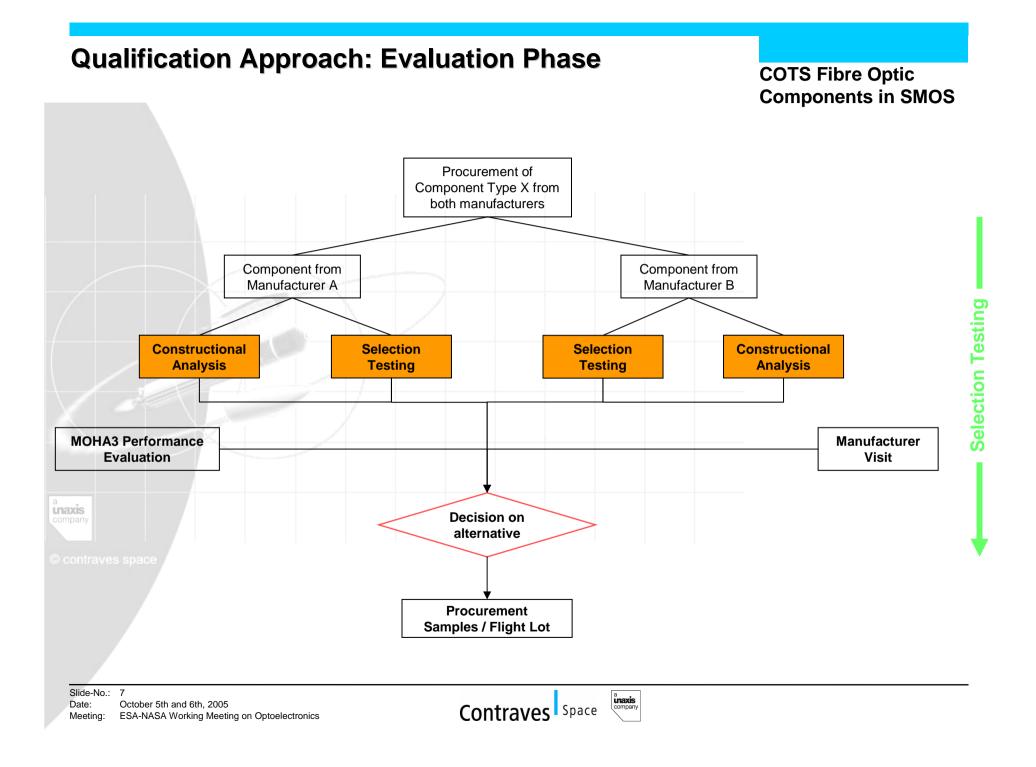
- Highest quality level for commercial off-the-shelf opto-electronic components is according to Telcordia standard or similar
- Space qualified components not feasible (power budgets) or simply not existing
- A full qualification exercise as per ESCC specification not feasible due to
 - time and cost constraints
 - industry is too fast moving

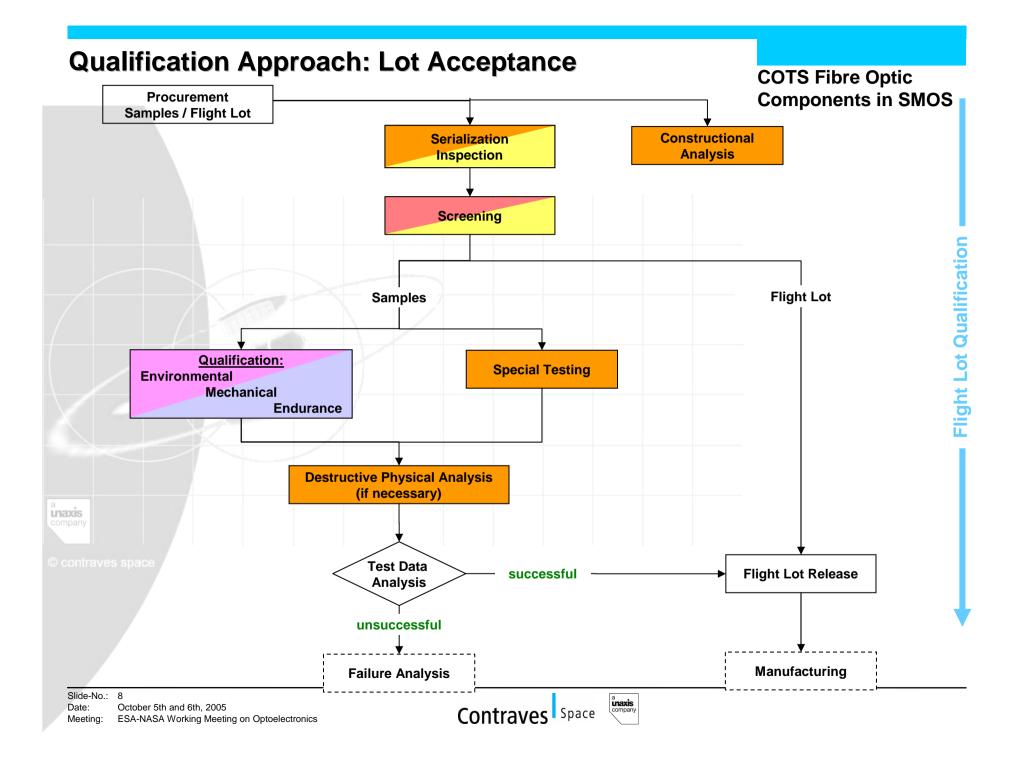
© contraves space

Qualification Approach: Strategies

COTS Fibre Optic Components in SMOS

a naxis company © contraves	1	Full qualification of 1 flight lot (FL) plus samples	+ least costs + shortest overall schedule – highest impact on schedule if not successful
	2	Full qualification of 2 alternatives of FL plus samples in parallel	 + risk of schedule delay is lowered, high probability that one lot can be successfully qualified + shortest overall schedule - 2 qualification lots to be procured - 2 full qualification campaigns - very high cost impact
	3	Partial evaluation of 2 alternatives Full qualification of 1 FL plus samples	 + costs are moderate (only one qualification) + risk of qualification failure low – impact on overall schedule is high as procurement has to be performed for the samples and after successful evaluation for the FL again
	4	Partial evaluation of 2 alternatives (reservation of 2 FL plus Samples) Partial qualification of 1 FL plus samples	 + short overall schedule as the FL plus samples are already reserved + lowest risk of schedule delay + Some tests already done during evaluation and need not to be repeated during qualification - Budget is highest as the reservation penalty for the 2nd FL is probably equal to the FL cost
	5	Partial evaluation of 1 alternative (if not successful 2 nd alternative) Full qualification of 1 FL plus samples	+ high risk of schedule delay – Overall schedule is medium as the procurement of the FL plus samples have to be done after evaluation, but impact if evaluation is not successful


Qualification Approach: Strategy for SMOS/MOHA


- One time Lot Acceptance Testing for this particular mission only
- One flight lot is purchased and tested for its suitability to the particular space application
- In order to reduce risk: Evaluation phase with two possible COTS candidates for each component (subjected to most critical tests, constructional analysis, manufacturer assessment)

unaxis company

Contraves space

Qualification Approach: Testing

COTS Fibre Optic Components in SMOS

- Selection testing (Evaluation phase):
 - vibration, shock
 - thermal vacuum cycling
 - radiation (gamma & proton)
 - constructional analysis & manufacturer assessment

Flight lot screening / qualification

- extended burn-in
- acceptance thermal cycling
- measurement at high and low temperature

Flight lot acceptance testing

- thermal cycling, vibration, shock and radiation
- life test
- bending, fibre pull, mating, DPA

Most testing has been outsourced to a dedicated test house, Tecnologica SA in Spain.

Qualification Approach: Procurement Baselines

To reduce qualification effort:

- Procure different parts with as many similarities as possible:
 - same optic fibre
 - same pigtail cable
 - same fibre optic connector

Assess willingness of manufacturer to cooperate in the proceeding

- Willingness to disclose exact processing
- Willingness to manufacture according to custom requirements (use the supplied fibre, cable, connectors)
- Willingness to help in failure analysis

contraves space

Issues I

• Fibre optic cables: Pay high attention to used cable design and harnessing and ensure its compliance with required temperature range and vibration and shock requirements

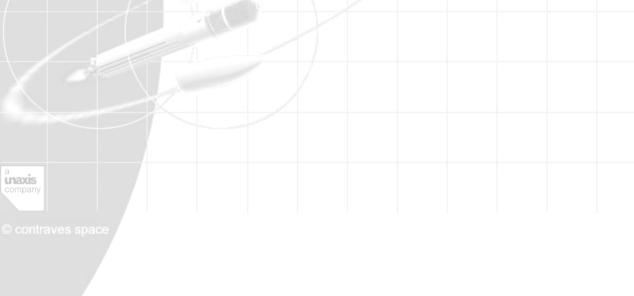
Fibre optic cable design:

- loose tube good for processing pigtailed parts / couplers
- tight tube better for temperature performance

Fibre optic cable/harnessing

- fixation of cable (vibration and shock)
- connectorising of cable/pigtail (Diamond connector, light throughput required)

© contraves space


• Temperature behaviour of laser transmitter

Issues II

 Analyse used materials (epoxies, strain relief boots) for their suitability in space applications

• Electro-optic components:

- Humidity content in TO-can
- Mechanical rigidness of the assembly

Lessons Learned

- Most manufacturers are not willing to customise their process for a small volume order
- Be fast, products change fast
- Smaller manufacturers show greater interest and higher flexibility to customise their manufacturing and/or disclose the exact processing

• Be very accurate in manufacturer assessment (which activities are outsourced, how is the visibility)

© contraves space

Contact Information

COTS Fibre Optic Components in SMOS

Contraves Space AG, (MOHA subsystem in SMOS):

Martin Mosberger, martin.mosberger@unaxis.com

Tecnologica SA (Test house for electronic, optoelectronic and optic components):

Juan Barbero, jbarbero@tecnologica.com

unaxis

Contraves space

